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Free energy calculation

Here, we provide a detailed description of the calculation of the free energy associated with

the assembly of spherical colloids on the surface of a rounded cube coated with mobile DNA

strands.

System details

System details are reported in the Methods section. A schematic of the model we employ is

reported in Fig. S1.
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Figure S1: Schematics illustrating the numerical model, which consists of spheres of size σs moving
on the surface of a rounded cube of size σc whose shape can be described as a superball. The normal
vector n⃗ connects the center of the sphere to the surface of the rounded cube.

Attractive free energy for a pair of DNA strands

In this section, we describe the calculation of the attractive part of the free energy for a

system consisting of a sphere and a superball. The theoretical treatment is inspired and

adapted from Ref.1 As with other models for DNA-mediated assemblies, the first step is

to quantify the contributions to the free energy of single strands in their hybridized and

unhybridized states, thus providing an estimation of the bond energy β∆Gγδ due to the

linking of two complementary strands, denoted as γ and δ. This can be expressed as:

β∆Gγδ = β∆G0 + β∆Gcnf , (S1)

where the first term ∆G0 corresponds to the hybridization energy, which depends solely on

the DNA sequence and the salt concentration in the experiments. To calculate this term,

we consider the complementary ssDNA end (5’-GTAGAAGTAGG-3’ and its complementary

sequence), as defined in the Methods section. We calculate ∆G0 using the nearest-neighbor

(NN) SantaLucia approximation,2 with a salt concentration correction corresponding to 200
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Table S1: Contributions to ∆G0 for three temperatures.

Temperature NN2 Salt
correction

Inert tail
correction

∆G0 ∆G0

[◦C] [kcal/mol] [kcal/mol] [kcal/mol] [kcal/mol] [kBT ]

24 -14.00 1.83 0.34 -11.83 -19.97

36 -11.39 1.83 0.34 -9.22 -15.56

40 -10.52 1.83 0.34 -8.35 -10.56

mM NaCl and the inert tail correction due to 77 bp of the dsDNA.3 A summary of each

contribution to ∆G0 is given in Table S1.

The second term in Eq. S1 can be interpreted as a penalty in configurational entropy, as

the hybridized strands are constrained to a smaller configurational space compared to their

unhybridized state.4–6 It can be written as

β∆Gcnf = − ln

(
1

ρ0

Ωγδ

ΩγΩδ

)
, (S2)

where ρ0 = 1M = 6.76 × 108σ−3
c is a standard concentration, Ωγ(δ) is the configurational

space available for a strand γ(δ) when unhybridized and located on a sphere (cube), and

Ωγδ is the corresponding space for a pair of hybridized strands. Ωγ(δ) and Ωγδ have units of

σ3
c . A common approximation in this context is to treat the strands as rigid rods with an

attractive tip,7 as the dsDNA is smaller than the DNA persistence length at all temperatures

investigated,8 and the interacting ssDNA is smaller than the dsDNA. Depending on the

geometry in which the strands are anchored, Ωγ(δ) can be calculated analytically. In the case

of immobile linkers, the available volume accessible to the DNA strands is typically limited

to a hemisphere around the point where the linker is attached to the surface.4 However,

for mobile linkers, the volume accessible to the DNA is enlarged due to the freedom of the

strands to move on the entire surface of the colloid to which they are attached. Specifically,

the DNA strands can explore the volume of a shell of width l around the surface onto which

they are bound, where l is the length of the linker. The available space will differ depending
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on whether the DNA is located on the sphere or on the superball surface. Furthermore, if

both particles are within interacting distance, the excluded volume due to both particles

must be considered.

For strands located on the surface of a sphere with radius rs = σs/2 = ασc/2, in the

case that the sphere and the superball are at large distances from each other, the available

configuration space Ωγ corresponds to the volume of the spherical shell V tot
s , which is obtained

by taking the difference in volume between a sphere of radius rs+l = ασc/2 + l and a sphere

of radius rs = ασc/2 (see Figure S2(a)):

Ωγ = V tot
s = Vs(ασc/2 + l)− Vs(ασc/2), (S3)

where Vs(r) is the volume of a sphere with radius r. Instead, in case the particles are at

interacting distance, the volume inaccessible due to steric hindrance needs to be subtracted

from V tot
s . This excluded volume is shown in Figure S2(c) as the red region, while Ωγ

corresponds to the green region. Hence, we have:

Ωγ = V tot
s − Vover(c, s+ l), (S4)

where Vover(c, s+ l) is the volume of overlap between a sphere of radius rs+l = ασc/2+ l and

the cube. This volume can be estimated numerically using Monte Carlo (MC) integration.

For strands anchored on the surface of the superball, Ωδ is calculated in a similar way,

obtaining V tot
c , that is the volume of a shell of width l around the superball (see Figure S2).

The volume of a superball with radius r and power n (see Equation 3 in the main text)

can be calculated either by MC integration or analytically as:9

Vc(r;n) = (2r)3
(Γ(1 + 1/n))3

Γ(1 + 3/n)
, (S5)

where Γ is the Euler-Gamma function. From this, we can directly calculate the volume of
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the superball with radius rc = σc/2 and power n = 6, Vc(σc/2;n), which are the parameters

used to capture the shape of the hematite cubes (see Methods). To obtain the volume

of a constant shell of thickness l around such a superball, we then need the volume of a

second superball with radius rc+l = σc/2 + l controlled by the power n′, Vc(σc/2 + l;n′)

(also estimated using Eq. S5), from which Vc(σc/2;n) can be subtracted. The exponent n′

is estimated numerically, yielding n′ = 5.55383. We note that without using a superball

with power n′, we would get a wrong estimate of the shell volume, following a non-constant

thickness around the first superball especially on the corners and the edges.

Therefore, the total volume V tot
c of the shell around a superball of radius σc/2 and power

n reads

Ωδ = V tot
c = Vc(σc/2 + l;n′)− Vc(σc/2;n). (S6)

Once more, if the sphere is at interacting distance, we should also take into account the

volume inaccessible to the strands. This corresponds to the volume of overlap between a

sphere of radius rs = ασc/2 and the superball of power n′ and radius rc+l = σc/2 + l (see

Fig. S2(c). The value of Ωδ in this case is given by

Ωδ = V tot
c − Vover(c+ l, s), (S7)

where Vover(c+l, s) is calculated via MC integration. Note that, Ωγ(δ) depends on the relative

position of the sphere on the superball and on their reciprocal distance.

Finally, to estimate the configurational space available for the two hybridized strands Ωγδ,

we follow a similar approach. We consider the sphere and superball with their corresponding

shells of thickness l, and calculate their overlap region from which the inaccessible volumes

due to steric effects has to be subtracted. This yields the volume that the two hybridized

strands can explore, given by:

Ωγδ = Vover(c+ l, s+ l)− Vover(c, s+ l)− Vover(c+ l, s), (S8)

5



Ω!

2.2

6.5

Ω" Ω!"

<latexit sha1_base64="rTY8A/41fKd2STNcY2eiXTDuu2Y=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOl5qhfrrhVdw6ySrycVCBHo1/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQmv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ+6LqXVZrzVqlfpPHUYQTOIVz8OAK6nAHDWgBA4RneIU359F5cd6dj0VrwclnjuEPnM8f0OeM9Q==</latexit>

h

<latexit sha1_base64="P9ioKSTiTJ/biiAL3XxdFeQlR9c=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPq6X664VXcOskq8nFQgR6Nf/uoNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nj91Ss6sMiBhrGxJQ+bq74mMRlpPosB2RtSM9LI3E//zuqkJr/2MyyQ1KNliUZgKYmIy+5sMuEJmxMQSyhS3txI2oooyY9Mp2RC85ZdXSeui6l1Wa/e1Sv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOE8+K8Ox+L1oKTzxzDHzifP2mCjeU=</latexit>rs

<latexit sha1_base64="cpfTJkS0aJuavDxr5AjVR4A92n8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48t2FpoQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgTj25n/8IRK81jem0mCfkSHkoecUWOlpuiXK27VnYOsEi8nFcjR6Je/eoOYpRFKwwTVuuu5ifEzqgxnAqelXqoxoWxMh9i1VNIItZ/ND52SM6sMSBgrW9KQufp7IqOR1pMosJ0RNSO97M3E/7xuasJrP+MySQ1KtlgUpoKYmMy+JgOukBkxsYQyxe2thI2ooszYbEo2BG/55VXSvqh6l9Vas1ap3+RxFOEETuEcPLiCOtxBA1rAAOEZXuHNeXRenHfnY9FacPKZY/gD5/MH1veM+Q==</latexit>

l

×10-3

Ω! Ω" Ω!"

3.31

3.35

×10-2

1.256

1.260

×10-1

4.7

12.9

×10-4

βΔG#$%

βΔG#$%

ℎ = 𝑙 + 𝑟&

ℎ = 𝑟&

21.50

22.52

22.21

23.31

a)

c)

b)

d)

Figure S2: Schematics of the accessible configurational spaces for Ωγ , Ωδ and Ωγδ for a distance
between the center of the sphere and the surface of the cube (a) h = l+rs and (c) h = rs, respectively.
The green regions indicate the accessible space for strands while the red regions are removed volumes
because of the excluded volumes of the colloids. The computed accessible configurational spaces
Ωγ , Ωδ and Ωγδ displayed on the surface of the superball for α = 0.63 are reported in (b) and
(d) for two respective distances h. In (b), Ωγ and Ωδ are constant over the whole superball and
equal to 0.0337 and 0.1263, respectively. Ωγδ varies on the surface of the superball and takes values
as indicated in the color bar. In (d), the configurational spaces differ depending on the relative
sphere-cube position both in the unbound and bound states. Configurational spaces are given in
units of σ3

c . The results presented in the main text are for h = l + rs.

where the first term corresponds to the overlap of the two extended shapes, while the second

and third terms represent the inaccessible volumes (see Figure S2). The green region in the
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figure corresponds to Ωγδ, while the red regions correspond to Vover(c, s+l) and Vover(c+l, s).

In all our calculations we fix the distance between the surface of the cube and the center

of the sphere to h = l + rs (see also below) as schematically shown in Figure S2(a). In

Figure S2(b), we present the numerical estimates for the available configurational spaces

Ωγ(δ) and Ωγδ depicted on the surface of the superball for an example size ratio α = 0.63.

As expected, Ωγ(δ) is constant all around the surface of the two colloids since it corresponds

to the volume of a shell of thickness l around the sphere (cube). On the other hand, the

configurational space available for hybridized strands varies depending on the reciprocal

position of the sphere and cube, and it is highest at the center of the faces of the cube. This

gives rise to the overall free-energy landscape, which is reported in Figure 2 of the main text.

For completeness, we summarize the schematics for the case in which h = rs in Figure S2(c).

In Figure S2(d) we report the corresponding numerical estimates. We note that in this case

the configurational space for the unbound strands Ωγ(δ) is different in different regions of

the cube, with a minimum configurational entropy in the corners and edges of the cube.

Nonetheless, despite a slightly different scale, the overall free-energy landscape β∆Gcnf has

similar features independently of the relative distance between sphere and cube h.

Repulsive free energy

So far, we have only considered attractive interactions between a pair of strands. However,

as the colloids get closer, the strands also give rise to an effective repulsion that adds to the

steric repulsion experienced by the colloids. As detailed in Ref.,1 this contribution can be

calculated as

βFrep = − ln

(
V tot
c − Vover(c+ l, s)

V tot
c

)
. (S9)

Since we assume a constant surface distance h between the colloids, βFrep = 0 as there is no

overlap between a superball of radius rc+l = σc/2+ l and a spherical colloid of radius ασc/2.
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Total free energy

Once we have defined the individual contributions of two strands, we can calculate the overall

free energy associated with linking a sphere and a superball in an arbitrary relative position

Θ. Following the approximations made in Ref.,4,10 the attractive free energy of a system of

two particles with complementary DNA strands γ and δ can be written as:

βF bond(Θ) = nγ

[
ln pγ(Θ) +

1

2
− pγ(Θ)

2

]
+Nsnδ

[
ln pδ(Θ) +

1

2
− pδ(Θ)

2

]
, (S10)

where nγ and nδ are the number of reactive DNA strands on a sphere and cube, respec-

tively, and pγ and pδ are the bonding probabilities of the corresponding DNA types that are

unhybridized.

The probabilities pγ(δ) can be calculated using the following set of equations:

pγ +Nsnδpγpδ exp(−β∆Gγδ) = 1

pδ + nγpγpδ exp(−β∆Gγδ) = 1
(S11)

where Ns is the number of spherical colloids. In the next section, we describe how we

determined nγ(δ), which is the other input parameter needed for the calculations.

Estimate of the density of DNA strands

Accurately estimating the number of strands that become embedded in the lipid bilayer

solely based on the number of strands initially added to the system is challenging due to the

uncertainty regarding the fraction of DNA that will successfully insert into the lipid layer.

The experimentally employed nominal concentrations would correspond to one DNA linker

per 50 nm2 on the cubes and one inert DNA strand per 10 nm2 on both particles if all

strands are inserted. However, the hydrophobic cholesterol moeities of the linkers can also

induce their assembly into small micellar-like clusters in solution. Thus, we expect there to

be a balance between single DNA strands in solution, DNA strands in micelle-like clusters in
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solution, and inserted into the colloid supported lipid bilayer. Hence, the actual number of

strands available for binding is lower than the number of strands added in the experiments.

Moreover, the total number of reactive strands is affected by the presence of inert strands

that are added as stabilizers.

Therefore, we estimate the number of strands on the surface of spheres and cube using the

predictions of our microscopic model for the free-energy barrier experienced by the smallest

spheres we investigate, which have a size ratio of α = 0.63. Experiments have shown that

for this size ratio, motion around the cube is not hindered. This means that the free energy

barrier for moving from one face to the other passing through an edge cannot be higher than

O(101) kBT . If the barrier were higher, the configurational energy penalty for the strands

would be too large, and the spheres would remain on the face of their initial adsorption.

To estimate the number of strands, we take several values of the total (reactive and

inert) number of strands on the sphere, ntot
γ = nγ + ninert

γ , and thus densities ρtotγ = ntot
γ /As

with As the surface area of the sphere, for the smallest size ratio α. We then calculate an

approximate total number of strands on the cube, ntot
δ = nδ + ninert

δ , by fixing the surface

density for both the spheres and the cube and using that the surface area of the cube in our

case is Ac = 4.9σ2
c . Here, we assume that, as a first approximation, there is no reason why

the experimental procedure would give rise to an overall different density on the two colloid

types. We then calculate the number of reactive and inert strands on each colloid, taking

into account the density ratio between inert and reactive strands used in the experiments

(see Methods). For spheres, this ratio is ≈ 330, while on the cube, the probability of having

an inert strand is about five times higher than having a reactive one. We calculate βFbond

using Eq. S10 and perform Monte Carlo simulations based on the calculated free energy

(see Methods). For each simulation, we calculate the autocorrelation function as defined

in the main text and ensure that it decays within the simulation time. We present several

examples in Figure S3 to show that for ργ = nγ/As > 15 (corresponding to a face-to-

edge energy barrier higher than ≈ 11kBT ), motion on the surface of the cube is completely
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Figure S3: Position autocorrelation function Cr(t) as a function of simulation time reported in MC
steps for different strand densities in the sphere ργ as indicated in the legend.

hindered, which would therefore contradict experimental evidence.

We choose a strand density of ργ = 11 for the smallest investigated size ratio, which

corresponds to a face-to-edge energy barrier of ≈ 7kBT and results in an autocorrelation

function that decays within 104 MC steps (see Figure S3). This value is only slightly different

from other lower densities, and a different choice of ργ in this range does not significantly

affect the results. We also note that this density estimate is reasonable as it allows us to

calculate the typical DNA width d based on ρ = 1/(ld),11 which gives a value of d ≈ 5 nm,

consistent with typical estimates for DNA width. Subsequently, we recompute nγ(δ) for the

higher size ratios while keeping the density of strands approximately fixed. The number of

strands on the cube nδ remains constant, as the cubes are the same for all size ratios. We

have further verified that in all cases, the number of reactive strands present on the cube is

sufficient for the reactive strands to form DNA patches on all spheres. Table S2 presents the

parameters used for calculating the free energy for all the investigated size ratios.

Figure S4 illustrates the impact of varying ργ(δ) on the change in free energy that the

sphere experiences as it moves from the center of a face to an edge, i.e., β∆Fedge, for all size

ratios. The left panel of Figure S4 shows the effect of varying the density of strands ργ on

a sphere, while keeping the density of reactive strands on the cube fixed so that nδ = 3000.
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Table S2: Parameters employed for the calculation of the free energy βFbond for the size ratios
α investigated: nγ number of strands in the sphere, ninert

γ number of inert strands in the sphere,
ntot
γ total number of strands in the sphere, nδ number of strands in the cube, ninert

δ number of
inert strands in the cube, ntot

δ total number of strands in the cube, and the corresponding strand
densities.

Sphere Cube

α nγ ninert
γ ntot

γ nδ ninert
δ ntot

δ

0.63 14 4676 4690 3000 15000 18000

0.93 30 10020 10050 3000 15000 18000

1.20 50 16700 16750 3000 15000 18000

1.49 77 25718 25795 3000 15000 18000

1.98 136 45424 45560 3000 15000 18000

3.20 352 120908 121270 3000 15000 18000

4.44 682 227788 228470 3000 15000 18000

Sphere Cube

ργ ρinertγ ρtotγ ρδ ρinertδ ρtotδ

≈ 11 ≈ 3705 ≈ 3716 ≈ 613 ≈ 3061 ≈ 3674

The right panel, on the other hand, shows the opposite scenario, where nγ is fixed to the

values reported in Table S2. We note that choosing a larger value of nγ would cause the free

energy barrier to increase excessively, making it difficult to observe motion of the spheres.
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Figure S4: Free-energy difference β∆Fedge between the center of a facet of the cube and a point
on an edge (left) for varying density of strands on the sphere ργ at fixed number of strands on the
cube nδ = 3000 and (right) for varying density of the strands on the cube ρδ at a fixed number of
strands on the spherical colloid for each size ratio (see Table S2).
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On the contrary, increasing the number of strands on the cube would not result in any

differences in the free energy barrier. This is consistent with our expectations, given that

the number of strands on the spheres constitutes the upper limit for binding. Furthermore,

this also supports the assumption of treating each sphere independently in the calculation of

free energy, assuming Ns = 1. This is because the number of strands on the cube is sufficient

to allow for bond formation for all the spheres at all size ratios.
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Supplementary Figures and Tables

Table S3: Gravitational height of the silica particles used in the study.

Diameter of Sphere
(µm)

Gravitational Height
(nm)

0.66±0.01 2.8×103
0.97±0.05 8.8×102
1.25±0.05 4.1×102
1.55±0.05 2.2×102
2.06±0.05 92
3.32±0.05 22
4.62±0.05 8.1

a b c

Figure S5: Cluster size distribution for varying sphere-to-cube size ratios a) α=0.63, 0.93 and 1.20.
b) α=1.49 and 1.98, and c) α=3.19 and 4.44.
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Supplementary Movies

Movie S1: Confocal microscopy video of a flexible colloidal molecule consisting of 0.66

±0.01µm diameter spheres and a 1.04±0.04 µm cube, equivalent to a size ratio α =0.63.

Video is shown in real time with a frame rate of 15.17 frames per second.

Movie S2: Bright-field microscopy video of a flexible colloidal molecule consisting of

0.97±0.05µm diameter spheres and a 1.04±0.04 µm cube, equivalent to a size ratio α =

0.93. Video is shown in real time with a frame rate of 20 frames per second.

Movie S3: Bright-field microscopy video of a flexible colloidal molecule consisting of 1.25

±0.05µm diameter spheres and a 1.04±0.04 µm cube, equivalent to a size ratio α = 1.20.

Video is shown in real time with a frame rate of 25 frames per second.

Movie S4: Confocal microscopy video of a flexible colloidal molecule consisting of 1.55

±0.05µm diameter spheres and a 1.04±0.04 µm cube, equivalent to a size ratio α = 1.49.

Video is shown in real time with a frame rate of 7.9 frames per second.

Movie S5: Bright-field microscopy video of a flexible colloidal molecule consisting of

2.06±0.05µm diameter spheres and a 1.04±0.04 µm cube, equivalent to a size ratio α = 1.98

Video is shown in real time with a frame rate of 18.3 frames per second.

Movie S6: Bright-field microscopy video of a flexible colloidal molecule consisting of 3.32

±0.05µm diameter spheres and a 1.04±0.04 µm cube, equivalent to a size ratio α = 3.19.

Video is shown in real time with a frame rate of 18.5 frames per second.

Movie S7: Confocal microscopy video of a flexible colloidal molecule consisting of 4.62

±0.05µm diameter spheres and a 1.04±0.04 µm cube, equivalent to a size ratio α = 4.44.

Video is shown in real time with a frame rate of 1.9 frames per second.

Movie S8: Bright-field microscopy video of a flexible colloidal molecule consisting of 0.66

±0.01µm diameter spheres and a 1.04±0.04 µm cube, equivalent to a size ratio α = 0.63.

Video is shown in real time with a frame rate of 16.7 frames per second.

Movie S9: Bright-field microscopy video of a flexible colloidal molecule consisting of 0.97

±0.05µm diameter spheres and a 1.04±0.04 µm cube, equivalent to a size ratio α = 0.93.
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Video is shown in real time with a frame rate of 10 frames per second.

Movie S10: Bright-field microscopy video of temperature switchable motion of a flexible

colloidal molecule consisting of 0.97 ±0.05µm diameter spheres and a 1.04±0.04 µm cube,

equivalent to a size ratio α = 0.93.
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