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Colloid-Polymer Mixtures

To demonstrate the robustness of our coarse-graining method, we herein apply it to a model

suspension of sterically-stabilized colloidal particles and non-adsorbing ideal polymers for

which a wealth of data exists on the phase behavior and structure.1–4 Departing from the

mean forces measured on the colloidal particles in the full binary system, we construct an

effective one-component (colloids-only) potential that accurately incorporates the polymer-

mediated many-body interactions.

Fine-Grained Model

In the original Asakura-Oosawa (AO) model for colloid-polymer mixtures,5–7 colloidal parti-

cles are represented as hard spheres of diameter σc whereas the polymer coils with diameter

σp are treated as ideal point particles as regards their mutual interactions. The colloid-

polymer pair interaction is hard-sphere-like such that their distance of closest approach is

σcp = (σc + σp)/2. Here, we employ an adapted AO model based on continuous pair po-

tentials, which is fully suitable for Molecular Dynamics (MD) simulations. We will refer

to this model as the pseudo Asakura-Oosawa (PAO) model. In particular, we consider a

system consisting of Nc colloidal spheres at coordinates {Ri} with i = 1, . . . , Nc, and Np

polymer coils at positions {rj} with j = 1, . . . , Np with a size ratio q = σp/σc in a volume

V at temperature T . The hard-sphere-like pair interactions in the pseudo-AO model are

represented by a cut-and-shifted Mie potential:
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with Rij = |Ri − Rj| the center-of-mass distance between colloid i and j, ϵ and σc, σcp

denote the energy and length scales of the interaction, respectively. By setting λr = 50 and

λa = 49 and considering a reduced temperature of kBT/ϵ = 1.5 (kB being the Boltzmann

constant), the pair potential reproduces the volumetric, structural, and dynamic properties

of the discontinuous hard-sphere potential over the entire fluid range.8

The ideal character of the polymers is attained by neglecting their mutual pair interac-

tions during the MD simulations, i.e., ϕpp(rij) = 0. We achieve this in LAMMPS9 using the

neigh modify exclude command.

Coarse-Grained Models

For the purpose of mapping the original AO binary system onto a coarse-grained one by

formally integrating out the degrees of freedom of the polymer coils, one typically treats the

polymer coils grand-canonically, where the fugacity of the polymers zp, or equivalently the

polymer reservoir packing fraction ηrp ≡ πσ3
pzp/6, is fixed. By departing from the thermody-

namic potential F (Nc, zp, V, T ) of the binary system, it can be demonstrated that the original

AO binary mixture can be described by an effective colloids-only HamiltonianHeff = Hcc+Ω,

where Ω denotes the grand potential of a “sea” of ideal polymers at fugacity zp in the external

field of a fixed configuration of Nc colloids.
1,3 For the original AO model, the grand potential

Ω is simply the negative of the free volume available for the polymer in the fixed configura-

tion of Nc colloids weighted by the polymer fugacity in the reservoir, i.e., Ω = −zpVf({Ri}).

From the definition of the grand potential, one can immediately recognize the many-body

character of the effective one-component coarse-grained model, where the free volume, and

therefore the size ratio q, plays a crucial role. In fact, for q < 0.1547, the higher-order
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contributions are zero for the original AO model, and hence a mapping onto an effective

one-component system with an effective Hamiltonian based on pairwise additive depletion

potentials is exact.1,10 For larger q, the model based solely on the pairwise approximation

exhibits a phase behaviour that strongly deviates from that observed in the system where

three- and higher-body interactions are considered.

In order to coarse-grain the PAO model with a size ratio q = 1.0 using our multiscale

approach, we rely on simulations of the binary system in the canonical (Nc, Np, V, T ) en-

semble. However, to create a model that is thermodynamically consistent and transferable

among different state points, the amount of polymer in the suspension is set in a quasi-grand-

canonical fashion. More specifically, we follow the results from Free Volume Theory (FVT)11

where a simple relationship exists between the equilibrium packing fraction of polymer in

the reservoir (ηrp) and that in the suspension containing the colloids (ηp)

ηrp =
ηp

αFVT

, (3)

where the parameter αFVT depends on the colloid packing fraction ηc and size ratio q, and

reads

αFVT = (1− ηc) exp
[
−Aγ −Bγ2 − Cγ3

]
, (4)

with γ = ηc/(1 − ηc), A = 3q + 3q2 + q3, B = 9q2/2 + 3q3 and C = 3q3. Here we select a

value of ηrp = 0.5.

We start by computing the effective two-body potential of mean force (PMF) Φ(2) in

the fine-grained (FG) PAO model by performing canonical constraint MD (CMD-NV T )

simulations as described in the main text. In particular, we sample the mean forces acting

on the colloids at 219 separation distances in the range 0.98 ≤ Rij/σc ≤ 2.50. Each MD

simulation, consists of 5×108 steps, where we collect the instantaneous forces on the colloids

every 1000 steps. In all the MD simulations, we set the mass m of the colloid and polymers
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to unity and use a timestep of δt = 0.001τ , with τ =
√

ϵ/(mσ2). Furthermore, we set the

temperature at T = 1.5ϵ/kB. The two-body potential of mean force Φ(2) as obtained by

numerical integration of the mean forces (Eq. 10 of the main text) is reported in Fig. S1(a),

where, for comparison purposes, we also include the exact AO depletion pair potential for

two colloids immersed in a suspension of non-adsorbing polymers (depletants) with q = 1.0

and at a reservoir polymer packing fraction ηrp = 0.5. The AO depletion pair potential reads

βϕAO(Rij) =


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]
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0 for Rij > 2σcp,

(5)

with β = (kBT )
−1, the inverse temperature.

We observe an excellent correspondence between the true AO pair potential and the

PMF in the PAO model over the whole range of separation distances. This shows that the

pseudo hard-sphere potential accurately mimics the hard-core repulsion of the true hard-

sphere model, and therefore exhibits the well-known depletion interaction of attractive nature

between the colloids. However, we note that for the parameters considered, the minimum

in the original AO pair potential occurs at contact (Rij = σc) with a strength of −1.25kBT ,

while in the PAO model, the minimum of ∼ −1.23kBT occurs at Rij = 1.01σc.

As in the case of the ligand-stabilized nanoparticles discussed in the main text, we proceed

to fit directly the vectorial components of the mean forces acting on the center-of-masses of

the two individual colloid cores i and j for each separation distance (a total of 657 force com-

ponents per particle). The fitting is performed using only gradients of radial symmetry func-

tions (SFs).The parameters in the initial pool are: µ/σ−2
c = {0.001, 1.715214286, 3.429428571,

5.143642857, 6.857857143, 8.572071429, 10.28628571, 12.0005, 15.42892857} andRs/σc = {0.0,

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. We use a single cut-off value of Rc = 2.0σcp. The ML

potential, which we will refer to as ML2 potential, is constructed with solely NSF = 18 gra-

dients of radial SFs and presents a correlation coefficient R2 ≈ 0.998 and Root Mean Square

Error (RMSE) of 0.0304kBT/σc. A parity plot comparing the ML predicted and reference
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FG mean forces is shown in Fig. S1(b). To test the model, we evaluate the effective potential

between a pair of colloids at varying separation distances using the model constructed by

directly fitting the two-body mean forces (Φ
(2)
ML2(Rij)) and plot the results in Fig. S1(a). We

observe a very good quantitative agreement between the reference PAO and ML2 models.
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Fig. S1: (a) Effective two-body interaction potential between colloids of diameter σc as a
function of their separation distance Rij in a suspension containing non-adsorbing polymers
of diameter σp = σc at a reservoir polymer packing fraction ηrp = 0.5. Solid circles correspond
to the values obtained by numerical integration of the mean forces in the PAO model, while
the stars represent the values predicted by the ML2 model trained with the mean forces.
The exact depletion AO pair potential (Eq. 5) for the same parameters is indicated with the
dashed lines. (b) Parity plot showing the vectorial components of the mean forces measured
in the FG model and those predicted by the ML2 model.

As discussed above, for the model at hand, one can expect many-body effects to become

largely pronounced, especially at relatively large colloid packing fractions and high polymer

concentrations.3,12 Because of geometrical arguments, in the original AO model, a formal

decomposition of the total effective interactions in the one-component model into zero-, one-

, ..., k−body contributions can be achieved, which then allows one to evaluate the individual

terms by numerical methods.3,12 We can also construct an effective colloids-only potential

for the PAO model incorporating many-body effects using our multiscale ML method. To
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this end, we first perform a number of reference NV T -MD simulations of systems containing

Nc = 108 colloids in the packing fraction range 0.0157 ≤ ηc ≤ 0.1012. In order to generate

a large number of diverse local configurations for the colloids, we perform equlibrium MD

simulations at four different packing fractions, namely ηrp = 0.5, 5, 7 and 10. As above, we

determine the number of polymer coils in the NV T simulations using Eq. 3. Depending on

the value of ηrp, which determines the strength of the interactions, as well as on ηc, colloidal

particles can be found isolated (far from first neighbors), forming small clusters of varying

size or even assembled into finite size crystallites. From all the generated MD trajectories, we

then select a number of colloid configurations that we subsequently use as the initial state for

CMD simulations where we sample the mean forces on the colloids at ηrp = 0.5. Overall, we

consider a dataset containing a total of 28,200 vectorial forces and perform a linear regression

using both gradients of radial and angular SFs. In the candidate pool of gradients of SFs,

the radial functions are generated using the same parameters used when constructing the

ML2 model and we consider µa/σ
−2
c = {0.001, 0.01, 0.1, 1, 2, 4, 8}, ξ = {1.0, 2.0, 4.0, 8.0} and

λ = {−1, 1} for the angular functions. A closed solution with NSF = 135 yields an optimal

model for the many-body mean forces with a correlation coefficient of R2 ≈ 0.998 and a

RMSE ≈ 5.602kBT/σc. We will refer to the so-obtained model as the many-body potential

ML108 (ΦML108(R
108)).

As described above, in the AO model, the strength of the depletant-mediated total ef-

fective interactions between the colloids scales linearly with ηrp. Thus, in the limit of ηrp → 0

one naturally recovers the hard-sphere interactions between colloids, whereas at high ηrp, the

balance of two- and many-body contributions determine the resulting interactions. While

in the one-component AO model the two-body polymer-induced interaction is attractive,

the many-body interactions lead to a purely repulsive contribution to the total potential.3

Indeed, one of the main effects of many-body contributions in the colloid-polymer mixture

of size ratio q = 1 is to shift the critical point of the gas-liquid coexistence.3,12 In order to

compare the two-body potential ΦML2 and many-body potential ΦML108, and to asses the
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effect of many-body interactions, we perform Monte Carlo (MC) simulations of bulk systems

of N = 256 colloids at a high packing fraction where many-body contributions arise, namely

ηc = 0.45.3,12 We then fix ηrp = 0.5 and ηrp = 2.0 and sample the pair-correlation functions

of the colloidal particles, gcc(Rij). We note that since we have constructed CG colloids-only

models for the binary PAO system at ηrp = 0.5, we can directly transfer them to other state

points by scaling with a factor ζ ≡ ηrp/0.5. In Fig. 8(a) and 8(b) in the main text, we report

the colloid-colloid pair correlation functions measured in the PAO FG and CG ML2 and

ML108 models at the two different states. At ηrp = 0.5, both the ML2 and ML108 closely

match the fluid-like structure of the FG model. At ηrp = 2.0, the FG model still exhibits a

fluid-like structure, which is well reproduced by the CG ML108 potential. Conversely, the

CG ML2 potential leads to an equilibrium state exhibiting an ordered face-centered-cubic

(FCC) structure. Such a big difference is the result of an overestimation of the cohesive

(attractive) depletion interaction in the ML2 potential. The clear mismatch in the structure

of the systems described by the CG ML2 and ML108 potentials (see also Fig. 8(c) in the

main text) evidences the importance of the many-body interactions.
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