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ABSTRACT
One method for computationally determining phase boundaries is to explicitly simulate a direct coexistence between the two phases of
interest. Although this approach works very well for fluid–fluid coexistences, it is often considered to be less useful for fluid–crystal transitions,
as additional care must be taken to prevent the simulation boundaries from imposing unwanted strains on the crystal phase. Here, we present a
simple adaptation to the direct coexistence method that nonetheless allows us to obtain highly accurate predictions of fluid–crystal coexistence
conditions, assuming that a fluid–crystal interface can be readily simulated. We test our approach on hard spheres, the screened Coulomb
potential, and a 2D patchy-particle model. In all cases, we find excellent agreement between the direct coexistence approach and (much
more cumbersome) free-energy calculation methods. Moreover, the method is sufficiently accurate to resolve the (tiny) free-energy difference
between the face-centered cubic and hexagonally close-packed crystal of hard spheres in the thermodynamic limit. The simplicity of this
method also ensures that it can be trivially implemented in essentially any simulation method or package. Hence, this approach provides an
excellent alternative to free-energy based methods for the precise determination of phase boundaries.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0213535

I. INTRODUCTION
Phase transitions between a disordered fluid phase and an

ordered crystal are of paramount importance to a wide range of
physical phenomena, including colloidal self-assembly, ice forma-
tion in water, and the melting, solidification, and interfacial behavior
of a vast array of molecular and atomic substances. When study-
ing these phenomena in computer simulations, a key first step is
inevitably the determination of the phase boundary: under what
conditions can the fluid and crystal phase coexist, i.e., have the same
temperature, pressure, and chemical potential?

A large number of methods have been introduced that use com-
puter simulations to address this question.1,2 Although exceptions
exist (e.g., Refs. 3–5), these methods can broadly be grouped into
three different categories. The first category is to simply explore
which phase emerges from a simulation performed at a specific
state point. Since fluid–crystal transitions are nearly always first-
order phase transitions, the effectiveness of this method is typi-
cally hindered by hysteresis: fluids can be supercooled and solids

superheated. As a result, spontaneous phase transitions are rarely
observed at the equilibrium melting or freezing point. Nonetheless,
this approach can be extremely useful to obtain a rough impression
of the phase behavior of a new system.

The second category consists of free-energy based methods,
typically involving some form of thermodynamic integration.1,6,7 In
many cases, this involves determining the free energy of each phase
and then finding the state points where the temperatures, pressures,
and chemical potentials of the two phases are equal. Calculating the
free energy of a fluid is typically straightforward and can be done via
a thermodynamic integration over the equation of state, using the
ideal gas as a reference system.1 For the crystal phase, more advanced
methods are needed, involving more complex integration pathways.
Arguably, the most standard approach is an integration from the
Einstein crystal introduced by Frenkel and Ladd.6 A large number
of variations and extensions to this approach have been developed,
both attempting to optimize the method and to extend it to different
systems and phases (see, e.g., Refs. 7–13). The advantage of this class
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of methods is that generally each individual simulation only samples
a single phase, avoiding the need for explicit interfaces. Historically,
this has been an important benefit as it allows obtaining accurate
results from relatively small simulation sizes with short simulation
times. As a downside, this approach requires integration over a (or
usually multiple) series of simulation results, where the results can
be influenced by, for example, the number of state points sampled
and the chosen integration limits. As a result, the barrier to actually
performing a full free-energy calculation for a given system is signif-
icant, and, hence, their application is usually limited to fundamental
models where the effort is deemed warranted.

The third category is direct coexistence simulations. Dating
back to the 1970s,14–17 these are simulations that incorporate an
explicit interface between the fluid and solid. In principle, the
exchange of particles, volume, and energy between the two phases
then directly imposes the conditions for coexistence. However, in
the case of a fluid–crystal system, this approach is complicated by
the fact that a crystal can sustain a strain and is, therefore, sensi-
tive to the shape and size of the simulation box that confines it.18

Clearly, the equilibrium crystal should be unstrained, and multiple
methods have been developed to ensure a strain-free crystal. The first
attempts to do this simply required that the overall pressure tensor
in the direct coexistence simulation was isotropic, an approach that
has been applied in a variety of ensembles (see, e.g., Refs. 19–24).
Technically, this is not correct, since the presence of an interface
also provides an anisotropic contribution to the overall pressure ten-
sor. Instead, the goal should be to ensure that the pressure tensor
inside the crystal phase is isotropic. One method to address this
in the microcanonical (NVE) or canonical (NVT) ensemble is to
measure the local pressure tensor inside the coexisting crystal phase
and adjusting the simulation box to ensure that it is isotropic.25

Another, more commonly used, approach is to perform simulations
in a thermodynamic ensemble where the number of particles N and
temperature T are fixed, and the size of the simulation box is only
allowed to fluctuate in the direction perpendicular to the interfaces,
controlled by a pressure Pz .26–28 In this NPzT ensemble, the shape of
the box along the other two directions is kept fixed in accordance
with the lattice parameters of the crystal at an isotropic pressure
P = Pz . The downside of a constant-pressure ensemble is the fact that
the fluid–crystal interface is no longer stable: eventually, the crystal
will either melt or fully fill the simulation box. The coexistence con-
ditions must, therefore, be determined by finding the pressure where
the crystal has an equal probability of growing or shrinking, which
may require a large number of long simulations and introduces a
stochastic complication to the process. A solution was proposed by
Pedersen et al.29 in the form of interface pinning simulations, where
the interface is pinned in place via a biasing potential based on the
degree of crystalline order in the system. In this approach, coexis-
tence conditions are determined by finding the pressure at which the
effective force exerted by the biasing potential vanishes. Although
this approach avoids the stochasticity and long simulation times of
the direct NPzT approach, it also adds an additional complication
in the form of a biasing potential and the need for a suitable order
parameter to determine crystallinity.

Here, we propose an elegant, accurate, and efficient method
to determine fluid–crystal coexistence conditions in the NVT
ensemble. It relies only on global measurements of standard ther-
modynamic quantities, without requiring any biasing, numerical

integration, or reference states. We test this method by applying
it to three model systems: the hard-sphere model, a point Yukawa
model, and a two-dimension patchy-particle model. In all cases,
we find excellent agreement between our proposed method and
either literature values or our own predictions based on thermo-
dynamic integration. For the hard-sphere model in particular, we
show that the accuracy of our method is sufficiently high to resolve
the small free-energy difference (∼0.001kBT per particle) between
the face-centered cubic (FCC) and hexagonally close-packed (HCP)
phases.

II. MODELS
We consider fluid–crystal coexistence in three model systems:

hard spheres, Yukawa particles, and patchy particles. Here, we
describe these models in detail.

A. Hard spheres
An ideal model system for testing methods to determine phase

boundaries is the hard-sphere model, as the phase behavior has been
extensively studied using a variety of methods (see Ref. 30 for an
overview). The hard-sphere model consists of spheres of diameter σ,
which are not allowed to overlap, but otherwise have no interaction.
Its phase behavior consists of a fluid at densities below the freez-
ing density ρF

coexσ3 ≃ 0.939, a face-centered cubic crystal above the
melting density ρX

coexσ3 ≃ 1.037, and a coexistence region in between.
The corresponding coexistence pressure is βPσ3 ≃ 11.56, where
β = 1/kBT, with kBT being the thermal energy.

We simulate systems of N hard spheres of identical mass m and
diameter σ in a volume V , using the event-driven molecular dynam-
ics (EDMD) simulation code of Ref. 31, adapted to measure the
pressure tensor. We do not make use of a thermostat, and, hence, the
total energy of the system (which consists only of the kinetic energy)
is fixed. This, in turn, also fixes the temperature T. During the sim-
ulation, we measure the pressure tensor Pij by keeping track of the
momentum transfer during each collision, and using the following
expression:

Pij = ρkBTδij −
1
V
∑k m δv(k)i δr(k)j

tend − tstart
, (1)

where δij is the Kronecker delta, ρ = N/V is the number density, and
kB is Boltzmann’s constant. The sum runs over all collisions k occur-
ring between times tstart and tend. For each collision, δr(k) and δv(k)

denote the relative position and velocity of the two particles involved
in the collision, respectively.

B. Yukawa particles
As our second model, we consider point particles interacting

via the Yukawa (or screened Coulomb) potential, given by

VYuk(r) = ϵ
exp (−κ(r − σ))

r/σ , (2)

with σ being an effective particle size, ϵ being the contact value of
the potential at r = σ, and κ being the inverse screening length. In
particular, we focus on a system with an inverse screening length
κσ = 4 and a contact value ϵ/kBT = 20, which is known to form a
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body-centered cubic (BCC) crystal phase upon freezing.32 The inter-
action potential was truncated and shifted to zero at a cutoff distance
rc = 4.5σ.

We simulate these particles using the LAMMPS simulation
package.33,34 The integration time step was set to dt = 5 ⋅ 10−3τ.
As a thermostat, we use Nosé–Hoover chains with 30 oscillators in
the chain and a damping parameter τd = 2.0τ. An example script is
provided in the supplementary material.

C. Patchy disks
The third model we consider is an example of an anisotropic

model: a two-dimensional system of patchy particles. Depending on
the number and size of the attractive patches, patchy particles in two
dimensions can form a variety of (quasi)crystalline structures.35–37

For simplicity, we focus on four-patch particles, modeled using
the Kern–Frenkel potential,38 involving a hard core repulsion and
four directional attractive patches, whose angular position is evenly
spaced. Specifically, the interaction potential is given by

VKF(rij , θi, θj) = VHS(rij) + VSW(rij) f (rij , θi, θj), (3)

where rij = ∣rij∣ is the center-to-center distance between particles
i and j and θi denotes the orientation of particle i. In addition, VHS

is the hard-disk potential with diameter σ, and VSW is a square-well
potential, given by

VSW(r) =
⎧⎪⎪⎨⎪⎪⎩

ϵ, r ≤ λp,

0, r > λp,
(4)

where we choose the interaction range λp = 1.12σ and attractive
strength ϵ = −3kBT. Finally, f(rij, θi, θj) specifies the directionality
of the interactions as follows:

f (rij , θi, θj) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n̂(i)α ⋅ r̂ij > cos θ and

n̂( j)
β ⋅ r̂ji > cos θ

for any two patches α and β
0

(5)

where n̂(i)α is a unit vector in the direction of patch α on particle i
and r̂i j = ri j/ri j . The angle θ = 7○ controls the size of the patches.

We simulate these particles using EDMD simulations,39,40

where we again measure the pressure tensor [Eq. (1)]. During
these simulations, the temperature is kept fixed via an Andersen
thermostat.1

III. DIRECT COEXISTENCE IN THE CANONICAL
ENSEMBLE

We consider a periodic simulation box elongated along the
z-direction, containing a direct coexistence between a fluid and a
crystal (see Fig. 1), in the NVT ensemble. For simplicity, we first
consider a monodisperse system for which the stable crystal phase
has cubic symmetry (e.g., face-centered cubic). As a result, we can
orient the crystal such that the x and y directions of our simulation
are equivalent. To minimize the overall interfacial area and hence
the free energy, the most stable configuration of the interfaces will
be such that they are oriented perpendicular to the long z-axis of the

FIG. 1. Sketch of the fluid–crystal coexistence in an elongated simulation box. Note
that the simulation box is periodic in all directions.

box. Regardless of the simulation method used (e.g., Monte Carlo or
molecular dynamics), standard methods exist to measure the overall
pressure tensor Pij in the simulation box.1

Let us assume that we have already measured the bulk equation
of state of the crystal phase. In other words, for any given number
density ρX near the melting density ρX

coex, we know the pressure of
the undeformed crystal Pud(ρX). We can then take a crystal of any
density (near where we expect the melting density to be) and create
a simulation box where it is in contact with a fluid as sketched in
Fig. 1. In practice, creating this initial state can be done in a vari-
ety of ways. Depending on the chosen system size and the model
under consideration, it may be sufficient to fill most of the box with
the chosen crystal and leave some extra space on one side to facili-
tate melting. However, if the coexistence region is narrow, this may
lead to a stretched crystal filling the entire simulation box. In that
case, one strategy is to locally melt one half of the elongated box by,
for example, raising the temperature or reducing the particle size,
while keeping the particles in the other half of the simulation box
fixed (either by pinning them in place or by greatly increasing their
mass). For particles without hard-core interactions, it is also possi-
ble to place the particles in the fluid region randomly (followed by a
rapid energy minimization to eliminate excessively strong interpar-
ticle forces). A final alternative is the separate equilibration of the
fluid and crystal regions, followed by combining a fluid and a crystal
configuration together into a system that contains an interface.

Regardless of how the initial configuration is created, the length
of the long axis of the box should be chosen such that the over-
all density ρglobal lies within the coexistence region of the system
under consideration. This can be checked by allowing the simula-
tion to equilibrate using normal molecular dynamics or Monte Carlo
schemes: if the global density is chosen too low, we expect the entire
system to melt, while if it is too high, we expect it to freeze (assuming
that the crystal phase is denser than the fluid phase). In contrast, suf-
ficiently deep within the coexistence region (and for sufficiently large
systems), the equilibrium state should be a two-phase coexistence,
with the amount of each phase determined by the lever rule. Some
trial and error may be needed to find a global density that results
in approximately half of the box being filled with crystal, in order to
minimize finite-size effects that might result from thin slabs of either
crystal or fluid.

In the geometry of Fig. 1, the periodic boundary conditions
allow deformation of the crystal in only one direction: it can elon-
gate or compress along the z-direction. The x and y directions are
fixed by the periodic boundaries, which also prevent shear deforma-
tions.55 If our choice of ρX

0 results in an unstrained crystal, then the
pressure tensor inside the crystal phase is isotropic, i.e.,
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PX
i j = Pud(ρX)δij , (6)

where PX
i j denotes the pressure of the crystal. In general, how-

ever, equilibration of the direct coexistence simulation will lead to
a deformed crystal, where the lattice spacing along the z-axis is
stretched by a factor ϵzz = ρX

0 /ρX , with ρX
0 and ρX being the initial and

average values of the crystal density, respectively. The normal com-
ponent of the pressure tensor PX

zz inside the coexisting crystal phase
can then be written as

PX
zz(ρX

0 , ϵzz) = Pud(ρX
0 ) − Bzzzz(ρX

0 )ϵzz + O(ϵ2
zz), (7)

where Bzzzz is the effective elastic constant41 of the crystal corre-
sponding to a pure expansion along the z-axis. Mechanical equilib-
rium requires that the Pglobal

zz component of the pressure tensor is
homogeneous throughout the system (see Appendix A) and, hence,
Pglobal

zz = PX
zz . Hence, to determine the conditions where the crystal

phase is undeformed (ϵzz = 0), we simply have to find the choice of
ρX

0 , where

Pglobal
zz (ρX

0 ) = Pud(ρX
0 ). (8)

In practice, this means that determining coexistence conditions
requires that we find the crossing point between the func-
tions Pglobal

zz (ρX
0 ), measured in direct coexistence simulations, and

Pud(ρX
0 ), measured in the bulk crystal phase.

To see how this works, we will work through this method in
detail for the hard-sphere model and then show extensions to other
model systems.

IV. MODEL 1: HARD SPHERES
A. Fluid–FCC crystal coexistence

As a natural starting point for testing the direct coexistence
method, we first focus on the fluid–FCC transition in monodisperse
hard spheres.

We first determine the bulk equation of state Pglobal
zz (ρX

0 ) in the
vicinity of the melting point for a FCC crystal of N = 1372 parti-
cles. Next, we construct initial configurations for a range of densities

ρX
0 σ3 ∈ {1.025, 1.0275, 1.030, . . . , 1.050}, by placing particles on an

FCC lattice oriented with the square (100) face perpendicular to the
interface in an elongated box chosen to be approximately three times
longer in the z-direction than in the x and y directions. We then add
additional empty space on one side of the crystal in the z-direction
in order to reach an overall system density ρglobalσ3 = 0.99. In order
to have similar finite-size effects in the bulk equation of state and the
direct coexistence simulations, we use the same number of FCC unit
cells along the shortest axis of the box in both simulations, result-
ing in N = 4116 particles in the elongated box. After equilibration,
the system reaches a stable fluid–crystal coexistence [see Fig. 2 for
a typical snapshot]. During the simulation, we measure the global
stress tensor Pglobal

i j . In Fig. 2, we plot both Pglobal
zz (ρX

0 ) (blue line)
and Pud(ρX

0 ) (red line) for a relatively small system size. The cross-
ing point between these two lines then gives us the melting density
ρX

coexσ3 = 1.037 49 and coexistence pressure βPcoexσ3 = 11.5524 for
this system size.

Figure 2 shows that the crossing point between Pglobal
zz and Pud

essentially coincides with a minimum in Pglobal
zz . This can be under-

stood when considering the fact that for each choice of ρX
0 , the

measured value of Pglobal
zz represents the pressure at which the fluid

becomes metastable with respect to a crystal with this deformation.
In equilibrium, the fluid will freeze as soon as there is any crystal
phase more stable than the fluid. Hence, the realization of the crystal
that corresponds to the lowest coexistence pressure must correspond
to the true equilibrium phase transition.

In principle, this provides another avenue for estimating the
coexistence pressure. However, in practice, it is much harder to
accurately determine the minimum in Pglobal

zz than its crossing point
with Pud. This is readily visible from Fig. 2, as the steepness of the red
line (Pud) indicates that small errors in the measurement of Pglobal

zz
will not strongly affect the predicted coexistence pressure.

Also shown in Fig. 2 is the behavior of Pglobal
∥

= (Pglobal
xx

+ Pglobal
yy )/2 as measured from our direct coexistence simulations.

We emphasize the deviation between Pglobal
zz and Pglobal

∥
at the point

of equilibrium coexistence. This difference can be directly linked

FIG. 2. Direct coexistence approach for a hard-sphere system of N = 4116 particles. The plot shows the behavior of the pressure Pglobal
zz normal to the interface as a function

of the lattice spacing of the initial crystal ρX
0 (blue line). The coexistence point (gray dot) is determined as the crossing point of this line with the bulk equilibrium equation of

state (red line). Note that at the point of equilibrium coexistence, the pressure component parallel to the interface (P∥, green dashed line) is not the same as Pglobal
zz , due to the

stresses exerted by the interface. Statistical errors are on the order of the typical deviations of the points from the fitted lines. The snapshot shows a typical configuration from
the direct coexistence simulation. As a guide to the eye, particles are colored based on the crystallinity of their local environment, using the averaged bond order parameter
q̄6.42
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to the free-energy cost associated with “stretching” the interface,
also known as the surface stress f .25 Although not important to
the determination of coexistence conditions, this further shows why
the assumption or requirement that the global pressure is isotropic
in the direct coexistence simulation is not technically correct. We
note, however, that in the limit of infinite system sizes, this deviation
vanishes.

The coexistence pressure and melting density obtained from
Fig. 2 contain finite-size effects. To quantify these effects and obtain
a prediction for the infinite-system coexistence conditions, we repeat
the same calculations for system sizes ranging from Nglobal ≃ 1500 to

FIG. 3. (a) Schematic images of the crystal orientations. In each image, the arrow
points at the interface facing the fluid. (b) Coexistence pressure as a function of
system size (characterized by the total number of particles N in the direct coexis-
tence simulations), for HCP and two different orientations of FCC. (c) Helmholtz
free energy of the crystal phase at density ρσ3 = 1.0409 (slightly above melting) as
a function of system size. The red point represents the value obtained by Frenkel
and Smit1 and its corresponding error bar. For both (a) and (b), the solid lines
are linear fits to the data for N ≥ 5000 and the dashed lines indicate the values
obtained by extrapolating these fits to N →∞.

6 ⋅ 104 particles.56 The simulations were run for simulation times of

at least 105τ, where τ =
√

βmσ2 is the time unit of our simulation.
This is typically enough to obtain a good estimate of the coexistence
conditions, especially for larger system sizes. However, some simula-
tions for the smaller system sizes were run for up to ten times longer
to decrease noise.

We plot the resulting coexistence pressures in Fig. 3(b) as a
function of the inverse system size (black line). Extrapolating the
behavior to infinite system size, we obtain βPcoexσ3 = 11.5645(5),
which is in excellent agreement with the best known predictions
in literature (see Table I). Note that as expected, finite-size effects
shift the observed coexistence pressure to lower values for smaller
systems, as the periodic boundaries help stabilize the crystal phase.

In the above, we have made the choice to orient the FCC crys-
tal with its square crystal plane facing the fluid. In principle, the
coexistence conditions (in the thermodynamic limit) should be inde-
pendent of the crystal orientation. To test this, we have repeated
our calculation with the FCC crystal oriented such that the hexag-
onal planes in the crystal are aligned with the xz-plane of the box, as
shown in Fig. 3(a). As a result, the plane facing the fluid is perpendic-
ular to these hexagonal planes. The resulting coexistence pressures
are shown as the purple line in Fig. 3. As expected, for small sys-
tems, the orientation matters, as the finite-size effects are different
for different orientations of the crystal. However, in the limit of large
systems, the two lines converge toward indistinguishable values.

In principle, we could repeat the same calculation with the FCC
crystal oriented such that the hexagonal plane faces the fluid. How-
ever, this orientation leads to an added complication: melting and
reforming the surface allows for the introduction of stacking errors
in the FCC structure, which results in a random hexagonally close-
packed (rHCP) structure after sufficiently long simulations. Since
our focus here is on the FCC crystal, we avoid this orientation.

B. Fluid–HCP coexistence in hard spheres
It is straightforward to extend our approach to crystals without

cubic symmetry, for instance the hexagonal close-packed (HCP) in
hard spheres. For such non-cubic crystals, the lattice parameters of
the stable crystal phase (i.e., the lengths and directions of the vec-
tors spanning the unit cell) are generally dependent on the density.
Hence, the determination of the equation of state should be done
while taking into account the possibility of lattice deformations (e.g.,
in an isotension ensemble). This then also provides the shape of the
crystal lattice as a function of density. The obtained crystal lattice
for each density can then be directly used in the direct coexistence
simulation, by adapting the shape of the simulation box in the xy
plane.

To further test the sensitivity of our method, we explore the
HCP–fluid coexistence in systems of hard spheres. The HCP crys-
tal in hard spheres is known to be metastable with respect to the
FCC crystal but is extremely close in free energy. Hence, its coexis-
tence pressure with the fluid is expected to be slightly higher than
that of the FCC phase. As a first step to predicting this coexistence,
we determine the pressure and lattice parameters of the HCP crys-
tal as a function of density. Due to the hexagonal symmetry of the
HCP lattice, the only parameter we have to determine is the ratio
c/a of the unit cell, where a is lattice spacing inside the close-packed
hexagonal layers and c is the height of the unit cell. For equilibrium
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TABLE I. Comparison of the predicted hard-sphere phase coexistence conditions to literature values. Note that all these predictions neglect the effects of defects (see
Discussion). In the last column, the dash (⋅ ⋅ ⋅) indicates that the treatment of system size was not reported.

Source Method ρfσ
3 ρmσ3 βPcoexσ3 N

Davidchack and Laird25 Direct coex. (NVT) 0.938 1.037 11.55 (5) 10 752
Frenkel and Smit1 Free energy 0.9391 1.0376 11.567 ∞
Fortini and Dijkstra44 Free energy 0.939 (1) 1.037 (1) 11.57 (10) ⋅ ⋅ ⋅
Vega and Noya11 Free energy 0.9387 1.0372 11.54 (4) ∞
Noya et al.26 Direct coex. (NPzT) 0.9375 (14) 1.0369 (33) 11.54 (4) 5184
Zykova-Timan et al.28 Direct coex. (NPzT) 0.949 1.041 11.576 (6) 160 000
Moir et al.13 Free energy 0.938 90 (7) 1.037 15 (9) 11.550 (4) ∞
This work Direct coex. (NVT) 0.939 18 (1) 1.037 52 (1) 11.5645 (5) ∞

hard-sphere crystals close to melting, this ratio is known to be close
to the idealized value

√
8/3.45

In order to continue using the same EDMD simulations in
a constant-volume ensemble, we measure the lattice parameter
c/a by performing at each density simulations for several differ-
ent values

√
8/3 − c/a ∈ {0, 2.5 ⋅ 10−4, . . . 1.0 ⋅ 10−3} and identifying

the deformation for which the pressure tensor is isotropic (see
Appendix A).

We then use the resulting lattice parameters as a function of
density to initialize our direct coexistence simulations, where we ori-
ent the HCP crystal such that the hexagonal planes in the crystal
are again aligned with the xz-plane of the box, as shown in Fig. 3.
We plot the resulting coexistence pressures in Fig. 3 along with the
FCC results. As expected, we observe that the coexistence pressure
for HCP is higher than that of FCC, by ∼0.009kBT/σ3.

C. Calculating crystal free energies
Direct coexistence simulations also provide a straightforward

avenue to determine the free energy of crystal phases. At coexis-
tence, the chemical potentials of the fluid and crystal phase coincide.
Hence, knowing the chemical potential of the fluid also implies that
we know the chemical potential of the crystal. The chemical potential
of the fluid can be straightforwardly obtained from its equation of
state via thermodynamic integration. To this end, we first determine
the freezing density ρF

coex from the coexistence pressure by using
the mKLM hard-sphere fluid equation of state of Ref. 43. Using the
same equation of state, we then calculate the chemical potential via
thermodynamic integration from an ideal gas,1

μcoex =
FF

coex

N
+ Pcoex

ρF
coex

, (9)

βFF
coex

N
= log (ρF

coexΛ3) − 1 + ∫
ρF

coex

0
dρ′

βP(ρ′) − ρ′

(ρ′)2 , (10)

with Λ being the thermal wavelength. Note that the value of Λ does
not affect the phase behavior, as it only results in a constant shift of
the free energy in all phases. Hence, we choose to set it equal to σ as
is commonly done in free-energy calculations of hard spheres.

The Helmholtz free energy of the crystal at coexistence is then
given by

FX(ρX
coex)

N
= μcoex −

Pcoex

ρX
coex

. (11)

Using this reference value, we can calculate the free energy at any
density inside the crystal regime via thermodynamic integration
over the equation of state of the crystal,

βFX(ρ)
N

= βFX(ρX
coex)

N
+ ∫

ρ

ρX
coex

dρ′
βPud(ρ′)
(ρ′)2 . (12)

Using this approach, we calculate the free energy of the crystal at
a density of ρσ3 = 1.0409, where we can compare to the result of
Frenkel and Smit1 obtained using Einstein integration and finite-
size scaling. We plot the results for both our FCC and HCP crystals
in Fig. 3(c) for different system sizes and include the extrapolated
infinite-size result of Frenkel and Smit1 for FCC as a benchmark.
Clearly, for both FCC orientations, our free energies converge to
the same free energy, while the HCP value is significantly higher.
This allows us to calculate the free-energy difference between FCC
and HCP, which we estimate to be 9.7 ⋅ 10−4kBT per particle at
this density. This is in excellent agreement with past calculations
using Einstein integration,6,46,47 which estimate the difference to be
∼0.001kBT per particle near melting.

V. MODEL 2: YUKAWA PARTICLES
In order to illustrate the general nature of our methodology, we

now turn our attention to a fluid–BCC coexistence of point Yukawa
particles. We note that the fluid–BCC coexistence region in this
model is expected to be very narrow:32 the predicted width of the
coexistence region is less than a percent of the melting density. Fluc-
tuations in the amount of crystal phase in the direct coexistence
simulation will, therefore, only weakly impact the densities of the
two phases and, hence, their free energies. As a result, we expect (and
observe) larger fluctuations in the amount of crystal in this system in
comparison with the hard-sphere system, necessitating long simula-
tions to obtain good statistical averages. Similarly, large system sizes
are required in order to avoid full crystallization or melting of the
system as a result of these fluctuations.
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FIG. 4. Direct coexistence simulation of the Yukawa model with inverse screening length κσ = 4, contact value βϵ = 20, and cutoff range rc/σ = 4.5. The data in the plot
are analogous to Fig. 2. The red circles indicate the predictions from free-energy calculations in the thermodynamic limit (N →∞) and for crystal system size N = 4394.
The latter corresponds to a crystal in a cubic box containing the same number of unit cells along each axis as used in the x and y directions of the long box simulations. As a
guide to the eye, particles are colored based on the crystallinity of their local environment, using the averaged bond order parameter q̄6.42

Our direct coexistence simulations are performed using sys-
tems of N = 17 453 particles, placed within a simulation box whose
z-axis was approximately four times longer than the x and y axes.
The total density ρglobalσ3 = 0.4962, which results in a coexistence
where approximately half of the system is crystalline (see Fig. 4).
In the initial configuration, half of the particles are placed on a
BCC lattice with the (100) crystallographic direction lying along the
z-axis and 13 unit cells along the short sides. The other half are
placed randomly in the remaining volume of the box. We perform a
short energy minimization before the start of the run to reduce the
initial forces between particles in the starting configuration. Addi-
tional configurations at different values of ρX

0 are then generated by
(anisotropically) rescaling of the simulation box. The simulations
were run for 2.5 ⋅ 106τ.

The results of the direct coexistence approach are shown in
Fig. 4, where we again determine the crossing between Pglobal

zz and
Pud as a function of the initial crystal density.

To confirm our result, we also predict the phase coexistence
using free-energy calculations (red circles in Fig. 4, see Appendix C),
finding good agreement. Note that the narrow coexistence region
also impacts the sensitivity of our free-energy-based predictions to
statistical or systematic errors: a (reasonable) estimated error of
0.001kBT in the crystal free energy would give rise to a shift of ΔP ≈
0.05kBT/σ3 in the predicted coexistence pressure, giving rise to the

large error bars in Fig. 4. This is approximately five times as large as
the corresponding ΔP would be in the hard-sphere system. In other
words, the narrow coexistence region makes it more cumbersome to
obtain an accurate prediction for the coexistence conditions in both
methodologies. Similarly, the coexistence pressure is rather sensi-
tive to finite-size effects in the free-energy calculations. As shown in
Fig. 4, the coexistence pressure shifts noticeably as we change the
size of the crystal used in our free-energy calculations.

VI. MODEL 3: PATCHY DISKS
Finally, to demonstrate the applicability of this method to sys-

tems of anisotropic particles, we examine a two-dimensional model
consisting of hard disks decorated with equally spaced attractive
patches. In particular, we simulate systems of N = 4232 particles,
at global densities ρglobalσ2 ≃ 0.714. We use a simulation box whose
z-axis is ∼2.5 times longer than the x-axis, initializing the system
by adding extra empty space along the z-axis analogous to what
was done for hard spheres. We run the simulations for a simula-
tion time of 106τ. Measurements of the pressure tensor, and relative
statistical errors, were obtained over ten independent runs per
point.

The direct coexistence results for this system are shown in
Fig. 5. The result is in close agreement with the prediction from the

FIG. 5. Direct coexistence simulation of the four-patch Kern–Frenkel model at temperature ϵ/kBT = −3.0. The data in the plot are analogous to Fig. 2. The red circle indicates
the result from free-energy calculations (statistical error bars are smaller than the point). The particles in the snapshot are colored based on the number of bonds formed by
their patches.
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(significantly more cumbersome) free-energy calculations [red circle
in Fig. 5, see Appendix D for details].

VII. DISCUSSION AND CONCLUSIONS
We have presented a simple, accurate method to predict

fluid–crystal coexistences based on direct coexistence simulations in
the NVT ensemble. As the algorithm is based on standard global
pressure calculations, it can be used together with essentially any
simulation method and is hence compatible with any commonly
used simulation package.

As a brief recap, to find the fluid–crystal coexistence conditions
for a monodisperse system,

1. We determine the crystal equation of state Pud(ρX). This
includes identifying the lattice parameters as a function of
density.

2. Perform a series of direct coexistence simulations with
different initial crystal densities ρX

0 and measure Pglobal
zz (ρX

0 ).
3. Find the crossing point between Pglobal

zz (ρX
0 ) and Pud(ρX

0 ). The
density and pressure of the crossing point are the melting
density ρX

coex and coexistence pressure Pcoex, respectively.
4. To obtain the freezing density, we can additionally measure

the fluid equation of state PF(ρ) and find the density ρF
coex at

which the fluid pressure equals Pcoex.

This method avoids the stochastic nature of the NPzT approach
of, for example, Refs. 26 and 27, and, therefore, the need to run
multiple simulations at the same state point to determine a melting
probability. It is also significantly simpler than the interface pinning
method,29 which requires the introduction of a biasing potential and
an order parameter to track the overall crystallinity of the system.
Finally, in comparison with the approach of Davidchack and Laird,25

our method avoids the need to measure local stress profiles and
manual adjustments of the simulation box to these measurements.

In comparison with free-energy calculations using, for example,
the Frenkel–Ladd method,6 the direct-coexistence approach we pro-
pose here is much easier to implement. Most importantly, the direct
coexistence approach allows for the determination of coexistence
densities and pressures without requiring a numerical integration
over a series of simulation results. As such integrations can easily
introduce numerical errors (due to a finite integration step size, the
need to carefully choose integration limits, etc.), this immediately
makes the direct coexistence approach significantly less error-prone.
In addition, free-energy calculations can present a number of pit-
falls that can introduce errors in the result, which may be difficult
to detect. For instance, in the Yukawa model studied here, sim-
ulations of the crystal close to melting allow for the spontaneous
diffusion of particles within the lattice. If this occurs in the simula-
tions associated with the Frenkel–Ladd integration (typically at low
spring constants), special care must be taken to avoid a systematic
error in the resulting free energy. Free-energy calculations also must
explicitly take into account any configurational entropy associated
with the crystal phase, as may occur in, for example, ice,48 crystals of
dumbbell-shaped particles,49 or quasicrystals.50 In contrast, this con-
figurational entropy is inherently taken into account by the direct
coexistence approach.

It is important to note that the direct coexistence method also
comes with a few caveats. First, defects are not accurately taken into

account in the methodology described above. In the direct coexis-
tence simulations, point defects such as vacancies and interstitials
are free to diffuse into and out of the crystal phase (as is visible in
Fig. 5), and hence for sufficiently long simulation times, we would
expect these simulations to correctly incorporate them. However,
this may require long simulation times in practice. Moreover, we
neglected the effects of defects on the bulk equation of state. In
principle, this could be addressed with some additional effort, for
example, by measuring the defect concentration in the direct coexis-
tence simulation (assuming that it is large enough to be measurable)
and checking the effect of these defects on the equation of state. We
note, however, that taking into account defects in free-energy cal-
culations also requires significant additional effort51–53 and is rarely
done.

Second, it should be noted that the direct coexistence approach
is generally more computationally expensive than free-energy cal-
culations. Equilibrating the explicit interface between the two coex-
isting phases and sampling its fluctuations over time requires sim-
ulations over longer time scales than sampling the behavior of the
single-phase simulations required for a prediction of phase coexis-
tence based on free energies. Moreover, the system sizes required
to maintain a stable coexistence are significantly larger than those
required to simulate a pure fluid or crystal in a reasonable approx-
imation of the thermodynamic limit. This downside is partially
addressed by the simplicity of the method, which means that the
simulations can be performed by existing simulation codes that have
already been well-optimized or adapted for parallel or graphics pro-
cessing unit (GPU) computing. However, if the model of interest
has interactions that are computationally expensive, or requires very
large system sizes to realize a stable interface, the computational cost
may become prohibitive.

Finally, we point out that direct coexistence methods are not
suitable for solid–solid transitions, as two unstrained crystals can
typically not occupy the same simulation box.1 Nonetheless, in some
cases, such as the case of hard-sphere HCP presented here, direct
coexistence can still be useful if a metastable fluid-crystal coexis-
tence can be simulated. The resulting crystal free energy at melting
can then be used as a reference point for thermodynamic integra-
tion to other state points. However, for crystal phases that cannot
form a metastable coexistence with a fluid, other methods would be
required.

Despite these caveats, the NVT direct coexistence method
presented here is a highly accurate and convenient method for
the prediction of fluid–crystal phase coexistences. As shown by
our hard-sphere example, it is at least as accurate as free-
energy calculations. Moreover, as we show with the Yukawa
and patchy systems, the method is directly applicable to any
fluid–crystal phase boundary. In short, for systems where a
coexisting state can be equilibrated on reasonable time scales,
NVT direct coexistence is a powerful method that we expect to
become a staple technique for the determination of crystal phase
boundaries.

SUPPLEMENTARY MATERIAL

The supplementary material contains a sample LAMMPS script
for direct coexistence simulations of the Yukawa system.
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APPENDIX A: PRESSURE TENSOR IN A COEXISTING
SYSTEM

We consider a system of N particles in a volume V at tempera-
ture T, which exhibits a coexistence between a fluid and a (possibly
strained) crystal. The box is elongated along the z-axis, and we will
assume a slab-like coexistence geometry with interfaces perpendic-
ular to z (see Fig. 1 of the main paper). We assume that the number
of layers of crystal in the directions parallel to the interface is fixed.
As the system is at constant volume and has periodic boundary con-
ditions, the lattice parameters of the crystal in the directions parallel
to the interface are constrained. To set the shape of the box in these
directions, we choose it to be consistent with an equilibrium (strain-
free) crystal at a density ρX

0 . Note that during the direct coexistence
simulation, the crystal will not necessarily remain unstrained as the
lattice constant in the z-direction can change. However, assuming
that the crystal does not undergo any major rearrangements, the lat-
tice constants in the x and y are fixed by the choice of ρX

0 . In addition,
the surface area A(ρX

0 ) of a single interface is trivially determined by
the box size in the directions perpendicular to z.

We denote the number of particles in the fluid and crystal phase
as NF and NX, respectively, and use the same superscripts for their
respective volumes VF, VX, number densities ρF, ρX, etc. Following

standard conventions in dealing with systems with interfaces, we
assume the interface to be a flat dividing surface perpendicular to
the z-axis, with zero volume but potentially a non-zero number of
particles NS associated with it, such that

N = NF +NX +NS, (A1)

V = VF + VX. (A2)

Without loss of generality, we choose the equimolar surface as our
dividing surface, which is characterized by NS = 0.

We can write down the total Helmholtz free energy of the
system as

Ftotal(N, V , ρX
0 ; NX , VX) = FF(NF , VF) + FX(NX , VX , ρX

0 )
+ 2γ(μ, ρX

0 )A(ρX
0 ). (A3)

Here, the semicolon in the functional dependence of Ftotal separates
the variables that are externally fixed (N, V , ρX

0 ) and the variables
that are chosen by the system itself (NX, VX) based on a minimiza-
tion of its free energy. In addition, γ is the interfacial free energy,
which is generally dependent on both the chemical potential and the
lattice spacing of the crystal in the directions parallel to the interface
(denoted by its dependence on ρX

0 ), and the factor 2 arises due to
the presence of two interfaces. Note, however, that our choice of the
equimolar dividing surface imposes that

(∂γ
∂μ
)

ρX
0

= NS/A = 0. (A4)

Minimizing the free energy with respect to NX yields

0 = (∂Ftotal

∂NX )
N,V ,VX ,ρX

0

= −μF(ρF) + μX(ρX
0 ; ρX), (A5)

where μF and μX denote the chemical potentials of the two phases.
We can rewrite this as

μF(ρF) = μX(ρX
0 ; ρX), (A6)

confirming chemical equilibrium between the coexisting phases.
Similarly, minimizing the free energy with respect to VX yields

0 = (∂Ftotal

∂VX )
N,V ,NX ,ρX

0

= PF(ρF) − PX
zz(ρX

0 ; ρX), (A7)

with PF being the (isotropic) pressure of the fluid and PX
zz being the

pressures of the crystal phase along the z-direction. Hence, we also
find mechanical equilibrium along the z-axis,

PF(ρF) = PX
zz(ρX

0 ; ρX) ≡ Pglobal
zz (ρX

0 ). (A8)

The pressure of the crystal along the z-axis can be written more
explicitly by taking into account the deformation of the crystal away
from its equilibrium shape at density ρX

0 . In the direct coexistence
simulation, the crystal lattice can deform in response to any pres-
sure imbalance between the fluid and the crystal. In particular, the
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crystal can either expand or compress along its z-axis, changing its
density ρX away from ρX

0 . Note that since the fluid can only exert a net
force along the z-axis of the box, it cannot induce an overall shear of
the crystal parallel to the interface. Hence, we only have to consider
deformations of the crystal phase characterized by a uniaxial strain
ϵzz , which (up to linear order in the deformation) can be written as

ϵzz = 1 − ρX

ρX
0

. (A9)

The pressure of the crystal is, therefore, given by

PX
zz(ρX , ρX

0 ) = Pud(ρX
0 ) +

∂Pzz

∂ϵzz
ϵzz + O(ϵ2) (A10)

= Pud(ρX
0 ) − Bzzzzϵzz + O(ϵ2), (A11)

where Pud is the (isotropic) pressure of the undeformed equilib-
rium crystal and Bzzzz is the elastic constant associated with uniaxial
compression or expansion along the z-axis, defined as

Bzzzz =
∂σzz

∂ϵzz
, (A12)

where σ = −P is the stress tensor. Note that Bzzzz depends on the
orientation of the crystal, as different orientations of the crystal will
cause the deformation to occur along different crystal directions.

Equation (A11) immediately implies that PX
zz = Pud if and only if

the crystal is unstrained. Combined with Eq. (A8), this demonstrates
that we can find the coexistence point between an unstrained crystal
and the fluid by finding the density ρX

0 such that Pglobal
zz = Pud.

APPENDIX B: LATTICE PARAMETERS
OF THE HARD-SPHERE HCP CRYSTAL

For the hexagonally close-packed (HCP) crystal of hard
spheres, the shape of the lattice is dependent on density.45 We denote
the spacing between two neighboring particles inside hexagonal lay-
ers as a and the height of the HCP unit cell perpendicular to the
hexagonal layers c (such that c is twice the spacing between two
hexagonal layers). Then, at close packing, the ratio c/a =

√
8/3. At

lower densities, this ratio deviates slightly from the close-packing
value.

To measure this deviation, we perform event-driven molecu-
lar dynamics simulations of the HCP crystal for a range of densities
close to coexistence, and for a small range of ratios c/a =

√
8/3 − δ,

with δ ∈ [0, 10−3]. During the simulation, we measure the pressure
tensor. The equilibrium value of c/a for a given density is then deter-
mined as the point where the pressure tensor becomes isotropic.
A typical example is shown in Fig. 6(a). The direct coexistence
method simulations are then initialized with the appropriate lattice
shape associated with the initial crystal density. We find that near
coexistence, the value of c/a is well-approximated by

c
a
=
√

8
3
(1 − 676 exp (−13.2ρX0 σ3)), (B1)

as shown in Fig. 6(b).

FIG. 6. (a) Pressure tensor components along different box axes for an HCP crystal
of N = 20 160 hard spheres at number density ρσ3 = 1.0375 with varying values
of the lattice parameter c/a. The equilibrium value of c/a is determined as the
point where the two lines cross. (b) Behavior of c/a as a function of density at
N = 20 160. The solid line is the fit from Eq. (B1). The gray dashed line indicates
the close-packing value c/a =

√
8/3.

APPENDIX C: FREE-ENERGY CALCULATIONS
FOR YUKAWA PARTICLES

In order to verify the coexistence values obtained from the
direct coexistence simulations in the Yukawa system, we addition-
ally determine the coexistence conditions via a free-energy route. To
this end, we first determine the equation of state of the bulk fluid
and crystal phases using Monte Carlo (MC) simulations in the NVT
ensemble. These simulations are all initialized as a perfect BCC crys-
tal of 2000 particles. In addition, we use MC simulations in the NPT
ensemble of a fluid of 2000 particles to determine the equation of
state of the metastable fluid.

To determine the free energy of the fluid phase, we use thermo-
dynamic integration of the equation of state to obtain free energies
as a function of density, using the ideal gas as a reference system,1

βF
N
= log (ρΛ3) − 1 + ∫

ρ

0

βP(ρ′) − ρ′

ρ′2
dρ′. (C1)

Here, Λ is the thermal de Broglie wavelength, which we again set
equal to σ. To perform the integral, we fit the equation of state of
the fluid using the virial expansion up to tenth order, for which we
calculated B2 analytically.

For the crystal, we again use thermodynamic integration [anal-
ogous to Eq. (12)], using a sixth-order polynomial fit to the equation
of state and starting from a reference free energy at effective pack-
ing fraction η = πρσ3/6 = 0.29. We obtain this reference free energy
using Einstein integration6 and correct for finite-size effects by con-
sidering systems of 686, 1024, 1458, 2000, 2662, 3456, and 4394
particles.10 In this approach, the absolute free energy of the crystal
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is determined as a thermodynamic integration between a reference
system and the crystal of interest. The reference system consists of
an Einstein crystal of non-interacting particles, which are tied to
their lattice sites via harmonic springs with a spring constant α. To
this end, we perform a series of MC simulations with an effective
Hamiltonian given by

H(λ) = (1 − λ)UYuk(rN) + λUr
Ein(rN), (C2)

where λ is a parameter that tunes between the Yukawa crystal (λ = 0)
and the Einstein crystal (λ = 1) and UYuk is the total interaction
energy of the system resulting from the Yukawa pair interactions.
Ur

Ein is the energy resulting from the springs binding the particles to
their lattice sites, given by

Ur
Ein =

α
σ2∑

i
(ri − R(i)0 )

2, (C3)

where R(i)0 are the equilibrium positions in the ideal lattice. During
the simulations, the center of mass is kept fixed.1

The free energy of the interacting Yukawa crystal is then
determined as1

βF
N
= 3 log

Λ
dα
+ 1

N
log

ρd3
α

N3/2 −
β
N∫

1

0
dλ⟨∂H

∂λ
⟩

λ
, (C4)

with dα =
√

πσ2/βα being the typical displacement of a particle in
the Einstein crystal. Here, the first term represents the free energy
of the Einstein crystal, the second term incorporates corrections due
to the fixing of the center of mass,1 and the integral term represents
the free-energy difference between the Einstein and Yukawa crystals
(with fixed centers of mass). The subscript λ in the integrand indi-
cates that the measurement of ∂H

∂λ is done in a simulation where the
parameter in Eq. (C2) is set to λ.

We use a spring constant of βα = 34 for the Einstein crystal and,
for each system size, perform a numerical integration using a ten-
point Gauss–Legendre quadrature,1 and estimate the error using an
additional 11 points from the Gauss–Kronrod rule.

Using the fluid and crystal free energies, we finally find the
equilibrium coexistence point by determining the conditions where
the two phases have equal pressures and chemical potentials via a
common-tangent construction. Error bars are estimated by varying
the chosen integration paths (e.g., changing the reference density
of the crystal, obtaining the fluid free energy by integrating over
interaction strength rather than density, and varying the maximum
spring constant) and examining the variation in the resulting free
energies.

APPENDIX D: FREE-ENERGY CALCULATIONS
FOR PATCHY PARTICLES

For the patchy particles, we again confirm our direct coexis-
tence results by predicting the phase transition via a free-energy
route. For the equation of state of the fluid, we perform EDMD
simulations of N = 2116 particles for a time of 2 ⋅ 105τ after equili-
brating the system for 2 ⋅ 104τ. At low densities, we perform longer
simulations, to ensure sufficient statistics. Pressure values at each
state point are averaged over ten independent runs, and statistical
error is also estimated. The fluid free energy is again calculated using

Eq. (C1), using a weighted fit on the integrand function using a 19th-
order polynomial on 75 points, constraining the constant term to the
analytically known second virial coefficient,

B2 = πσ2/2{1 − (exp βϵ − 1)n2
p

δ2

π2 [(
λp

σ
)

2

− 1]}, (D1)

adapted from Ref. 54 to the case of two-dimensional particles.
For the square crystal phase, we calculate the free energy

at packing fractions η = 0.70, 0.72, 0.73 using Einstein integration,6
using Monte Carlo simulations. For these anisotropic particles, in
the Einstein crystal, both the position and the orientation of each
particle are tied to a reference point. In addition to the positional
springs of Eq. (C3), we now additionally include a constraining
potential for the orientations,

Uθ
Ein = α∑

i
sin2⎛
⎝

np(θi − θ(i)0 )
2

⎞
⎠

, (D2)

where θi is the orientation of particle i and θ(i)0 is its current orienta-
tion in the ideal lattice. We then perform a series of simulations with
α varying from 0 to αmax = 104 and measure the mean values of both
of the above expressions during each simulation, in a system inter-
acting through the total potential UKF +Ur

Ein +Uθ
Ein. The free energy

of the patchy square crystal (with np = 4) is then given by

βF
N
= log

(βαmax)3/2Λ2

σ2√π
+ 1

N
log

πρσ2

Nβαmax

+ 2βϵ − β
N∫

αmax

0
dα⟨Ur

Ein +Uθ
Ein

α
⟩

α
, (D3)

where we have assumed that αmax is large enough to ensure that
when α = αmax, all particles remain bonded to their four neighbors
throughout the simulation, and the deviations of particles from their
lattice sites are small enough that Vθ

Ein is effectively harmonic.
We perform the integration from the Einstein crystal by using

a 50-point Gauss–Legendre quadrature, estimating and propagat-
ing the statistical error over ten independent runs per each point.
We performed Monte Carlo (MC) NVT simulations of N = 2116
particles for 106 cycles, with a constrained center of mass. Finally,
analogously to the Yukawa system, we obtain the free energy as
a function of density by integrating along the equation of state
[Eq. (12)], starting from the point at η = 0.70. We then obtain the
coexistence conditions via a common tangent construction, using
both the fluid and crystal free energies. The error is estimated
by considering the statistical error on the free energies and the
numerical error on its derivative.

We did not perform finite-size analysis for the patchy system.
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