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ABSTRACT
The development of new materials typically involves a process of trial and error, guided by insights from past experimental and theoretical
findings. The inverse design approach for soft-matter systems has the potential to optimize specific physical parameters, such as particle
interactions, particle shape, or composition and packing fraction. This optimization aims to facilitate the spontaneous formation of specific
target structures through self-assembly. In this study, we expand upon a recently introduced inverse design protocol for monodisperse systems
to identify the required conditions and interactions for assembling crystal and quasicrystal phases within a binary mixture of two distinct
species. This method utilizes an evolution algorithm to identify the optimal state point and interaction parameters, enabling the self-assembly
of the desired structure. In addition, we employ a convolutional neural network (CNN) that classifies different phases based on their diffraction
patterns, serving as a fitness function for the desired structure. Using our protocol, we successfully inverse design two-dimensional crystalline
structures, including a hexagonal lattice and a dodecagonal quasicrystal, within a non-additive binary mixture of hard disks. Finally, we
introduce a symmetry-based order parameter that leverages the encoded symmetry within the diffraction pattern. This order parameter
circumvents the need for training a CNN and is used as a fitness function to inverse design an octagonal quasicrystal.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0210034

I. INTRODUCTION

The self-assembly of colloidal particles is a pivotal mechanism
for fabricating nanostructured materials. Colloidal systems, con-
sisting of particles ranging from nanometer to micrometer sizes
suspended in a fluid medium, inherently possess the ability to spon-
taneously organize themselves into structured arrangements due to
interparticle forces and thermodynamic conditions. These systems
show promise for potential applications due to their photonic,1,2

magnetic, and electronic properties.3 However, the structure of the
assembly of such materials depends on the building blocks, namely,
the interaction between the species composing the system and the
thermodynamic conditions, such as temperature, pressure, den-
sity, or composition. Understanding the relationship between these

building blocks, thermodynamic state, and self-assembled structures
is crucial for leveraging them for materials design. This relation-
ship is fundamental, as the physical properties of each material are
intrinsically intertwined with its structure.

In the forward design approach, a specific colloidal particle sys-
tem is chosen as the foundational building blocks for a material
with desired properties. Subsequently, the interaction parameters
and thermodynamic conditions are systematically changed until
achieving the desired material. The forward design approach can
quickly become unfeasible because the number of possible build-
ing block combinations and conditions needed to assemble the
required structures is intractably large. Forward design approaches
have been successfully used to control the self-assembly of differ-
ent solid and fluid phases in binary mixtures of confined microgels,
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and by changing the composition of the two components, differ-
ent structures were stabilized with a particular control of defects
in the structures.4 Recently, experimental setups, such as the one
reported in Ref. 5, show a rich phase behavior in non-additive binary
mixtures of silica particles, where different phases arise by tun-
ing the size ratio between the two species. However, the tuning of
the parameters is done manually throughout the experiments and
simulations following a forward design approach.

Recently, there has been a growing interest in developing
frameworks for the inverse design of self-assembled structures and
materials.6 The inverse design approach directly determines the
parameters and thermodynamic conditions necessary to attain a tar-
get structure with specific properties.7 Inverse design protocols have
been successfully applied to the search of both crystalline8–10 and
quasicrystalline structures.10–16 One category of methods involves
adjusting intermolecular interactions to target the radial distribution
function of the desired phase. The objective is to precisely match
the two-body structural correlations using a maximum entropy
optimization scheme.17,18

Recently, machine learning methods have been used for the
analysis, identification, and formation of soft-matter systems.6 Coli
et al. developed an inverse design protocol13 employing supervised
machine learning techniques. The authors used a convolutional
neural network (CNN) as a classifier to differentiate structures
based on their diffraction patterns. Subsequently, target structures
are achieved by modifying the interaction parameters and thermo-
dynamic state points through an evolution strategy optimization
algorithm, which uses a CNN-based fitness. This exploration helps
identify the thermodynamic conditions and interactions necessary
for stabilizing the desired structures. The methodology proposed by
Coli et al. facilitates the self-assembly of quasicrystals, as the sym-
metry of the structure is encoded within the diffraction patterns.
Recently, Lieu and Yoshinaga proposed an alternative framework in
which reinforcement learning is used along with patchy particles to
promote the self-assembly of dodecagonal quasicrystals.19 Using an
optimization method tailored for reinforcement learning, they auto-
matically tuned the cooling schedule such that a critical temperature
is identified at which the quasicrystal is formed.

In this work, we expand upon the protocol of Coli et al.
to encompass non-additive binary mixtures of hard disks, a sys-
tem more akin to the quasicrystals observed in the experiments
on monolayers of inorganic nanoparticles.20 The phase behavior
of a similar system, i.e. binary mixtures of hard spheres, has been
explored by computer simulations.21,22 We employ a CNN to clas-
sify different structures using the diffraction patterns of one of the
species within the mixture. Subsequently, we use an evolution strat-
egy algorithm to optimize the thermodynamic conditions and inter-
action parameters, facilitating the self-assembly of binary crystals
and quasicrystals. However, this protocol encounters severe chal-
lenges when the training data for the CNN lack diffraction patterns
of the target structure, hindering its effectiveness in inverse design-
ing the desired system. To address this limitation, we introduce a
novel symmetry-based order parameter. This order parameter elim-
inates the necessity for training a CNN and bypasses the requirement
for diffraction patterns of the structures to be inverse-designed. We
observe that this order parameter, which measures the order of sym-
metry of the diffraction pattern, can successfully be used as a fitness
function in the evolution strategy algorithm to optimize the physical

parameters for the self-assembly of the desired structures.
This paper is organized as follows: in Sec. II, we introduce our

model for the binary mixture of hard disks. The inverse design pro-
tocol is presented in Sec. III. This protocol comprises simulations for
sampling, both a CNN and a symmetry-based order parameter for
fitness evaluation, and an evolutionary strategy for the optimization
of the parameters. In Sec. IV, we present the main results, illustrat-
ing the self-assembly of crystalline and quasicrystalline structures
via the CNN approach. Following this, we employ the symmetry-
based order parameter to successfully inverse design an octagonal
quasicrystal. We present our conclusions in Sec. V.

II. MODEL
In our inverse-design approach for the self-assembly of binary

mixtures, we aim to produce trajectories that start in a disordered,
low-density phase and finish in the target crystalline or quasicrys-
talline phase. Producing such trajectories requires time propagation
of particle motions, which we compute via molecular dynamics
(MD) simulations.23 We consider a two-dimensional non-additive
binary mixture of hard disks of two different sizes. The large (L)
species have a diameter σL and the small (S) species a diameter σS.
To perform MD simulations of hard-disk systems, it is necessary
to employ a continuous interaction potential. Using the extended
law of corresponding states as formulated by Noro and Frenkel,24

and assuming that its applicability extends to repulsive potentials,
Báez et al.25 argued that by using a re-parametrization of the inter-
molecular potential proposed by Jover et al.,26 it becomes feasible
to map the hard-core interaction onto a continuous potential. This
approach yields accurate results, particularly when the continuous
potential precisely reproduces the second virial coefficient of the true
hard-particle potential. Such a re-parametrization of the continu-
ous hard-core potential uαβ(r) between species α = L, S and species
β = L, S reads

uαβ(r) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

A ε[(σαβ

r
)

λ
− (σαβ

r
)

λ−1
] + ε, r < σαβ B,

0, r ≥ σαβ B,
(1)

with

A = λ( λ
λ − 1

)
λ−1

; B = ( λ
λ − 1

) , (2)

where r denotes the center-of-mass distance between the two parti-
cles, σαβ represents the hard-core diameter between species α and
β, and ε denotes the effective strength of the interaction. We set
the hard-core diameters σLL = σL and σSS = σS as well as introduce
a non-additivity parameter Δ for the contact distance between the
large and small species,

σLS =
σS + σL

2
(1 − Δ) . (3)

A non-linear equation in terms of the reduced temperature
T∗ = kBT/ε with kB Boltzmann’s constant must be solved in order
to determine the temperature at which the difference between the
second virial coefficient of both interaction potentials becomes zero.
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In this study, the parameter λ is held constant at λ = 50 in
Eq. (1), as well as the temperature, which remains constant across all
simulations. For the two-dimensional systems studied here, the tem-
perature is set to T∗ = 1.4671 following the results of Báez et al.25 for
a two-dimensional system. By fixing λ, the values of A and B are also
fixed in Eq. (2).

The thermodynamic state of our binary mixture is defined by
four design parameters:

● the size ratio q = σS/σL,
● the small species composition xS = NS/N with NS the

number of particles for the small species,
● the non-additivity parameter Δ,
● and the packing fraction η = (NS σ2

S +NL σ2
L) π/4A with A,

the area defined by the simulation box.

Finally, to track the self-assembled structures and ensure that
the specified quasicrystalline symmetries have been found—rather
than twinned or mixed crystalline symmetries— we use the bond
orientational order parameter χm, which is analogous to the
Steinhardt parameters27 in three-dimensional systems. The order
parameter is defined as

χm = ⟨∣
1

Nb
∑

r
eimθr ∣

2

⟩ , (4)

where θr is the angle between an arbitrary axis and a bond con-
necting particles separated by a fixed cutoff and located at r,
Nb is the number of nearest-neighbor bonds, and the angular
brackets indicate an ensemble average.

III. INVERSE DESIGN PROTOCOL
Our aim is to optimize the interaction parameters and the ther-

modynamic state point to favor the self-assembly of specific target
phases in a non-additive binary hard-disk mixture. In this work,
we build upon the inverse design protocol introduced in Ref. 13.
This approach combines the covariance matrix adaptation evolu-
tion strategy (CMA-ES) to sample and optimize the set of design
parameters, using a CNN to evaluate the fitness of each sample. The
method consists of three steps. In the first step of the inverse design
process, a fixed number of parameter sets are drawn from a mul-
tivariate Gaussian distribution. The dimension of the multivariate
Gaussian distribution is set by the number of free design parameters
that need to be tuned. For each set of parameters, also called sample,
we perform MD simulations of the system from which equilibrated
configurations will be collected to compute diffraction patterns. In
the second step, we evaluate the fitness of the samples by classify-
ing their diffraction patterns using the CNN or the symmetry-based
order parameter. Samples that are more likely to be classified as
the target phase receive a higher fitness value. In the final step, we
update the mean and covariance matrix of the Gaussian distribution
to move toward regions within the parameter space where the fittest
samples are located. In the following, we describe the three steps in
more detail.

A. Simulations
We perform MD simulations of the non-additive binary hard-

disk mixture in a square simulation box with periodic boundary

conditions in all directions using the LAMMPS simulation code ver-
sion 28 Mar 2023.28–31 Each system consists of N = NS +NL = 512
particles. We initialize the system by randomly placing the par-
ticles within the simulation box at an initial packing fraction of
η = 0.3. Subsequently, the simulation box is linearly compressed to
a higher target packing fraction, determined by CMA-ES, over a
duration of 108τ, where τ = σL

√
m/ε denotes the simulation time

unit and m represents the mass of a particle, which is kept iden-
tical for both species. This box deformation scheduling is used to
reach the higher packing fractions where the crystals and quasicrys-
tals can be self-assembled. A time step of τ = 0.001 is employed for
all simulations. Upon reaching the target packing fraction, an equi-
libration phase follows wherein the positions of the particles are
propagated for at least 107τ to reach equilibrium. However, for sys-
tems exhibiting quasicrystal phases, at least 108τ was required for
equilibration, which we determine by monitoring the time evolu-
tion of the energy of the system and the radial distribution function.
Longer runs are needed in order to reduce the number of defects in
the system.32,33 Subsequently, a production phase of at least 107τ is
performed to collect a large number of independent configurations
of the system. Configurations were collected every 104τ, result-
ing in a total of 103 configurations. The various thermodynamic
state points are explored using simulations in the canonical (NVT)
ensemble with canonical thermostatting, employing the method
introduced by Bussi et al.34 The thermostat relaxation time is set
to 100 τ.

B. Convolutional neural network as a classifier
The inverse design protocol used in Ref. 13 employs a CNN

as a classifier. The output of the CNN provides a probability indi-
cating how closely a given configuration resembles the target phase,
effectively serving as a fitness function. Subsequently, a derivative-
free optimization method is employed to optimize the fitness of the
samples. The CNN takes as input the diffraction patterns extracted
from the configurations gathered during the simulations. The aim
of employing a CNN is to classify the various phases within a
non-additive binary hard-disk mixture based on their respective
diffraction patterns. We anticipate this two-dimensional mixture to
stabilize various phases, including, for example, an isotropic fluid
phase (FLUID), hexagonal (HEX) and square (SQ) crystal phases,
and quasicrystal phases, such as the decagonal (QC10), dodecagonal
(QC12), and octadecagonal (QC18) quasicrystal phases.

To train the CNN,13 we need diffraction patterns correspond-
ing to these phases. As the aim of this paper is to inverse design
these phases within a binary mixture of hard disks, these diffrac-
tion patterns are currently unavailable. However, data are available
from a single-component system of particles interacting with a
hard-core square-shoulder potential.13 This monodisperse system
exhibits crystalline and quasicrystalline phases sharing similar trans-
lational and rotational symmetries as the anticipated phases in the
binary mixture.13,32,35 In this study, we investigate the possibility
of training the CNN using diffraction patterns from a monodis-
perse two-dimensional system interacting via a hard-core square-
shoulder potential for inverse designing these phases in a binary
mixture.13,32

To generate training data, Monte Carlo simulations of the two-
dimensional hard-core square-shoulder model were performed for a
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total of 5 × 105 Monte Carlo sweeps, where each sweep represents an
attempt to randomly displace all particles in the system. The equili-
bration phase is followed by 1 × 106 sweeps, during which we save
a configuration every 103 sweeps, resulting in 103 independent con-
figurations. This is repeated for ten different state points for each
of the six considered phases, FLUID, HEX, SQ, QC12, QC10, and
QC18. To ensure identification of phases, regardless of their ori-
entation, every training configuration is rotated by a random angle
before evaluating its diffraction pattern following the procedure out-
lined in Ref. 13. The diffraction patterns for these one-component
systems are obtained by computing the two-dimensional structure
factor,

S(k) = 1
N

RRRRRRRRRRR

N

∑
j=1

ei k⋅rj

RRRRRRRRRRR

2

, (5)

where k = 2π(nx, ny)/L represents the wavevector with nx and
ny denoting two integers, L is the box length, and rj is the center-
of-mass position of particle j. We determine the diffraction pattern
for each training configuration on a 150 × 150 grid, followed by
a size reduction using a max pooling filter to achieve the final
size of 33 × 33. The primary goal of max pooling is to reduce the
dimensions of the data while preserving important input features.
Consequently, the max pooling step reduces the computational time
and memory during training.

To classify and evaluate structures in our binary mixture, we
consider only the large species in computing the diffraction pat-
terns. The CNN used in this work is comprised of two convolu-
tional layers for feature extraction and two fully connected layers
for classification, as schematically shown in Fig. 1. Each convo-
lutional layer performs two operations: feature extraction through
convolutional filters and a non-linear transformation using the Mish
activation function, defined as f (x) = x tanh [log (1 + ex)].36 The
first convolutional layer has one input channel, corresponding to the
max pooled diffraction pattern and sixteen output channels, which
are the extracted features. The convolutional layer uses kernels of

size 3 × 3, with a stride of s = 1 and a padding of p = 1. The second
convolutional layer takes as input the sixteen channels and outputs
thirty-two channels in order to increase the features extracted from
the images. The kernels in this layer have the same size, padding and
stride as the first convolutional layer. We use a downsampling step
after the channels through a layer with a 2 × 2 max pooling filter
with a stride of s = 2. To enhance the robustness of the neural net-
work, a dropout probability of P = 0.25 is introduced following the
downsampling of the second convolutional layer. Dropout is a regu-
larization technique that selectively eliminates feature detectors with
a probability P, while the remaining weights are trained as usual.37

The dropout layer is subsequently stacked, flattened, and prepared as
input for classification, where two fully connected layers are used to
classify the features extracted from the convolutional layers. The first
fully connected layer consists of 256 units, and the second layer con-
sists of 100 units. The Mish activation function is applied to all units
in the layers. To further enhance robustness and introduce regular-
ization, a dropout probability of P = 0.5 is applied between the two
fully connected layers. The output layer contains six units to align
with the available training classes, followed by a softmax function to
determine classification probabilities.

We train the CNN by minimizing the cross-entropy loss while
implementing L2 regularization as weight decay of 10−5.38 This
regularization of weights enhances the robustness of the network,
making it less prone to overfitting. The Adam optimizer39 is used
with a learning rate of 10−3. To prevent overfitting, early stopping
is employed. If the loss remains unchanged between consecutive
epochs, the training is halted and the optimization is assumed to
have reached convergence within a maximum of fifty epochs. The
dataset comprises a total of 48 000 samples, divided into 8000 sam-
ples per class, split in an 80%–20% ratio for training and test sets. The
test set, containing samples not used during training, is employed to
evaluate the performance of the classifier, which reaches the final
classification accuracy of at least 99.9% in the test set. The CNN
implementation and training protocol are carried out using PyTorch
and PyTorch Lightning.40,41

FIG. 1. Schematic representation of the CNN used as a classifier in this work. The network consists of two convolutional layers for feature extraction, followed by a max pooling
layer to reduce resolution and two fully connected layers before a softmax function for final classification. All the details about kernels, layer size, and activation functions are
also shown. Each layer uses a non-linear Mish activation function. Note that between the fully connected layers there is a dropout layer to avoid overfitting.
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C. Symmetry-based order parameter
It is important to note that training the CNN relies on having

the diffraction patterns for the target structures. However, when we
aim to reverse engineer a structure without access to its diffraction
pattern, this inverse design method will not succeed. To overcome
this challenge, we introduce a symmetry-based order parameter
leveraging the unique rotational symmetry within diffraction pat-
terns, eliminating the need for training a CNN, and serving as a
fitness function for inverse design protocols. To analyze the sym-
metry present in a diffraction pattern, we ascertain the count of
detectable symmetry axes within the aforementioned pattern. More
specifically, we identify the lines of symmetry that cut the diffraction
pattern into two identical mirror images. To discern lines of sym-
metry, we posit a metric to quantify the degree of inverse reflectivity
exhibited by a given axis. Mathematically, this reads

S(θ) =∑
r⃗∈A
∣I(Q(θ) ⋅ r) − I(r)∣ , (6)

where AR = {(x, y) : x2 + y2 ≤ R2} represents all points r = (x, y)
lying within a circle of radius R centered around the origin of the
diffraction pattern. The angle θ denotes the angle formed between
the reflection axis and the x axis, as shown in Fig. 2(a). The peak
intensity within the diffraction pattern at location r is defined
as I(r). Finally, Q(θ) represents the reflection matrix across the
reflection axis at an angle θ with the x axis,

Q(θ) = (cos (2θ) sin (2θ)
sin (2θ) − cos (2θ)) . (7)

By inverse reflectivity, we mean that a high value of S(θ) indicates a
lack of reflection symmetry for that particular angle θ, i.e., there is no
mirror symmetry between the two opposite sections of the diffrac-
tion pattern. Conversely, a low value of S(θ) suggests high reflection
symmetry for that specific angle θ.

Applying the floor operation to the expression Q(θ) ⋅ r in
Eq. (6) is essential to ensure the use of real pixel locations when deal-
ing with the raw data from diffraction patterns. Figure 2(a) shows
a schematic representation of this method, illustrating the circle of
radius R in the diffraction pattern. We note that as the method oper-
ates with real information from diffraction pattern images, it can
readily be extended to experimental setups.

We calculate S(θ) for a uniform grid of M angles in the range
of θ ∈ [0, π). We show S(θ) as a function of θ in Fig. 2(b), where we
find an oscillatory pattern in S(θ) as a function of θ. The oscillation
frequency of S(θ) correlates with the number of reflection axes of
the diffraction pattern. To evaluate the number of symmetry axes,
we compute the power spectral density P(m). First, we subtract the
mean from S(θ) in order to normalize the symmetry score across
different samples. Subsequently, the power spectral density P(m) is
computed according to the equation,

P(m) = 1
M
∣
M−1

∑
k=0

S(θk) e−i2πmkΔθ∣
2

, (8)

where θk = θ0 + kΔθ represents the discrete angles used to compute
the discrete symmetry scores S(θk), with θ0 = 0 and k ∈ {0, 1, 2,
. . . , M − 1}, i denotes the imaginary unit, m ∈ {0, 1, 2, . . . , M − 1}

FIG. 2. Symmetry-based order parameter. (a) The gray line represents the reflec-
tion axis, forming an angle θ with the x axis. Intensities of points from one half
of the circle are subtracted point-wise from the intensity of their reflection points
across the reflection axis on the other half of the circle. An example of intensities
are depicted by small circles and connected by the dotted line in the image. The
absolute sum of all intensity differences quantifies the degree of inverse reflectivity
S(θ). (b) S(θ) as a function of θ. (c) The power spectral density P(m) of S(θ)
as a function of m, with m denoting the m-fold rotational symmetry.

represents the m-fold rotational symmetry, and ∣ ⋅ ∣2 denotes the
norm of the complex numbers. Essentially, the power spectral
density P(m) decomposes the signal into its Fourier components
such that the underlying rotational symmetries are easier to detect.
A representative plot of the power spectral density P(m) is shown in
Fig. 2(c), where the high peaks correspond to the rotational symme-
tries obtained from the signal decomposition of S(θ). For an m-fold
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rotationally symmetric diffraction pattern, we expect to find a high
value at the m value of the power spectral density P(m). For instance,
a QC8 exhibits an eight-fold rotational symmetry in its diffraction
pattern, and the power spectral density P(m) exhibits the eight-fold
symmetry by having the largest value at m = 8, as shown in Fig. 2(c).
It is essential to note that signal aliasing might occur, leading to
high values at frequencies that are multiples of the sampling fre-
quency, such as the 16-fold and 24-fold symmetry for an eight-fold
diffraction pattern [see the small peaks in Fig. 2(c)].42

We can now define a symmetry-based order parameter fm,
serving as a fitness function,

fm = P(m) −
M−1

∑
i=0 ,
i≠m

P(i) , (9)

where we anticipate a high value for P(m) when the diffraction
pattern displays m-fold symmetry. By subtracting all rotational sym-
metries that are not equal to m [the second term in Eq. (9)], we
penalize symmetries that might induce aliasing effects of the m-fold
symmetry. Subsequently, we can optimize fm defined in Eq. (9) using
an evolution strategy algorithm, similar to the fitness value as deter-
mined by the CNN. In this way, we promote the self-assembly of
structures with m-fold symmetry. It is important to note here that
fm is not bounded from above, as opposed to the CNN, so the highest
value of the peak is unknown beforehand.

D. Covariance matrix adaptation evolution strategy
as optimizer

In this study, we employ the covariance matrix adaptation
evolution strategy (CMA-ES) for optimizing the fitness function,
which provides a measure of how close the system is to the tar-
get phase. Here, we present a short summary of the method. For
further explanations, we direct the reader to the references cited in
the following. The CMA-ES represents a stochastic zero-order opti-
mization technique designed to optimize a real-valued, non-convex,
and nonlinear function, operating without requiring gradient infor-
mation of the function.43 CMA-ES is an iterative algorithm, which
samples from a multivariate Gaussian distribution and updates the
mean and the covariance matrix of the Gaussian distribution at each
iteration. This process continues until a convergence criterion is
met. In each iteration, often referred to as a generation, the algo-
rithm draws n samples from a d-dimensional multivariate Gaussian
distribution, where d represents the number of design parameters
we wish to optimize. The fitness function is then evaluated for these
n samples, and the outcomes are arranged in descending order. Sub-
sequently, the top k samples from this particular generation are
chosen as the best candidates, forming the elements of the set X.
In each generation, the mean vector μ ∈ Rd and covariance matrix
C ∈ Rd×d are updated to adjust the Gaussian distribution to reach
the optimum.

Various proposals for updating these parameters have been
introduced,44 but here, we focus on the separable CMA-ES
(sepCMA-ES).45 The sepCMA-ES version constrains the covariance
matrix to remain diagonal, enabling linear space and time complex-
ity. The sepCMA-ES version outperforms the traditional CMA-ES
algorithm in many optimization problems.46

We start from an initial mean vector μ sampled uniformly
within the feasible parameter space and an initial covariance matrix
C = I, with I being the identity matrix with shape d × d. The
sepCMA-ES generates a new candidate solution using the following
equations:

zi ∼ 𝒩(0, I) for i = 1, . . . , n,
xi = μ + σBDzi,

μ =
k

∑
i=1

wixi:k,

z =
k

∑
i=1

wizi:k,

(10)

where xi:k denotes the ith best individual out of the k samples. The
elements of zi are standard normal random variables. The matrix
B has the orthogonal eigenvectors of C as columns, whereas the
matrix D has the eigenvalue square roots as diagonal elements.
The parameter σ is the initial standard deviation used at the start
of the optimization method. The distribution of weights is defined
as

wi =
log (k + 1) − log (i)

∑R
j=1 log (k + 1) − log (j)

, (11)

where i is the rank index of sample x, with i = 1 indicating the
configuration with the highest f value. These equations update
the candidate solution and the mean vector used to sample the
multivariate normal distribution.

We now turn our attention to updating the covariance matrix,
using the following equations:

pσ = (1 − cσ)pσ +
√

μW cσ(2 − cσ)Bz,

pc = (1 − cc)pc +Hσ
√

μWcc(2 − cc)BDz,

C = (1 − ccov)C +
1

μcov
ccovpcpT

c

+ ccov(1 − 1
μcov
)

k

∑
i=1

wiBDzi:k(BDzi:k)T , (12)

where the Heaviside function Hσ = 1 when the condition
∥pσ∥√

1−(1−cσ)2g
< (1.4 + 2

d+1)E(∥𝒩(0, I)∥) is met. This is the con-

dition that happens most often during the evolution path, but the
other case, Hσ = 0, can happen as well, which indicates that the
evolution path is stalled. The d-dimensional vectors pσ control
the amplitude of the covariance matrix, while the d-dimensional
vector pc manipulates the directionality. In addition, ⟨∥𝒩(0, I)∥⟩
represents the average length of a vector sampled from a standard
multivariate normal distribution. This quantity is used for step-size
control. All the other parameters are free parameters, which are
constant throughout the optimization procedure, and the values
chosen are explained below.
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Finally, we update the step size σ along with the covariance
matrix and its decomposition, using the following equations:

σ = σ exp( cσ

dσ
( ∥pσ∥

E(∥𝒩(0, I)∥) − 1))

D2 = diag (C) ,
(13)

where diag(C) is a diagonal matrix with the same diagonal elements
as C.

In this work, we use n = 24 and k = 12 for all our results. The
value of the initial standard deviation changes for each optimiza-
tion problem, since it depends on the bounds of the d-dimensional
search space [a, b]d. In all the results presented here, σ = 0.3(b − a),
where a and b might be different depending on the phase to inverse
design. The initial values for pσ and pc in Eq. (12) are null vectors.
All the free parameters ci, μW , and μcov in Eqs. (12) and (13) are set
to the default values as outlined in the original work45 and in the
Python implementation by Nomura and Shibata47 that we use in this
work. Finally, the stopping criterion of the optimization scheme is

determined by setting the number of generations to fifty generations.
This is a common choice for stopping the optimization scheme in
numerical optimization experiments, where the number of function
evaluations is fixed.48

IV. RESULTS
A. Inverse design of a hexagonal lattice

We start our investigation by reverse-engineering the hexag-
onal crystal (HEX) phase in a non-additive binary mixture of hard
disks. Our goal is to identify the optimal set of design parameters that
facilitates the self-assembly of a hexagonal lattice within this mix-
ture. To accomplish this, we use the size ratio q, the small species
composition xS, the non-additivity parameter Δ, and the packing
fraction η, as design parameters. The values of these parameters are
sampled from a multivariate normal distribution in each genera-
tion according to the equations of sepCMA-ES. It is worth noting
that hexagonal lattices can be attained without using the four design
parameters employed in this study. In fact, a hexagonal lattice can

FIG. 3. Inverse design of the hexagonal lattice in a non-additive hard-disk mixture using the CNN as order parameter. (a) Evolution of the mean fitness during the inverse
design protocol. (b) Evolution of the design parameters, size ratio q = σS/σL, non-additivity parameter Δ, small species composition xS, and packing fraction η, for the inverse
design of the hexagonal lattice. Each dot represents a sample for a given generation. The dotted lines are the bounds imposed for the optimization problem. (c) Exemplary
configuration snapshot of a hexagonal lattice obtained during the last generation. (d) Diffraction pattern of the configuration in c.
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be easily achieved using a monodisperse system of hard disks.49,50

The adoption of the four design parameters serves two primary pur-
poses: first, to facilitate direct comparison with the findings of Fayen
et al.,21 and second, to establish a consistent protocol for exploring
crystalline and quasicrystalline phases.

To specifically target the hexagonal lattice, we employ the out-
put of the trained CNN, which represents the probability that the
diffraction pattern of a given configuration is classified as a hexag-
onal lattice, denoted as PHEX, as the fitness function, i.e., f = P̄HEX.
Here, the “bar” indicates that the input diffraction pattern for the
classifier is an averaged diffraction pattern of fifty different config-
urations collected during the production phase of the simulation.
It is important to note that the CNN is trained using diffraction
patterns of fluid, crystalline, and quasicrystalline phases obtained
from a monodisperse system interacting with a hard-core square-
shoulder potential. We thus investigate whether the classification of
the CNN trained with diffraction patterns of a monodisperse sys-
tem is general enough to inverse design target phases in a binary
system.

The results of the reverse-engineering process are presented in
Fig. 3. The algorithm successfully finds the target hexagonal lattice
in approximately eight generations, evident from the rapid rise in
the mean fitness to a high value. By the tenth generation, the algo-
rithm consistently samples state points that, on average, facilitate the
self-assembly of the hexagonal lattice. In addition, Fig. 3(c) shows a
representative snapshot along with its diffraction pattern computed
for the large species, exhibiting clear hexagonal symmetry.

The evolution of the design parameters is shown in Fig. 3(b).
The algorithm quickly converges to the range of design parameters
where the hexagonal lattice self-assembles. Comparing these find-
ings to those obtained by Fayen et al.,21 it is expected that the inverse
design protocol would favor the self-assembly of this phase as the
stability region of the hexagonal lattice is extensive in the phase dia-
gram. In our work, this is evident from the wide spread of samples
with high fitness values, which gradually narrows as the evolution
progresses and the optimization method converges. Subsequently,
the probability distribution narrows around the estimated mean.
This behavior is attributed to the rugged landscape of f , with mul-
tiple optima, allowing the hexagonal lattice to self-assemble across a
broad range of design parameters. It is important to note that once
the optimizer has focused on a local optimum, other samples from
other optima get discarded due to the selection mechanism choos-
ing the best samples within each generation. These challenges can be
overcome by using different exploration mechanisms, which could
explore other optima during optimization, even after discovering a
local minimum of f .46,51

B. Inverse design of a dodecagonal quasicrystal
We now target a dodecagonal quasicrystal (QC12) phase in

a non-additive binary hard-disk mixture, recently predicted in
simulations.21,22 This quasicrystal comprises a random tiling of
squares and equilateral triangles, exhibiting distinct 12-fold rota-
tional symmetry. This square-triangle random tiling has been
investigated extensively52 and observed in computer simulations
of monodisperse systems.32 Given that data for a one-component
12-fold quasicrystal (QC12) are already included in the training data

of the CNN, it can readily be used to target this phase within the
binary mixture.

We define the fitness function as f = P̄QC12, where PQC12 repre-
sents the probability that the diffraction pattern of a given configura-
tion is classified as a QC12 by the CNN. Similar to the protocol used
for the hexagonal lattice, the “bar” indicates that the input diffrac-
tion pattern for the classifier is an averaged diffraction pattern of
fifty different configurations collected during the production phase
of the simulation.

We present the results of the inverse design protocol in Fig. 4.
We clearly observe that the optimization of the quasicrystal phase
requires more generations to identify a local optimum than in
the HEX case. However, once found, the evolution of parameters
remains stable, eventually reaching a plateau. A clear indicator of
the inverse design protocol approaching the target phase is moni-
toring the packing fraction η, which shows a consistent increase as
the protocol converges. Higher packing fractions are favored, since
the QC12 and other crystalline phases only self-assemble at high
pressures and high packing fractions. In Fig. 4(a), we observe that
after approximately ten generations, η starts to increase consistently
toward values exceeding η > 0.8. Subsequently, the packing fraction
remains close to η ≈ 0.84.

The behavior observed in the other parameters, specifically
q and xS, contrasts with that of the packing fraction η. The size ratio
q displays extensive variations within the first ten generations, as
shown by the large spread in the samples in Fig. 4(b). During the
first ten generations, at least 90% of the total range of the size ratio
q is explored.

During the exploration phase, corresponding to the first fifteen
generations of the sepCMA-ES, attempts are made to sample a wide
region of the search space, until a high fitness state point is found,
subsequently directing the optimizer toward that region. However,
for both q and xS, the region explored remains quite large, covering
at least 60% of the total range, until it reaches a plateau at around
generation number 30. The extensive exploration is required since
the region of self-assembly of the octagonal quasicrystal is small
compared to the size of the design parameter space. Still, the average
values found for q and xS agree well with Ref. 21.

Regarding the non-additivity parameter Δ, low values are
obtained, which is expected since the small particles stabilize the
random square-triangle tiling. Larger values of Δ would imply sig-
nificant overlap between small and large particles, a scenario that
the optimizer has steered away from within the search space.

We would like to emphasize once more that the QC12 self-
assembled in the binary mixture comprises a random square-
triangle tiling for the large species.52 For this reason, square lattice
domains are anticipated to manifest in the system, contributing to
the diverse orientations of square tilings. Furthermore, we assessed
the global orientational order through the computation of the
bond orientational order parameter for the configuration shown in
Fig. 4(c). Our analysis over 107τ time steps after equilibration yielded
an average value of χ12 = 0.8069 ± 0.0002 and an average value
of χ4 = 0.4312 ± 0.0006. Errors were obtained with block averaging
of the time series. We compare these results with a binary mixture
of hard spheres, as reported in Ref. 21, from which we took a sin-
gle equilibrium configuration for the state point q = 0.5, η = 0.86,
xS = 0.35, and N = 2000 and obtained the following values of the
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FIG. 4. Inverse design of the QC12 in a non-additive hard-disk mixture using the convolutional neural network as order parameter. (a) Evolution of the mean fitness during the
inverse design protocol. (b) Evolution of the design parameters, size ratio q = σS/σL, non-additivity parameter Δ, small species composition xS, and packing fraction η, for
the inverse design of the QC12. Each dot represents a sample for a given generation. The dotted lines are the bounds imposed for the optimization problem. (c) Exemplary
configuration snapshot of a QC12 obtained during the last generation. (d) Diffraction pattern of the configuration in c.

order parameter: χ12 = 0.8427 and χ4 = 0.3112. These results indicate
that the system does indeed predominantly exhibit 12-fold sym-
metry, as expected, along with some minor square symmetry, and
that our realization of the quasicrystal is similar to that achieved in
Ref. 21. The data used to train the CNN originate from a single-
component system that also exhibits a square-triangle tiling.13 It is
important to note that the current training data may not be suffi-
cient to facilitate the inverse design of other quasicrystals observed
in simulations.32,33

C. Inverse design of octagonal quasicrystal
So far, we have successfully reverse-engineered hexagonal crys-

tals and dodecagonal quasicrystals within a non-additive binary
hard-disk mixture using a CNN trained solely with diffraction pat-
terns from a single-component system. However, in cases where we
aim to inverse design structures within a binary mixture that are
not available in the one-component system, we face a challenging

recursive loop. The sought-after structure is necessary to train the
CNN, while a trained CNN is crucial to inverse design that specific
structure. An example of such a structure is the octagonal quasicrys-
tal (QC8),21 for which diffraction patterns from a single-component
system are absent in our training data. This absence poses a chal-
lenge when attempting to employ the CNN for the inverse design
of QC8 within the binary mixture. We, therefore, resort to our
symmetry-based order parameter, which bypasses the requirement
for training a CNN and can be used as a fitness function in our
inverse design protocol.

Our focus is now on achieving the octagonal quasicrystal
structure using the fitness function presented in Sec. III C. Consis-
tent with our previous endeavors, our objective is to identify the
optimal set of design parameters that facilitates the self-assembly of
QC8s. We focus on the following design parameters, the size ratio
q, the small species composition xS, and the packing fraction η.
These parameters are again sampled from a multivariate Gaussian
distribution at each generation. We compute the non-additivity
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parameter as a function of the size ratio q, using the expression
Δ(q) = (2√q)/(1 + q) − 1 to facilitate a comparison with
Ref. 21.

The fitness function is now defined as f̄ 8, using the expres-
sion from Eq. (9) for f . In this case, the CNN is no longer used
and the symmetry-based order parameter serves as the fitness func-
tion steering the optimization. Similar to Secs. IV A and IV B,
the “bar” in the fitness function indicates that the input diffraction
pattern for the classifier is an averaged diffraction pattern of fifty dif-
ferent configurations collected during the production phase of the
simulation.

In Fig. 5(b), we show the evolution of the parameters for the
QC8, displaying a plateau in the evolution of the fitness after twenty
generations as shown in Fig. 5(a). As expected, the packing frac-
tion η undergoes extensive exploration but quickly localizes at high
values, since the QC8 can only self-assemble at high packing frac-
tions. In addition, the size ratio q and small species composition

xS converge to values with high fitness after fifteen generations.
These values align with Ref. 21. A representative snapshot and
diffraction pattern are shown in Figs. 5(c) and 5(d), respectively,
highlighting the octagonal symmetry.

Our results thus show that the fitness, defined in terms of the
symmetry of the diffraction pattern, functions as intended. From
Fig. 5(a), we observe that the evolution of the fitness function
appears noisy in the later generations, a characteristic not observed
in our results using the CNN. This could stem from the fitness func-
tion not being bounded but instead relying on obtaining peaks in
the power spectral density P(m) as large as possible. However, as
these values can fluctuate due to the penalties imposed on other
frequencies, the maximum values of the peaks are not known in
advance. One way to solve this issue could involve computing multi-
ple scores simultaneously using different sets of diffraction patterns
or averaging the total fitness value during the evolution of the design
parameters.

FIG. 5. Inverse design of the octagonal quasicrystal in a non-additive hard-disk mixture using the symmetry-based order parameter. (a) Evolution of the mean fitness during
the inverse design protocol. (b) Evolution of the design parameters, size ratio q = σS/σL, small species composition xS, and packing fraction η, for the inverse design of
the QC8 using the symmetry-based fitness function. Each dot represents a sample from a specific generation. The dotted lines are the bounds imposed for the optimization
problem. (c) Typical configuration snapshot of an octagonal quasicrystal obtained during the last generation. (d) Diffraction pattern of the configuration in c.
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V. CONCLUSIONS
In conclusion, we have extended a recently introduced inverse

design protocol to reverse-engineer crystalline and quasicrystalline
structures within a two-dimensional non-additive binary hard-disk
mixture. This method employs a CNN to characterize and classify
diffraction patterns as similar or dissimilar to a target phase. This
information can be used together with an optimizer, e.g., an evo-
lution algorithm, to find the optimal state point and interaction
parameters that facilitate the assembly of the target phase. More
importantly, we show that we have successfully inverse designed
hexagonal crystals and dodecagonal quasicrystals within a binary
mixture using a CNN trained on solely diffraction patterns from a
single-component system.

When dealing with unknown phases, the neural network can-
not be trained since there is no readily available information about
the system. To address this limitation, a symmetry-based order para-
meter was introduced, enabling the inverse design of crystalline
structures and quasicrystals with new symmetries. This order para-
meter determines the symmetry of the diffraction patterns by identi-
fying the number of reflection axes. More specifically, this approach
bypasses the necessity of training a CNN and the requirement
for diffraction patterns of the structures to be reverse-engineered.
By only changing the fitness function in our inverse design pro-
tocol, we successfully inverse designed octagonal quasicrystals
within a binary mixture. This order parameter holds promise as
a foundation for investigating polydisperse systems and devising
phases that account for size polydispersity with suitable interac-
tion parameters in molecular dynamics simulations, similar to those
reported for Brownian dynamics.53 Recent experimental investiga-
tions54 have demonstrated the feasibility of realizing quasicrystalline
structures despite the presence of size polydispersity within the
system.

This study demonstrates that data from single-component sys-
tems are sufficient for training neural networks and reverse engi-
neering structures in binary mixtures, provided that these phases
are represented in the training data and large quantities can be
obtained. While the neural network performs well when data of
the specific structure are available, the symmetry-based order para-
meter serves as a valuable tool when the target structure data remain
elusive.
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