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 Shot Noise in Excitation and Absorption Spectroscopy 

The detected signal in absorption spectroscopy is given by the number of photons absorbed: 𝑁!"# = 𝐴!"#𝑁$%&, 

where 𝑁$%& is the number of incident photons, 𝐴!"# gives the fraction of absorbed photons, and 𝑁!"# is the number 

of absorbed photons. However, the shot noise is determined by the square root of the number of photons arriving 

at the detector, $𝑁$%& −𝑁!"#, which for a small fraction of absorbed photons is well approximated by $𝑁$%&. 

Accordingly, for small absorption cross sections, even when eliminating all technical noise sources, many 

absorbed photons are required to reach satisfactory signal-to-noise ratios. For example, if 𝐴!"# = 10'(, this means 

that 10( absorbed photons are required just to reach a signal-to-noise ratio of unity. 

This fundamental limit can be overcome by indirectly probing the absorption process. While the heat generated 

following absorption of a photon can be used as a reporter,S1,S2 this technique is mainly suited to non-emissive 

samples and requires suitable photothermal media.S3 For emissive samples, photoluminescence excitation 

spectroscopy (PLE) is the method of choice. Here, rather than the absorption of a photon, the subsequent red-

shifted emission is detected. The fraction of absorbed photons that lead to a detected emitted photon is given by 

the fluorescence quantum yield (QY) of the emitter and the optical detection efficiency. Even for pessimistic 

values of )!"#"$#"!
)%&'()&"!

= 1% only 10* photons have to be absorbed to reach a signal-to-noise ratio of unity, compared 

to the 10( needed for an absorption measurement. Accordingly, for emitters with a rather small absorption cross 

section and high quantum yield, excitation spectroscopy enables orders of magnitude faster measurements. 

 Materials and Methods 

Nanocrystal synthesis and sample preparation. CdSe cores with an average radius of 1.9 nm and a lowest-

energy absorption peak at 585 nm were prepared by modifying the protocol published by Reiss et al.S4 After 

purification of the cores, CdS and ZnS shells were grown in a separate step,S5 during which a high-temperature 

annealing was used to smoothen the confining potential and release strain. A more detailed description was 

published by le Feber et al.S6 After shell growth, the reaction mixture was allowed to cool to room temperature. 

The cQDs were twice purified by precipitation with methylacetate and dispersed in hexane. 
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Samples for room-temperature single-particle spectroscopy were prepared by diluting the stock dispersion by 

six orders of magnitude in hexane. 100 μl of the dilute dispersion were spin-coated onto a glass cover slip at 

1000 rpm. 

Single-particle optical spectroscopy. Our photoluminescence excitation spectroscopy setup is based on a pulsed 

supercontinuum fiber laser (NKT SuperK Fianium, repetition rate 10 MHz). The collimated output of the laser 

was reflected off two mirrors (Thorlabs, BB1-E02) and aligned into an expanding telescope, consisting of a pair 

of lenses (Thorlabs, AC127-019-A-ML and AC254-150-A-ML). We intentionally used dielectric mirrors with a 

reduced transmission in the infrared (IR) spectral range to suppress the unwanted IR output of the fiber laser. 

Another pair of mirrors directed the beam onto a galvo mirror (Thorlabs, GVS011/M). From this, the beam was 

passed through a transmissive diffraction grating (Thorlabs, GT25-06V) and coupled by a lens (Thorlabs, AC254-

030-A-ML) into a single-mode fiber (Thorlabs, P3-460B-FC-5). The grating, in combination with the lens, coupled 

only a narrow band of the spectrum into the fiber. The galvo-mirror angle controled the center wavelength of the 

transmitted band. To maintain high coupling efficiency over a broad range of wavelengths, it is important to keep 

the distance between galvo mirror and grating as small as possible. The galvo-mirror angle was controlled via an 

applied voltage. For our experiments, we generated a triangle waveform (Agilent 33521A) at 200 Hz with suitable 

amplitude and offset to cover the entire spectral range of interest. Because of the finite bandwidth of the galvo 

mirror, a triangle waveform was rounded-off at the extreme points, which corresponds to the end of the scan range. 

For this reason, we chose the scan range slightly larger such that the range of interest was entirely in the linear 

part of the galvo mirror scan. The calibration steps necessary to obtain excitation spectra from the tunable filter 

can be found in Section S3. The optical output of this setup consisted of wavelength-modulated laser pulses, while 

the electrical output was a series of transistor–transitor logic (TTL) pulses that marked the beginning of each 

wavelength sweep. This electrical output was connected to one of the marker channels of a time-tagger box 

(Picoquant, Hydraharp 400). 

The optical output was collimated, passed through a shortpass filter (Thorlabs, FESH0600), attenuated by 

absorptive neutral density filters (Thorlabs, NE10A-A), and coupled into an optical microscope (Nikon, Ti-U 

Eclipse). The excitation light was reflected off a 10/90 beam splitter (Thorlabs, BSN10R) and focused by an oil 

immersion objective (Nikon, Plan APO 100x VC, NA 1.4) onto the sample. Fluoresence was collected through 
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the same objective and passed through the beamsplitter. A tunable longpass filter was used to remove reflected 

excitation light (SEMROCK, VersaChrome TLP01-628). Half of the emission was reflected off a non-polarizing 

50/50 beam splitter, focused (with a focal length of 200 mm) onto the entrance slit of an imaging spectrometer 

(Andor, Shamrock 303i), and imaged with an electron-multiplying charge-coupled device (EMCCD) camera 

(Andor, iXon 888 Ultra). The camera gave out a TTL pulse at the beginning of each frame that was also connected 

to the time-tagger box to correlate excitation and emission spectra. The other half of the emission was sent to a 

Hanbury-Brown-Twiss setup consisting of a non-polarizing 50/50 beam splitter and two nominally identical 

avalanche photodiodes (APDs, Excelitas SPCM-AQRH-14-TR). The output channels of the APDs were connected 

to the signal channels of the time-tagger box. Together with the laser sync signal connected to the sync channel of 

the time-tagger box, this allowed to record both the absolute photon arrival time and the delay after the excitation 

laser pulse, which was used to construct fluorescence decay curves. 

Ensemble optical spectroscopy. PLE spectra of ensembles of cQDs were recorded from dilute dispersions in 

hexane using a fluorometer (Edinburgh Instruments FLS 980). Absorption spectra were collected with a 

spectrophotometer (Varian Cary 50). Samples were diluted in hexane and measured in a 1-cm path-length quartz 

cuvette. The ensemble quantum yield was measured using a Hamamatsu C11347 Quantaurus-QY spectrometer 

with an integrating sphere. Diluted samples were measured in a 1-cm path-length quartz cuvette. 

 Calibration of the Excitation Spectroscopy Setup 

For each detected photon, the time since the beginning of the last wavelength modulation cycle has to be 

mapped to the excitation wavelength. This mapping is based on two calibration steps. The arrival time of a photon 

first has to be converted to the voltage simultaneously applied to the galvo mirror. In principle, this is given by the 

waveform chosen to drive the galvo mirror. However, we measured the true waveform of the galvo mirror with 

an oscilloscope. Figure S1a shows that the deviation from the input can be described by two effects: (i) a rounding 

of the peak at the maximum of the curve and (ii) a constant time lag. During the slope, the actual waveform 

deviates from the input only by this lag. We found the lag, which is dependent on the frequency and amplitude of 

the waveform, by splitting the excitation spectra acquired on a single cQD in forward and backward scans and 

mapping them from the time to the voltage axis by the input function shifted by a lag. For a zero lag, the forward 

and backward scans are shifted with respect to each other, as can be seen in the dashed lines in Figure S1b. We 
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reassign the times to voltages for different time shifts, and for each, calculate the product of the forward and the 

backward scan. The only difference to the formal definition of the cross-correlation is that we apply the timeshift 

symmetrically rather than to just one of the two scans. The product of the shifted spectra is our figure-of-merit for 

overlap of the forward and backward scans. The optimal time shift is found when the product is maximized. This 

calibration step was carried out once at the beginning of each experiment. 

The resulting spectra are shown in Figure S1b in solid lines. The conversion from galvo-mirror voltages to 

center wavelengths of the transmitted light is dependent on the exact alignment of the filter box. We set the galvo-

mirror input to different voltages and recorded the center wavelength with the same spectrometer used for the 

spectral measurements of the quantum dots. The relationship between voltage and wavelength is well-described 

by a linear function in the range of interest as seen in Figure S1c. With the obtained conversion function the data 

shown in Figure S1b can be plotted on a wavelength axis (Figure S1d).  

Figure S1. Calibration of excitation spectroscopy setup. (a) Deviation of the galvo-mirror output from 

the input due to finite bandwidth. (b) Obtained excitation spectra before (dashed lines) and after 

correction (solid lines). The corrected backward scan is vertically displaced for clarity. (c) Measured 

center wavelengths for different galvo-mirror voltages reveal a linear relationship. (d) Typical 

measured photoluminescence excitation spectrum from a single cQD before correcting for the 

wavelength dependence of the excitation laser (shown as laser spectrum). 
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The last step to obtaining a proper excitation spectrum is to record the spectrum of the excitation laser used. 

For this, we drove the galvo mirror with the triangle waveform and sent the fiber output onto our spectrometer. If 

the integration time is sufficiently long, this yields the spectrum of the excitation laser, shown as the blue shaded 

area in Figure S1d. The raw excitation spectrum had to be corrected for a flat background due to dark counts and 

divided by the measured reference spectrum. We stress that the output spectrum of the SuperK Fianium depends 

on the power and repetition rate chosen. Also, neutral density filters can have an undesired wavelength dependence 

in their transmission. Therefore, it is crucial to collect the reference spectrum under the same conditions as the 

experimental data. 

 Estimation of Exciton Occupancy 

To analyze the PLE spectra quantitatively, it is critical that the number of photons emitted is proportional to 

the number of photons absorbed. In typical quantum dots, while the exciton has a high quantum yield, the emission 

from the biexciton is much less efficient due to fast Auger recombination. As a result, the detected photon count 

is only proportional to the excitation power, as long as the average number of excitons generated per pulse is 

significantly below unity. To estimate the exciton occupancy for experimentally used excitation parameters, we 

first estimated the relative biexciton quantum efficiency (QYBX/QYX), where QYBX and QYX are the biexciton and 

exciton quantum yields, respectively. Figure S2a shows the second-order photon correlation of a single particle 

from the batch investigated. The fit reveals that QYBX/QYX = 0.07. We fixed the excitation wavelength to 495 nm, 

placed an individual cQD in focus, and varied the excitation power using neutral density filters with optical 

densities (OD) in the range of 0 to 3. For each excitation intensity, we estimated the photon emission rate by 

binning into 10 ms bins and histogramming. The photon count rate is then given as the position of the high-

Figure S2. Estimation of exciton occupancy. (a) Second-order photon correlation revealing 

QY!"/QY!" = 0.07. (b) Saturation curve and fit to a model, taking into account the estimated QY!". 
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intensity peak in the histogram. This analysis removes the power-dependent blinking dynamics. The obtained data 

shown in Figure S2b can be fitted with the expression: 

 𝐼 = 𝑎 +1 − 𝑃(0, 𝑏	𝑝) + +,*+
+,+

[1 − 𝑃(0, 𝑏	𝑝) − 𝑃(1, 𝑏	𝑝)]6 , (S1) 

where p is the excitation power relative to the highest power used, I is the photon count rate, P(i, j) the probability 

given by the Poisson distribution to find a value of i for a mean value of j, and a and b are fitting parameters. We 

estimate b = 0.46 ± 0.08, which means that at maximum excitation power, we have an average exciton occupancy 

of 0.46. All experiments were conducted with an OD = 1 filter, so the average occupancy at 495 nm was around 

0.046. For the analyzed cQDs and the spectrum of the laser, the highest count rate is up to four times of the count 

rate obtained at 495 nm. Therefore, the maximum occupancy is around 0.18, which is relatively high but still 

sufficiently in the linear regime to facilitate data interpretation. The parameter a gives the detected count rate due 

to single-exciton emission at saturation. This is estimated at 9460 ± 1430 counts per 10 ms, which, together with 

the experimental repetition rate of 10 MHz, yields a detection efficiency of slightly below 10%. 

 Quantum Yield of the Studied cQDs 

Absorption and excitation spectra can only be compared straightforwardly if the fluorescence quantum yield 

is independent of the excitation wavelength. To verify this, we measured the fluorescence quantum yield of a 

diluted dispersion of quantum dots from the same synthesis. For the particles studied, the fluorescence quantum 

yield shows no significant dependence on the excitation wavelength, as shown in Figure S3. Thus, the PLE signal 

should be proportional to the absorption at the respective energy. 

Figure S3. Wavelength-resolved quantum yield of the ensemble of CdSe/CdS/ZnS core/shell/shell 

cQDs studied. 
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 Proof of Constant Quantum Yield During Spectral Diffusion 

We use the fluorescence decay rate as a proxy for the oscillator strength of the emitting transition in our 

analysis of spectral diffusion. This is only valid if the fluorescence decay rate is equal to the radiative decay rate. 

In other words, we must assume that Γ-.- = Γ/ + Γ%/ ≈ Γ/, where Γ-.-, Γ/, and Γ%/ are the total, radiative, and 

nonradiative decay rates, respectively. This requires that QY = 0)
0)10,)

≈ 1 during periods of bright emission. 

Figure S4a shows that while the emission broadens from 23 to 36 meV during spectral diffusion, the integrated 

intensity stays almost constant and only fluctuates by less than 10%. However, because the emission spectra 

average over all excitation wavelengths and we observed increased oscillator strength of the absorbing transitions 

when the emission is red-shifted (see results in the main text), a drop in QY could be offset by the increase in 

oscillator strength.  

To avoid this potential artifact, we analyzed the fluorescence decay when the sample was excited with 

wavelengths shorter than 510 nm for the periods of different emission peak wavelengths. Figure S4b shows the 

decay rates and amplitudes (which are proportional to the radiative decay rate)S7 obtained for the different emission 

peak positions. Note that decay amplitudes were corrected by a factor 1 − 𝑒'
-
. , where T is the duration between 

excitation pulses and τ the estimated lifetime, to correct for pile-up due to the high repetition rate of the laser. The 

data points can be well fitted by a linear function, which indicates that the non-radiative decay time τnr does not 

Figure S4. Constant QY during spectral diffusion. (a) As the emission spectrum broadens, the 

integrated emission intensity fluctuates by only 10% as the peak position shifts. (b) A linear fit (solid 

line) of the experimental relationship between decay rate and amplitude for different emission peak 

positions (color-coded dots) indicates that the QY is near unity. Only photons emitted when the 

sample was excited with wavelengths shorter than 510 nm have been considered to suppress a 

correlating effect of spectral diffusion. 
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change during spectral diffusion. The intercept of the fit indicates a non-radiative decay rate of 6.7 × 10'2 ns–1 

and a QY above 95% for all emission-peak positions. 

 Calculation of Excited States of cQDs in an Electric Field 

The effects of an external electric field on energy levels and oscillator strengths were calculated using an 

effective-mass model similar to that in the literature.S8,S9 We considered the effects of confinement, the Coulomb 

interaction between charge carriers, and a uniform electric field. The Hamiltonian for the exciton is: 

 𝐻 = 𝐻34(𝒓4) + 𝐻35(𝒓5) + 𝑉6(𝒓4, 𝒓5) − 𝑒𝑉47-	(𝒓4) + 𝑒𝑉47-	(𝒓5) , (S2) 

where 𝐻3
4,5C𝒓4,5D is the Hamiltonian for an electron or hole, respectively, in a spherical box, 𝒓	 = 	 (𝑟, 𝜃, 𝜙) is the 

spatial position in spherical coordinates, 𝑉6 is the potential due to the electron–hole Coulomb interaction, and 𝑉47- 

is the potential due to a homogeneous electric field 𝐸9  in the z direction. We found solutions to eq S2 by a 

variational approach. As a basis, we used product wavefunctions formed by the single-particle wavefunctions: 

 Ψ:",;",<",:/,;/,</

(3) (𝒓4, 𝒓5) = 𝜓:",;",<"
4 (𝒓4)𝜓:/,;/,</

5 (𝒓5) , (S3) 

which are the eigenfunctions of 𝐻34(𝒓4) + 𝐻35(𝒓5)  with quantum numbers 𝑛4, 𝑙4, 𝑚4  and 𝑛5, 𝑙5, 𝑚5  for the 

electron and hole, respectively. 

We assumed that holes are localized in the core and experience an infinitely high confining potential at the 

core radius, 𝑟6?@4. We simplified the small conduction-band offset between CdSe and CdS by assuming that 

electrons are also delocalized through the CdS shell and experience the infinite potential at the CdS to ZnS 

interface at 𝑟6?@. The electron single-particle wave functions are the solutions to the Schrödinger equation for 𝐻34: 

 𝜓:",;",<"
4 (𝒓4) = N𝑅:",;"(𝑟4)𝑌;"

<"(𝜃, 𝜙) |𝑟4| ≤ 𝑟6?@
0 otherwise

 . (S4) 

𝑅:",;" 	= 𝐴:",;"𝑗;" \
A0",2"B"
B3!4

] is the radial wavefunction, and 𝑌<"
;" (𝜃, 𝜙) are the spherical harmonics. 𝑗;"(𝑟) is the 

spherical Bessel function of order 𝑙4 , 𝜒:",;"  its 𝑛4-5  zero, and 𝐴:",;"  is a normalization constant. The hole 

wavefunctions are obtained from eq S4 by replacing 𝑟6?@ with 𝑟6?@4, and the subscript e by h. The solutions to the 

Schrödinger equation with eq S2 as the Hamiltonian are then written as linear combinations of the product 

functions defined in eq S3: 

 Ψ(𝒓4, 𝒓5) = ∑ 𝑐:",;",<",:/,;/,</Ψ:",;",<",:/,;/,</

(3) (𝒓4, 𝒓5)⬚
:",;",<",:/,;/,</  . (S5) 
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To keep our notation compact, we label the product wavefunctions in the sum as Ψ45
(3), which just denotes the 

product formed from an electron and a hole state. The coefficients for the different eigenstates of the system are 

found by minimizing the energy expectation value 

 〈𝐸〉 = ⟨Ψ(𝒓4, 𝒓5)|𝐻|Ψ(𝒓4, 𝒓5)⟩ , (S6) 

which constitutes solving the eigenvalues and eigenvectors of matrix H with elements 

 𝐻DE = eΨ45,D
(3) f𝐻fΨ45,E

(3) g. (S7) 

Due to the orthogonality of the single-particle wavefunctions, the operators 𝐻34(𝒓4) and 𝐻35(𝒓5) only appear on 

the matrix diagonal, and the values are given by the sum of the confinement energy: 

 𝐻DD =
ℏ5A0",6,2",6

5

*G"B3!4
5 +

ℏ5A0/,6,2/,6
5

*G/B3!4"
5 , (S8) 

with ℏ the reduced Planck’s constant and 𝑀4,5 the reduced masses of electron and hole. 

The Coulomb interaction leads to off-diagonal terms that couple product wavefunctions with different 

quantum numbers. Neglecting effects due to the contrast in dielectric constant 𝜀  between the cQD and its 

environment or between core and shell, the potential due to the Coulomb interaction is given by: 

 𝑉6(𝒓4, 𝒓5) =
'H5

2IJJ7|𝒓"'𝒓/|
, (S9) 

where 𝜀3 is the vacuum permittivity. The position-dependent term can be expanded as a multipole: 

 M
|𝒓"'𝒓/|

= ∑ ∑ 2I
*N1M

O$%(B",B/)8

O!7(B",B/)89:
𝑌N
P(𝜃4, 𝜙4)𝑌N

P∗(𝜃5, 𝜙5)
N
PR'N

S
NR3  (S10) 

where the asterisk denotes the complex conjugate. The matrix entries of the coulomb interaction are then evaluated 

by: 

TΨ!"#
(%) V #

|𝒓!)𝒓"|
VΨ!"*

(%) W =

∑ ∑ +,
*-.#

∫ ∫ ∫ ∫ ∫ ∫ Ψ!"#
(%) /01(2!,2")#

/45(2!,2")#$%
𝑌-
6(𝜃!, 𝜙!)𝑌-

6∗(𝜃", 𝜙")Ψ!"*
(%) 𝑟!*𝑟"* sin(𝜃!) sin(𝜃") 𝑑𝑟!𝑑𝑟"𝑑𝜃!𝑑𝜃"𝑑𝜙!𝑑𝜙"

2&'(
2)8%

2&'(!
2*8%

,
9!8%

,
9"8%

*,
:!8%

*,
:"8%

-
68)-

;
-8%  . 

 (S11) 

Each element of the summations can be separated into a radial and an angular integral using eqs S3 and S4. The 

radial integral takes the form: 

 ∫ ∫ 𝑅:":,;":𝑅:/:,;/:
B3!4"
B/R3

B3!4
B"R3

O$%(B",B/)8

O!7(B",B/)89:
𝑅:"5,;"5𝑅:/5,;/5𝑟4

*𝑟5*𝑑𝑟4𝑑𝑟5 . (S12) 

This integral does not separate further and is evaluated numerically. The angular integral takes the form: 
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 ∫ ∫ ∫ ∫ 𝑌;":
<":∗𝑌;/:

</:∗𝑌N
P𝑌N

P∗*I
c/R3

*I
c"R3

I
d/R3

I
d"R3

𝑌;"5
<"5𝑌;/5

</5 sin(𝜃4) sin(𝜃5) 𝑑𝜃4𝑑𝜃5𝑑𝜙4𝑑𝜙5 , (S13) 

which can be separated into an electron and a hole contribution. Using the relationship 𝑌;<
∗ = (−1)<𝑌;'< allows 

us to write the electron part as: 

 ∫ ∫ (−1)<":𝑌;":
'<":𝑌N

P𝑌;"5
<"5𝑑𝜃4𝑑𝜙4

*I
c"R3

I
d"R3

 . (S14) 

The solutions to angular integrals over the spherical harmonics can be expressed using the Wigner 3-j symbols, 

which gives: 

 n(*;":1M)(*N1M)(*;"51M)
2I

(−1)<": \𝑙4M 𝑞 𝑙4*
0 0 0 ] p

𝑙4M 𝑞 𝑙4*
−𝑚4M 𝑝 𝑚4*

q . (S15) 

For the hole we obtain a similar expression; again we just substitute the index h for e. However, because here we 

consider the term 𝑌N
P∗, we also have to use −𝑝 instead of 𝑝 in the second Wigner 3-j symbol and pick up an 

additional factor of (−1)P. 

Because the operator for the homogeneous electric field acts on electron and hole wavefunctions separately, 

it can be calculated using the single-particle wavefunctions given by eq S4. For the electron, the effect is calculated 

as: 

 −𝑒𝐸9r𝜓:":,;":,<":
4 s𝑧s𝜓:"5,;"5,<"5

4 u . (S16) 

This expression can again be simplified by separating the wavefunction into a radial and an angular part and 

expressing 𝑧 = 𝑟 cos(𝜃) = 2𝑟nIe 𝑌M
3 using spherical harmonics, which gives: 

 r𝜓:":,;":,<":
4 s𝑧s𝜓:"5,;"5,<"5

4 u = ∫ ∫ ∫ 𝑅:":,;":𝑌;":
<":∗𝑟42n

I
e
𝑌M3𝑅:"5,;"5𝑌;"5

<"5𝑟4* sin(𝜃4) 𝑑𝑟4𝑑𝜃4𝑑𝜙4
*I
c"R3

I
d"R3

B3!4
B"R3

 . 

  (S17) 

This can be split into radial and angular contributions. The radial part is given by: 

 ∫ 𝑅:":,;":𝑅:"5,;"5𝑟4𝑟4
*𝑑𝑟4

B3!4
B"R3

 , (S18) 

which is evaluated numerically. The angular integral can again be expressed using the Wigner 3-j symbols: 

 n(*;":1M)(*1M)(*;"51M)
2I

(−1)<": \𝑙4M 1 𝑙4*
0 0 0 ] p

𝑙4M 1 𝑙4*
−𝑚4M 0 𝑚4*

q . (S19) 

For the hole, we again substitute h for e and remove the minus sign in eq S16. The eigenstates of the Hamiltonian 

then give the exciton energy levels and the eigenvectors give their coefficients in eq S5.  
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Oscillator strengths in this work were calculated as the squared norm of the overlap of the electron and hole 

wavefunctions:S10 

 f∑ 𝑐:",;",<",:/,;/,</ e𝜓:",;"
(4) f𝜓:/,;/

(5) g⬚
:",;",<",:/,;/,</ f

*
. (S20) 

 Convergence of the Calculations 

The eigenstates found in Figure S5 are only exact for a complete basis set, which would be infinitely big. We 

analyzed the convergence of the different properties by running calculations with different bases. Figure S5a shows 

the calculated excitonic energy levels as a function of applied field strength for different maximum quantum 

numbers 𝑛 considered. The field necessary to cause a certain red-shift is highly dependent on the number of states 

considered, where, for a more exact calculation with higher 𝑛O!7, lower fields are required to cause a given shift. 

The same is true for the quantum number 𝑙, as shown in Figure S5b. For both numbers, calculations have not 

Figure S5. Analysis of the convergence of the calculations. (a) Field dependence of the exciton levels 

when limiting the highest quantum number n. (b) Same as panel a but for l. Even for the highest 

parameter values used, the calculations did not fully converge. (c) Loss of band-edge oscillator 

strength versus Stark shift for different bases. (d) Same as in panel c but for the oscillator strengths of 

the higher states. 
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converged as they are dependent on where the cut-off is chosen. Unfortunately, the computational cost quickly 

becomes prohibitive. However, while the exact dependence of the properties on the electric-field strength remains 

only approximative, we find that the dependence of derived quantities on one another converges much better. 

Figure S5c shows the oscillator strength of the band-edge transition against the Stark shift for different considered 

bases together with the experimental data. The spread between the different calculations is much smaller, 

indicating a better convergence. For the oscillator strength of the higher excited states, we make a similar 

observation, where all calculations line up reasonably well (Figure S5d). Thus, while the basis considered has an 

impact on the field needed to trigger a certain effect, the observables in our measurements are only weakly affected. 

 Field Generated by an Elementary Charge 

Neglecting the effect of surfaces, the potential due to a point charge located at the nanocrystal surface can be 

calculated by eqs S9 and S10. The 𝑞 = 1-term gives rise to a homogeneous electric field and if the charge is placed 

along the z-axis at a distance r0 from the nanocrystal center this term reads: 

 𝑉6(𝑟, 𝜃) =
H

2IJJ7
cos(𝜃) B

B75
 (S21) 

Considering a charge positioned just outside of the nanocrystal at 𝑟f%@, the field is given by the gradient of eq S21, 

which for this specific case only has a z component. For 𝑟f%@ = 	4.5	nm and ε	= 10 this gives a homogeneous 

electric field strength of ≈ g	ij
O

. This is in the right range to cause the effects observed experimentally. Note that 

our convergence analysis (Section S7) indicated that our calculations overestimate the necessary electric field to 

explain experimental observations. In addition, dielectric effects increase the field generated by a point charge,S11 

bringing the field due to a single point charge closer to the calculated value of 10 MV/m necessary to explain our 

findings. 
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