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ABSTRACT: Colloidal nanoparticles self-assemble into a
variety of superstructures with distinctive optical, structural,
and electronic properties. These nanoparticles are usually
stabilized by a capping layer of organic ligands to prevent
aggregation in the solvent. When the ligands are sufficiently
long compared to the dimensions of the nanocrystal cores, the
effective coarse-grained forces between pairs of nanoparticles
are largely affected by the presence of neighboring particles. In
order to efficiently investigate the self-assembly behavior of
these complex colloidal systems, we propose a machine-learning
approach to construct effective coarse-grained many-body
interaction potentials. The multiscale methodology presented
in this work constitutes a general bottom-up coarse-graining
strategy where the coarse-grained forces acting on coarse-grained sites are extracted from measuring the vectorial mean forces
on these sites in reference fine-grained simulations. These effective coarse-grained forces, i.e., gradients of the potential of
mean force or of the free-energy surface, are represented by a simple linear model in terms of gradients of structural
descriptors, which are scalar functions that are rotationally invariant. In this way, we also directly obtain the free-energy
surface of the coarse-grained model as a function of all coarse-grained coordinates. We expect that this simple yet accurate
coarse-graining framework for the many-body potential of mean force will enable the characterization, understanding, and
prediction of the structure and phase behavior of relevant soft-matter systems by direct simulations. The key advantage of this
method is its generality, which allows it to be applicable to a broad range of systems. To demonstrate the generality of our
method, we also apply it to a colloid−polymer model system, where coarse-grained many-body interactions are pronounced.
KEYWORDS: Coarse-Graining, Computer Simulation, Machine Learning, Nanoparticles, Colloidal Systems, Self-Assembly

INTRODUCTION
Metal and semiconductor nanocrystals (NCs) have attracted a
lot of attention over the past few decades in many
technological fields.1 NCs can self-assemble in a range of
different two-dimensional and three-dimensional superstruc-
tures.2−10 Such nanostructured materials present an incredibly
large surface-to-volume ratio, which makes them perfectly
suited not only for optoelectronic, plasmonic, and photonic
applications but also for catalysis, electrodes, and batteries. To
prevent aggregation, NCs, such as PbSe, CdS, silver, and gold
nanoparticles, are often protected with organic capping layers.
For instance, in the case of gold nanoparticles, such molecules
are often alkyl thiols.7,11 These ligand monolayers can undergo
a temperature-dependent order−disorder transition in solvents
like n-hexane or n-hexadecane, which switches the effective
coarse-grained (CG) nanoparticle interactions from repulsive
to attractive upon lowering the temperature.11,12 The self-

assembly of nanoparticles is thus strongly dependent on the
ligand type, the molecular solvent, and the temperature. In
particular, the effect of the ligand shell on the mechanical and
thermodynamic stability of such nanoparticles is not fully
understood.13 A better theoretical understanding of the
interactions between nanoparticles is thus of paramount
importance for predicting the self-assembly process and the
resulting structures. Atomistic simulations of ligand-coated
nanocrystals may provide more insight but are severely limited
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by the length- and time-scales that can be achieved with
present-day computers. Hence, computational studies of their
phase and self-assembling behavior rely heavily on the use of
simplified CG models based on effective CG interactions.
A common method employed to obtain information on the

effective CG interactions of these complex nanoparticles is to
perform potential mean force (PMF) calculations using
computer simulations. In recent years, a substantial number
of molecular simulation studies (including both Monte Carlo
(MC) and molecular dynamics (MD) methods) on the
effective CG pair interactions between alkanethiol capped
nanocrystals in a vacuum and solvent have been re-
ported.3,7,14,15 Nevertheless, while the effective CG pair
interactions are the central focus and typical input of any
many-body theory, much less is known about the effective CG
triplet and higher-body interactions. Coarse-grained pair
potentials are valid for large particle separations, but they
break down for very high concentrations and short separation
distances. The range of this effective CG pair potential involves
a certain length scale, which may be, for instance, the decay
length of the attractive van der Waals interactions, the Debye−
Hückel screening length for charged colloids or twice the
radius of gyration for star polymers.16

To have an estimate of the effect of many-body interactions,
efforts have been paid to calculate effective CG three- and
many-body interactions using nontrivial methods.16−19 Russ et
al. have used nonlinear Poisson−Boltzmann theory to calculate
the effective CG three-body interactions between charged
colloids in a collinear, midplane, and equilateral triangle
geometry.20 They found repulsive CG pair interactions and
attractive CG triplet interactions. In the work of Von Ferber et
al.,16 the authors have calculated by theory and computer
simulations effective CG triplet interactions between star
polymer centers in a good solvent positioned at the corners of
an equilateral triangle. In both theory and simulations, they
observed that the triplet contribution is weakly attractive even
at short distances where the triplet overlap is substantial.
However, while their theory can be extended for any triplet
configuration, the investigation for arbitrary triplet config-
urations is computationally expensive. A similar approach has
been employed in the work of Schapotschnikow and Vlugt18

where the authors performed MD simulations of interacting
gold NCs in a vacuum for different sizes and varying ligand
lengths (C4 to C12). By computing PMFs for pairs and triplets
of NCs, they observed a strong attractive pair interaction due
to the van der Waals contributions; the latter case resulted in a
positive potential-energy correction of 20% and 40% in triplets
consisting of short and long ligands, respectively. Interestingly,
they gave estimates of the free energy for different
configurations, triangles, and chains and found, in agreement
with previous experimental studies, that for long capping
molecules, the linear arrangement is energetically preferred
over the triangle. The three-body contribution to the free
energy has been estimated also in polymer-grafted nano-
particles (NPs) in a polymer matrix.21 To this end, Tang and
Arya21 employed the so-called “blue moon ensemble” method.
In such a method, constrained MD simulations are used for a
test NP interacting with two NPs along a set of reaction
coordinates differing in their orientation with respect to the
NP-dimer axis. The three-body contribution was found to be
repulsive and anisotropic, with the degree of repulsion
increasing with the angular deviation from the NP-dimer
axis. In a recent work, Liepold and coauthors19 proposed a

method to study a pseudoatom model of dodecanethiol-ligated
gold core nanoparticles in a vacuum, arranged on a square
array with periodic boundary conditions to extract both the
effective CG three- and four-body contributions. They found
that the effective CG pair potential of the mean force in such a
configuration is different from the isolated one. In particular,
they observed that the combined three- and four-body
contributions present an attractive well, implying that these
many-body contributions are of comparable magnitude and
opposite sign.
The computational works described above represent

successful examples of approaches that have been used to
obtain information on the effective CG many-body interactions
between nanoparticles. However, accurately determining the
scalar effective CG two- and three-body interactions of ligand-
stabilized nanoparticles remains a formidable task as it requires
the identification of suitable reaction coordinates for effectively
integrating the gradients. In the case of a two-body potential of
mean force, this can be accomplished by measuring the
gradients of the potential of mean force (mean forces) on the
nanoparticles at different distances r and integrating these
forces along the reaction coordinate r. In the case of three-
body potentials of mean force, one is often limited to specific
configurations, such as an equilateral arrangement or a linear
arrangement of the three particles. Furthermore, the functional
dependence of the PMF on the internal coordinates can be
quite complex to be represented by semiempirical functions,
thus limiting their practical use in computer simulations.22

Despite extensive research in the field, full expressions of the
effective CG three- or many-body interactions as a function of
the coordinates of all nanoparticles have not yet been achieved.
In recent years, machine-learning (ML) approaches have

been exploited for the construction of effective CG interaction
potentials as a function of the local structure.23,24 The majority
of these techniques have been developed to speed up ab initio-
based MD simulations, where the energy and forces are not
anymore directly evaluated every step via costly electronic
structure calculations but instead represented by (generally
nonlinear) functions of descriptors of local atomic environ-
ments.
More recently such methods have been successfully

employed to represent effective CG many-body interactions
in a variety of soft-matter systems such as spherical microgel
particles in two dimensions,25 mixtures of colloidal hard
spheres and rods with a nonadsorbing polymer,26,27 as well as
two-body PMFs of ligand-coated rod-like particles and rod-like
microgel particles.27 As demonstrated in these works, ML
techniques are a powerful tool for speeding up simulations that
consider CG many-body effects. It is important to stress that in
the aforementioned systems, the local particle environments
have been correlated to the CG interaction potential, which
was in those cases a well-defined and accessible scalar function.
In 2017, Botu and co-workers28 introduced a ML approach

based on a nonlinear association between atomic config-
urations and quantum-mechanical forces to construct ML force
fields for elemental bulk solids with high chemical accuracy.
CG many-body interactions of molecules, based on the
relationship between atomic positions and mean forces, have
also been developed by John and Csańyi using Gaussian
process regression.29 More recently, Gautham and Patra
proposed a deep learning framework to learn the interactions
between a pair of single-chain grafted spherical nanoparticles
from their molecular dynamics trajectory,30 and Köller et al.
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have proposed a bottom-up coarse-graining method that
combines classical force-matching with deep generative
modeling, which has been shown to produce computationally
efficient CG models that can capture the folding and unfolding
transitions of small proteins.31

Here, we introduce a thermodynamic consistent coarse-
graining approach, where we match the effective CG forces
acting on CG sites with the vectorial mean forces as extracted
from high-resolution simulations. In the case of typical truly
force-based force fields, computing the (potential/free) energy,
required for Monte Carlo simulations, necessarily relies on the
definition of a pathway connecting the different configurations
in phase space (either in time or along a reaction coordinate)
in order to accurately carry out a force integration. This is a
limitation of using a truly force-based force field, wherein, one
cannot predict (potential/free) energies by simply choosing
two arbitrary points in phase space.28 Our proposed ML
strategy overcomes such a limitation as one can directly access
the scalar effective CG many-body PMF without resorting to
force integration or thermodynamic integration. To this end,
we represent the effective CG forces, i.e., gradients of the
potential of mean force or of the free-energy surface, by a
simple linear model in terms of gradients of structural
descriptors, which are scalar functions that are rotationally
invariant. Due to the linearity of our model and the way we
train it, we are able to directly access the analytical scalar CG
many-body potential as a function of all nanoparticle
coordinates without the need to introduce or identify suitable
reaction coordinates to measure the gradients and to
subsequently integrate them to obtain a scalar many-body
potential of mean force. This enables us to construct effective
CG many-body potentials for complex colloidal nanoparticles
within a force-matching fashion. These effective CG many-
body potentials can subsequently be employed in Monte Carlo
simulations. We apply our approach to systems of ligand-
stabilized nanoparticles in solvents of varying quality and
demonstrate that the intricate effective CG potential of the
mean force or free-energy landscape can be accurately
represented by a simple linear ML model. Using the effective
CG potential of mean force in Monte Carlo simulations, we
demonstrate that the phase behavior and structure, as
predicted by the ML model, are consistent with those
exhibited by extensive molecular dynamics simulations of the
fine-grained model.
Hence, the key result of our paper is that we obtain the

effective CG many-body potential, which can directly be used
in Monte Carlo simulations by machine learning the mean
forces in fine-grained simulations without relying on any
thermodynamic integration method. Our simple coarse-
graining ML framework that we present is generic and
extensible to other systems, and we expect that this approach
will enable and accelerate simulation studies on the phase and
self-assembling behavior of complex colloidal systems�by
overcoming spatiotemporal limitations of fine-grained models.

RESULTS AND DISCUSSION
Fine-Grained Model of Ligand-Stabilized Nanopar-

ticles. We start by introducing the high-resolution model of
ligand-stabilized nanoparticles (NPs), which we will refer to as
the “fine-grained” (FG) model. Here, we adopt a detailed
representation of the core−corona NPs based on the
MARTINI force field, suited for molecular dynamics
simulations of macromolecules, such as polymers, copolymers,

surfactant molecules, sugars, and a variety of nanoparticles.32,33

In particular, the ligands, covalently bonded to the cores, are
represented as chains of 5 “C1”-type MARTINI beads,
approximately corresponding to alkyl ligands of 18 carbon
atoms and a headgroup (e.g., thiol or amine). NP cores are
modeled as rigid bodies with a spherical shape of diameter σc =
4.2 nm and consist of nc = 275 core beads depicted in pink in
Figure 1. For an isolated NP, the effective thickness of the

floppy capping layer of ligand λs depends on the solvent quality
and can be estimated from a radial density profile with its
origin in the nanocrystal core. Thus, the fully capped NPs can
be characterized with an incompressible hard core of diameter
σc and an effective partially compressible soft diameter of σNP =
σc + 2λs (see Figure 1). A similar representation has been
recently employed to model ligand-stabilized nanorods.27 The
surface coverage, calculated as the number of ligands per
surface area, is 5 nm−2.13 Hence, each NP is covered by 275
ligands, corresponding to nl = 1375 ligand beads per NP, and
thus, each NP in the FG model consists of nb = nc + nl = 1650
beads in total. To mimic static effects of a solvent in an implicit
fashion, we follow the approach by Fan et al.,34 where pair
interactions between nonbonded beads are modeled through a
modified Lennard-Jones (LJ) potential by the introduction of a
“weight” parameter s that controls the strength of the pair
interactions relative to the original MARTINI value (see
Methods). In particular, we use two values of s here, namely s =
0.1 and s = 0.3, in order to model “good” and “bad” solvent
conditions, respectively. We note that the limiting case of s = 1
recovers the original LJ potential, which mimics an extremely
bad solvent (or vacuum) for the NPs, while a value of s = 0
corresponds to a fully repulsive Weeks−Chandler−Andersen
pair interaction, leading to purely steric interactions between
NPs. The adopted implicit solvent representation may omit
some features on the effective interactions between NPs.

Figure 1. Schematic representation of two nanoparticles with a
hard core of diameter σc and capped with a soft-deformable shell
of covalently anchored ligands with a thickness of approximately λs
such that the effective diameter of each nanoparticle is
approximately σNP = σc + 2λs. The blue spheres correspond to
MARTINI ligand beads, and the pink beads represent the
nanocrystal core. Note that in order to highlight the core−corona
architecture of the particles, only ligand chains on a hemisphere of
the NP cores are shown. In the fine-grained representation
adopted here, a single surface-attached ligand (octadecanethiol)
consists of 5 MARTINI beads of diameter σb, which represent 18
carbon atoms.
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However, Fan et al.34 demonstrated in their study that the
potentials of mean forces obtained from simulations using the
implicit solvent representation compared well with those
obtained from an explicit solvent model, thereby justifying the
implicit solvent approach. In addition, we fixed the temper-
ature T = 300 K of the nanocrystal suspension.
Thermodynamic Consistent Coarse-Grained Model.

Following the description of the FG model, a given
configuration of a collection of N nanoparticles, each
comprising of nb beads, is represented by the positions of n
= nbN beads rn = {r1, ..., rn}, r 3. The probability density of
finding a certain configuration rn in the canonical ensemble
reads pFG(rn) ∝ exp[−βϕ(rn)], where ϕ(rn) denotes the
potential energy of configuration rn in the FG system, β = 1/
kBT the inverse temperature, and kB the Boltzmann constant.
In contrast, the CG representation that we aim at obtaining
here consists only of N sites with positions RN = {R1, ..., RN},
R 3. Hence we are dealing with the dimensionality-
reduction problem: n N3 3 , which projects FG states rn
onto a lower-dimensional representation RN. This conversion
is achieved by mapping RN = M(rn) that defines the CG
coordinates in terms of the FG model configuration. The
mapping function M can be an arbitrarily complex function of
the coordinates of the n beads but is often defined as a simple
linear transformation RN = Mrn with M the matrix of mapping
coefficients. In the case that the mapping coefficients are only
ones and zeroes, the CG coordinate corresponds to the centers
of mass of the respective groups of beads. In this paper, we
have taken the N CG sites to correspond to the centers of mass
of the N nanocrystal cores by mapping the nc core beads of a
NP in the FG model onto the corresponding CG site in the
CG representation.
Obtaining a thermodynamic consistent CG model defined

through the mapping function above demands that the
probability distribution of a CG configuration RN is the same
for the CG model as for the high-resolution FG model.35−37

The probability distribution in the CG space depends on the
effective CG interaction potential, Φ(RN) and reads PCG(RN)
∝ exp[−βΦ(RN)]. Using the probability density of the FG
system and the mapping as described above yields the
following probability density for the CG variables in the FG
system:

[ ]R r r R rp M( ) d ( ( ) ) exp ( )N n n N n
CG (1)

Equating PCG(RN) and pCG(RN), we find that the thermody-
namic consistent coarse-grained potential reads

= +R Rk T Z c( ) log ( )N N
B (2)

where Z(RN) = ∫ drn δ(M(rn) − RN) exp[−βϕ(rn)] and c is an
arbitrary constant.
By definition, the gradient of Φ(RN) determines the effective

CG force on CG site I

=F R
R

R
( )

( )
I

N
N

I (3)

Using eq 2 and the center-of-mass linear mapping from the n
FG beads to the N CG sites as described above, the effective
CG force on CG site I can be related to the mean force on CG
site I in the FG representation

=F R f( )
R

I
N

i I
i

N (4)

where the angular brackets denote an ensemble average where
the centers of mass of the N CG sites are kept fixed

=
[ ]

[ ]
r r R r

r r R r

M

M

d ( ( ) ) exp ( )

d ( ( ) ) exp ( )R

n n N n

n n N n
N

(5)

and where f i denotes the instantaneous force on the ith FG
bead belonging to CG site I. In addition, the summation
denotes a sum over all of the forces on the FG beads
composing the CG site I.
These mean forces can be efficiently sampled from

constrained or restrained simulations of the FG model,38

allowing thus for a direct determination of the effective CG
interaction potential Φ(RN) by integration of the gradients of
the PMF along a predefined reaction coordinate. This is a
typical approach that has been widely followed to compute
effective CG pair interactions of nanoparticles,7,18,39 where
mean forces are collected for a series of pair distances and
subsequently integrated over that internal variable to obtain a
scalar function approximating the underlying effective CG two-
body PMF.
Equations 3 and 4 formally define the effective CG

interaction potential Φ(RN) as a function of a constrained
average over the FG model. However, it is clear that they
simply set a direct relationship between both representation
levels but do not provide a closed mathematical form for the
CG potential Φ(RN) in terms of the CG coordinates that can
be used without the need to resort to simulations of the FG
model in each step. Thus, the practical challenge is to
determine an explicit function Φ(RN) of the CG coordinates
RN that represents the true CG many-body PMF. In this
context, two practical methods have been developed to
approach thermodynamic consistency while retaining tractable
functional forms to serve as the CG potential: variational force-
matching40 and relative entropy minimization.41 The latter
approach and the closely related method known as iterative
Boltzmann inversion (IBI)42 are data-efficient as they simply
require structural sampling (for example, IBI sets a model
where parameters are optimized so as to match distributions of
the FG model); however, they require the CG model to be
resimulated during the iterative training procedure, which can
be extremely costly and even lead to failure in convergence.31

In contrast, force-matching is straightforward to implement but
slightly more data-inefficient, as it requires the vectorial forces
on the CG particles mapped from FG sampling as in eq 4.
Here, we follow such an approach and focus on learning the
mean forces sampled from constrained simulations of the FG
model using linear models that employ vectorial basis
functions describing the local structure in the mapped CG
representation. We decide to follow this “multiscale force-
matching” route as it has already been shown in recent
developments on atomic ML potentials that the quantum-
mechanical vectorial force acting on a particular atom, can be
accurately learned and predicted directly from a configuration
of atoms.28,29

Among the different ML potential variants, those based on
Behler and Parrinello symmetry functions (SFs) have been
widely used for constructing ML potentials for atomistic
systems and more recently, also for colloidal and nanoparticle
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systems26,27,43 (see Descriptors: Symmetry Functions and their
Gradients). The main idea in such an approach is to represent
the total CG (potential or free) energy Φ(RN) of a system as a
sum of per-atom (bead, particle, etc.) contributions ΦK, Φ =
∑K = 1

N ΦK, where each individual contribution to the potential
is in turn a function of a set of Ns SFs; ΦK = ΦK({G1(K), ...,
GN ds

(K)}), which describe the local atomic environments.
Hence, under such a construction, the αth component of the
mean force FI,α acting on CG site I with respect to coordinate
RI,α with α = (x, y, z) can be represented (by applying the
chain rule) as

= =

=

=

= =

F
R R

G K

G K

R( )

( )

I
I K

N
K

I

K

N

J

N
K

J

J

I

,
, 1 ,

1 1 ,

s

(6)

where GJ(K) is the Jth SF in the set of Ns symmetry functions
describing the local environment of CG site K. Note that the
term ∂ΦK/∂GJ(K) is fully determined by the regression
method employed to construct the relationship between the
effective interaction potential and the structure of the system
(ΦK = ΦK({G1(K), ..., GN ds

(K)})). Based on previous
works,25−27 we assume a simple linear relationship

= = G K( )K J
N

J J1
s such that eq 6 gives
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J
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1 1 1 ,

1 1 ,

s

s s

(7)

Strictly speaking, the many-body PMF is defined as a
difference with respect to a reference state, and a numerical
constant c would typically appear (see eq 2). However, when
the reference point is defined as the state RN at infinite dilution
(essentially an ideal gas), such a constant is identical to zero.
This means that the training set should contain enough low-
density configurations where the mean forces vanish in the FG
representation. Due to the construction of the PMF, this
accounts to conceiving each per-particle potential contribution
as a difference with respect to the case when they are isolated.
By simply using the weights ωJ and the analytical derivatives of
SFs ∂GJ(K)/∂RI,α, the mean forces on the CG particles can be
predicted and employed straightforwardly in MD simulations,
where only forces are needed to propagate the system. An
additional advantage of our approach is evident from eq 7,
which establishes a simple and direct way to obtain an effective
many-body CG interaction potential Φ(RN) for a system of N
nanoparticles by simply learning the mean forces (extracted,
for example, from constrained simulations of the FG model).
More specifically, given the linearity of the model, the effective
many-body CG potential is readily obtained:

=
= =

R G K( ) ( )N

K

N

J

N

J J
1 1

s

(8)

We mention here that the chosen fingerprint representation
for describing the components of the particle forces in terms of
derivatives of the SFs conforms with the required invariance

operations, such as permutation, translation, and rotation of
particles. For instance, consider a reference particle I and its
neighboring atoms within a radial cutoff distance. Information
pertaining to neighboring particles of particle I are passed into
the summands of the individual SFs as scalar pairwise distances
or angles; therefore, permutation or rigid translation of
particles does not alter GK(I). In the case of rigid rotations,
both the fingerprint ∇GK(I) and vectorial force components FI
transform in an identical manner governed by the rotation
matrix. Based on the premises above, the first step for a
consistent coarse-graining of a system of N nanoparticles is the
generation of a set of configurations in the FG representation
using simulations of the FG model. Ideally, the configurations
should be diverse enough that a suf f icient number of different
local particle environments are considered. Each of the FG
configurations is then used as the initial state of subsequent
simulations, where the centers of mass of the nanoparticle
cores are frozen in order to efficiently measure the mean forces
in eq 4. The vectorial mean forces are then fitted by simple
linear regression using eq 7 with the feature selection method
proposed in ref 25 (see Fitting Procedure).
CG Two-Body Potential from ML Mean Forces. In

order to test the proposed methodology, we first construct a
simple linear model for the effective CG two-body forces,
which are gradients of the true effective CG two-body PMF
Φ(2). For a direct test of the accuracy of the method, we first
compute the effective CG two-body PMF Φ(2) as a function of
the separation distance RIJ = |RI − RJ| between two NPs using
constraint MD simulations of the FG model.38 For each PMF
calculation, we perform simulations with the NC nanoparticle
cores frozen at 250 different distances RIJ. For each of these
simulations, the two-body mean force Fm(RIJ) is calculated as
the average force between the two nanoparticle cores in the
direction of their center-of-mass distance vector RIJ
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where ∑i∈I f i and ∑j∈J f j denote a sum over all the
instantaneous forces on the FG beads composing the
nanoparticle core I and J, respectively, and =R R R/IJ IJ IJ is
the unit vector connecting the two nanoparticles along the
reaction coordinate RIJ. Angular brackets denote ensemble
averages in the canonical ensemble with constraint separation
distance RIJ. The effective CG PMF Φ(2)(RIJ) is then directly
computed by integration

=R F R R( ) ( ) dIJ
R

IJ IJ
(2)

m
IJ (10)

We report the results of the effective CG two-body PMF
Φ(2)(Rij) as obtained from the constrained MD simulations of
the FG model for a solvent of s = 0.1 and s = 0.3 as filled
symbols in Figure 2, which clearly show that the effective CG
interactions between the nanoparticles are strongly influenced
by the affinity of the ligands with the solvent. More specifically,
when the solvent parameter is s = 0.1 (good solvent
conditions), the interactions are purely repulsive, while when
the solvent has a lower quality in the case of s = 0.3, the
interactions become attractive at short distances. In particular,
for s = 0.3 we find a minimum of −3.3 kBT at RIJ/σc = 1.88. At
shorter distances, the interactions are repulsive in both cases,
signaling the unfavorable compression of ligand chains.

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.3c04162
ACS Nano 2023, 17, 23391−23404

23395

www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.3c04162?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


Interestingly, we notice that while the distribution of the ligand
beads around the cores of isolated NPs in solvents with s = 0.1
and 0.3 is rather similar, the underling effective CG two-body
interactions are significantly different.
Using the same setup of the constrained MD simulations, we

prepare training data sets containing solely the vectorial
components of the mean forces acting on the centers of mass
of the two individual nanoparticle cores I and J for each
separation distance (a total of 750 force components per
particle). We proceeded to learn the mean forces using the
scheme described above (see eq 7 and Fitting Procedure). The
fitting is performed using only gradients of two-body SFs (see
Descriptors: Symmetry Functions and their Gradients). The
number of descriptors is NSF = 46 and NSF = 38 for s = 0.1 and
s = 0.3, respectively. We use a single cutoff value of Rc = 2.5σc.
The ML models constructed with the gradients of the SFs
present a correlation coefficient R2 ≈ 0.999 for the two
solvents and root mean square error (RMSE) values of
14.78kBT/σc and 12.80kBT/σc for the solvents s = 0.1 and 0.3,
respectively. Using the optimized weights (linear coefficients)
of the gradients of the SFs and following eq 8, we obtain the

effective CG two-body ML potentials ΦML2
(2) (RIJ) for 100

different configurations, where we place the CG nanoparticle
cores at varying separation distances RIJ. The resulting
ΦML2

(2) (RIJ) predictions are shown as dashed lines for the two
different solvents in Figure 2. Considering that the generated
particle configurations for evaluating ΦML2

(2) (RIJ) are all different
from those included in the original training data sets, the
agreement with the curves obtained from the constrained MD
simulations highlights the ability of the ML models to
accurately interpolate between structures and smoothly predict
the effective CG two-body potentials solely by learning the
mean forces in FG simulations and not necessarily the scalar
function itself.
CG Many-Body Potential from ML Mean Forces. As

mentioned above, when the effective CG potential of ligand-
stabilized nanoparticles and other colloidal systems is
described, typically two-body approximations are employed.
However, one can expect many-body effects to be relevant for
systems of nanoparticles in which the length scale of the “soft-
deformable” layer of ligands, 2λs, is of the order of the core size
σc of the nanoparticles. More specifically, from simple
geometrical arguments, one could expect three- and higher-
body contributions to the effective CG potential Φ(RN) in eq
2 to be nonvanishing for size ratios q ≡ (2λs)/σc > 0.1444,45

(see Figure 1). A common approach to deal with effective CG
many-body potentials is to accurately determine the effective
CG pair potential and treat the higher-body contributions as
corrections.7,27 In particular, for a given configuration at fixed
RN and in the absence of any external field, the αth component
of the effective CG force on CG site I can be seen as the sum
of an effective CG two-body (2) contribution (treated in a
pairwise fashion) and effective CG three- and higher-body
(3+) contributions, FI,α = FI,α(2)+FI,α(3+). The partitioning of the
effective CG forces into individual two- and higher-order
contributions is a convenient construction that has been
typically adopted to disentangle the role of many-body
interactions (for many technical reasons, however, mainly
three-body interactions).7,18,39 A clear advantage of learning
directly the individual mean forces as in our proposed scheme
is that they already include such information as they are, by
definition, gradients of the true effective CG many-body PMF.
Therefore, in order to demonstrate the generality of our ML

approach in constructing effective CG potentials that
incorporate many-body effects, we extend the method to
larger systems composed of 12 nanoparticles. In this case, any

Figure 2. Coarse-grained two-body potential of mean force (PMF)
Φ(2) for a pair of nanoparticles with core diameter σc = 4.2 nm as a
function of the center-of-mass distance of the two nanoparticle
cores RIJ for two different solvent qualities, s = 0.1 (good solvent)
and 0.3 (bad solvent). Filled symbols correspond to the PMF
values obtained from integrating the mean forces measured in
constrained MD simulations of the FG model, whereas the dashed
lines correspond to the values predicted by the potential
constructed by directly learning the mean forces on the two
particles (ML2).

Figure 3. Parity plot comparing the vectorial components of the many-body mean forces (in kBT/σc) on individual NPs in an implicit solvent
with s = 0.1 (left) and s = 0.3 (right) predicted by the ML models with those calculated from the fine-grained (FG) models in systems
consisting of low- and high-density clusters of 12 particles (see text for details).
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higher-order body interaction (3+) should be captured in the
effective CG ML potential ΦML12 as the to-be learned mean
forces are directly the gradients of the underlying true effective
many-body PMF. For each solvent quality, a training data set is
composed of a collection of configurations of 12 nanoparticles
and the mean vectorial force components associated with each
particle. Such configurations are obtained by first confining the
12 nanoparticles in a spherical domain using a repulsive wall.
Subsequently, we fix the centers of mass of the nanoparticle
cores and remove the walls. By varying the diameter of the
confining sphere, we obtained high- and low-density
configurations. Thus, the data set effectively contains
configurations from very low density states, where barely
two-body interactions are present, all the way to very high-
density states, where the capping layers of different NPs
simultaneously interact. After equilibration is reached in the
MD simulations of the FG model, we select 100 samples at
random and measure the mean forces on each nanoparticle
core using constraint MD simulations. We again use eq 4 to fit
the vectorial mean forces using simple linear regression of the
gradients of the radial and angular SFs (see Descriptors:
Symmetry Functions and their Gradients). The number of
descriptors is NSF = 123 and NSF = 138 for s = 0.1 and s = 0.3,
respectively. The resulting ML models present a correlation
coefficient of R2 ≈ 0.998 and R2 ≈ 0.997, and RMSE values of
29.30 kBT/σc and 21.19 kBT/σc, for a solvent with s = 0.1 and s
= 0.3, respectively. Even with the simple linear model we use,
the predicted effective CG forces obtained from our ML
approach are in good agreement with those directly measured
in MD simulations of the FG model, as shown in the parity
plot in Figure 3 showing the many-body forces predicted by
the ML models and those calculated from the fine-grained
models.

As a natural test of the effective CG many-body potential of
mean force ΦML12 as obtained from eq 8 using the 12 NP
system, we evaluate the effective CG interaction energy
between only two particles ΦML12

(2) (RIJ) as a function of their
separation distance RIJ and compare it against the one obtained
for the strictly two-body system ΦML2

(2) (RIJ) as described above,
which accurately described the effective CG PMF directly
obtained from constrained MD simulations of the FG model as
shown in Figure 2. The results are shown in the right panels of
Figure 4, where we can appreciate the excellent match between
the effective CG potentials for a solvent with s = 0.1 and s =
0.3. We emphasize that no shifting constants have been used to
make the ΦML12

(2) (RIJ) and ΦML2
(2) (RIJ) curves coincide. The

observed agreement demonstrates not only that the RIJ-
dependence of the effective CG two-body interaction potential
is well captured but that since the model is constructed on the
basis of individual particle contributions it is able to accurately
differentiate between local configurations.
The values of the effective CG PMF ΦML12(R12) for different

clusters of 12 particles as obtained by summing the two-body
effective potential ΦML2(RIJ) between pairs of particles and as
predicted by ΦML12(R12) are compared in the left panels of
Figure 4. We can appreciate that, while both descriptions
strongly correlate, the ΦML12(R12) potential tends to over-
estimate the strength of the interactions, as the values are
systematically higher (more positive) than those predicted by
the ΦML2(RIJ) potential.
To better appreciate the effect of many-body effects on the

effective CG potential, we focus on the effective three-body
correction in a solvent with s = 0.3. To this end, we evaluate
the effective CG PMF in systems containing 3 particles in
triangular (T) and linear (L) configurations using the ML CG
potential constructed with only two-body terms ΦML2 and the

Figure 4. Left: Effective CG PMF values of systems composed of 12 NPs in an implicit solvent with s = 0.1 (top-left) and s = 0.3 (bottom-
left) as predicted by the ML models ΦML2(RIJ) and ΦML12(R12) (see the text for details). Right: Effective interaction between two particles as
a function of the interparticle separation distance RIJ as obtained from the ML ΦML2(RIJ) model (filled pentagons) and as obtained from the
ΦML12(RIJ) model (dashed lines) for NPs in solvents with s = 0.1 (top-right) and s = 0.3 (bottom-right).

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.3c04162
ACS Nano 2023, 17, 23391−23404

23397

https://pubs.acs.org/doi/10.1021/acsnano.3c04162?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c04162?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c04162?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsnano.3c04162?fig=fig4&ref=pdf
www.acsnano.org?ref=pdf
https://doi.org/10.1021/acsnano.3c04162?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


one containing the many-body corrections ΦML12 from the ML
fits of the mean forces. To generate the configurations, we fix
two particles at a separation distance RJK/σc = 1.88 and place
the third particle I at different positions hI relative to the two
fixed particles (see the pictorial sketches in Figure 5). The
resulting curves are shown in Figure 5. As observed, the curves
of ΦML2 and ΦML12 naturally take the value of Φ(2)(1.88σc) ≈
−3.3 kBT at large separation distances, as the effect of the third
particle becomes negligible. For the L configurations, we notice
that the ΦML2 and ΦML12 curves exactly overlap at all hI
distances. This is because particles I and K do not effectively
interact at any hI, thus ruling out any three-body interactions.
However, one can immediately appreciate that, in the T
configurations, the three-body contribution is nonvanishing as
the ΦML2 and ΦML12 curves slightly differ from each other. In
particular, we find that the ML effective CG PMF based on
two-body contributions ΦML2 overestimates the effective CG
attractive (cohesive) interactions, which is in agreement with
the results above. Furthermore, the steric repulsion between a
triplet of particles at short distances becomes slightly stronger
if the three-body correction is considered. This positive
(repulsive) contribution to the CG PMF incorporated in
Φ(3+) appears to be common to systems exhibiting an effective
CG two-body attractive interaction (e.g., colloid−polymer
mixtures26). Finally, we also show in Figure 5 the effective CG
PMF for a system of four particles as illustrated in the inset SQ.
As expected for such a configuration, the effective CG many-
body effects are negligible, but it clearly shows that the model
is able to reproduce the correct energies. This also holds for
clusters with more particles as we have discussed above.
Testing the ML Models: Phase Behavior and

Structure. To investigate the effect of nonvanishing many-
body corrections on the effective CG many-body PMF, we
focus on the phase behavior of NPs in two different solvents.
More precisely, we compute the equation of state (EOS) of 3D
bulk systems consisting of NPs in both solvents by performing
isothermal−isobaric (NPT) MC simulations using the effective
CG two-body ΦML2 and the effective CG many-body ΦML12
potentials of mean force. We perform simulations on a system
of N = 500 nanoparticles and obtain the equilibrium states by
either compression from the low-density fluid phase or
expansion from a high-density face-centered-cubic (FCC)

phase. In Figure 6, we plot the equations of state, reduced
pressure Pσc

3/kBT as a function of reduced density ρσc
3, for both

solvents. Interestingly, in a good solvent (s = 0.1), both the
effective CG ΦML2 and ΦML12 potentials yield nearly identical
curves. We notice that under such solvent conditions, the
system exhibits a low-density fluid phase for ρσc

3 < 0.10 that
eventually undergoes a first-order phase transition to a FCC
crystal with a density ρσc

3 ≈ 0.11. The reasonable match
between the two effective CG potentials, which was also
observed in the parity plot of Figure 4 leads us to conclude
that, for s = 0.1, the effective CG two-body approximation is
indeed reasonable and that the many-body corrections do not
alter the phase behavior of the system. For a solvent quality s =
0.3, we observe a FCC crystal at a density of ρσc

3 ≈ 0.21 using
both the effective CG ΦML2 and ΦML12 potentials. This is due
to the bad solvent conditions, which induce a strong effective
attraction between the nanoparticles. Indeed, even if we start
the simulations from very low-density configurations at very
low pressures, we observe the formation of clusters that
eventually nucleate into an FCC phase. We have attempted to
obtain the density of the coexisting fluid phase by direct-
coexistence simulations, where we start with an equilibrated
FCC crystal slab in the center of an elongated box in contact

Figure 5. Left: The effective CG potential of mean force Φ as a function of position hI of particle I relative to the position of the remaining
fixed particles as shown in the pictorial sketches. Values are shown for a triplet of particles in bad solvent (s = 0.3) ordered in triangular (T)
and linear (L) configurations as well as for a quartet (SQ) (see right bottom panel). Filled symbols correspond to the potential values
obtained from the two-body approximation (ΦML2), whereas the dashed lines represent those obtained from the ML potential ΦML12
constructed from the linear fit of the mean forces in systems containing clusters of 12 particles. Right: Difference between the effective CG
many- and two-body PMFs in the considered configurations, Φ(3+). Note that curves of Φ on the left are obtained by keeping particles J, K,
and fixed at a separation distance =R RJK K = 1.88σc.

Figure 6. Equation of state, reduced pressure Pσc
3/kBT as a function

of reduced density ρσc
3, for a good solvent s = 0.1 and a bad solvent

s = 0.3 as obtained by MC simulations using the effective CG two-
body ΦML2 potential (filled symbols) and those obtained using the
effective CG many-body ΦML12 potential (dashed lines).
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with a vacuum; however, we do not detect any particles leaving
the crystal to migrate to the gas phase in our NVT simulations.
The total effective energy for a triplet of particles in a bad
solvent (Figure 5) indicates that the linear configuration is
energetically more favorable than the triangular one. In systems
of NPs interacting with a short-range square-well potential
grafted by up to 12 fully flexible chains consisting of up to 14
hard beads46 as well as in moderately polymer-grafted NPs in a
polymer melt,47 this type of effective interaction may lead to
the formation of anisotropic structures like stripes and disks.
Nevertheless, in our simulations with N = 500 particles in bad
solvent, the small clusters rapidly aggregate into the
equilibrium 3D FCC phase, which indicates that the effective
two-body interactions outweigh the repulsive contributions.
We therefore conclude that the system exhibits a very broad
phase coexistence between an infinitely dilute gas phase and an
FCC phase with a coexisting density ρσc

3 ≈ 0.21 for a solvent
quality s = 0.3. Additionally, we note that there are small
deviations in the equations of state as obtained by using the
effective CG ΦML2 and ΦML12 potentials, signaling the
importance of the many-body effects on the effective CG
potential. More specifically, we observe that the pressure is
underestimated using the effective CG ΦML2 in comparison
with the ΦML12 potential at high densities, which is in
agreement with the parity plot of Figure 4, showing that the
repulsion is underestimated by the effective CG ΦML2 PMF.
Finally, to further validate the effective CG many-body

potentials, we compute the radial distribution functions g(RIJ)
as a function of the distance RIJ between the nanoparticle cores
in the equilibrium phases of the NPs using MC simulations
and compare them against results obtained from extensive
NVT unconstrained MD simulations of the FG model. In
particular, we focus on a system with solvent quality s = 0.1 as
it exhibits a low-density fluid phase and a sof t FCC crystal that,
in our simulations, can be continuously compressed from ρσc

3

≈ 0.11 all the way to ρσc
3 ≈ 0.18 preserving the same symmetry

but just changing the lattice constant. The g(RIJ)’s as measured

from MC simulations using the machine-learned effective CG
many-body potentials ΦML2 and ΦML12 along with the g(RIJ)’s
obtained from MD simulations of the FG model are shown in
Figure 7 for varying densities ρσc

3 = 0.07, 0.12, and 0.18. We
clearly observe that the structures of the phases obtained from
both CG models; i.e., the effective CG ΦML2 and ΦML12
potentials of mean force match very accurately those of the
FG model. These results evidence the ability of the proposed
ML method in constructing the effective CG many-body
potentials by learning solely the mean forces sampled in the
FG model.

CONCLUSIONS
In summary, we have introduced a machine-learning approach
to construct effective coarse-grained many-body potentials for
complex ligand-stabilized nanoparticles by representing the
mean forces sampled from constrained simulations of a fine-
grained model in terms of gradients of structural descriptors.
For the specific model of NPs that we have studied in an
implicit solvent of varying quality, the effective coarse-grained
two-body contribution Φ(2) to the PMF in the presence of a
bad solvent is a nonmonotonic function of the separation
distance between two particles and exhibits a deep minimum,
corresponding to an effective coarse-grained attractive
interaction. In contrast, in a good solvent, the effective
coarse-grained two-body PMF is fully repulsive. As judged
from the results of MC simulations using the effective coarse-
grained two-body potential of mean force ΦML2 and the
effective many-body potential of mean force ΦML12, we find
that both CG models reproduce accurately the phase behavior
and the structure of the fluid and crystal phases of the FG
model as they match the equation of state and the radial
distribution functions at varying thermodynamic state points.
In summary, our simulations indicate that for nanoparticles
stabilized by ligands with a commonly used chain length, the
impact of many-body effects on phase behavior is minimal,

Figure 7. Radial distribution functions g(RIJ) as a function of the distance RIJ between the nanoparticle cores for a solvent with s = 0.1 as
obtained from MD simulations of the FG model (filled circles) and from MC simulations using the effective CG two-body ΦML2 potential
(dashed line) and many-body ΦML12 potential (dotted line) at density ρσc

3: (a) 0.07, (b) 0.12, and (c) 0.18. The corresponding typical
configurations obtained from MD simulations of the FG and from MC simulations of the CG model are shown in the panels below.
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except for high-density crystal phases. This is a significant and
nontrivial finding.
The multiscale methodology presented in this work

constitutes a general bottom-up coarse-graining strategy
where the mean forces acting on CG sites, which are extracted
from reference FG simulations, are represented using a simple
linear model in terms of gradients of Behler and Parrinello
symmetry functions. The linearity of the model allows one to
define a simple function representing scalar effective CG many-
body potentials of mean force as a function of all CG-site
coordinates. This allows us to bypass the prior identification of
suitable reaction coordinates (collective variables) to measure
gradients and subsequently integrate them to obtain a scalar
many-body potential of mean force as is required in the
methodology of ref 22 and in our previous work in ref 27.
Finally, we stress that although we have illustrated the

method by applying it to an FG model of ligand-stabilized
NPs, the framework is generic and can be extended to other
relevant systems. In Figure 8 and in the Supporting
Information, we present an application to a system of
colloid−polymer mixtures, where coarse-grained many-body
interactions are pronounced. We employ the so-called pseudo
Asakura Oosawa model, where the colloids are represented by
hard spheres, the pseudo colloid−polymer interactions are also

treated by a pseudo hard-sphere-like potential, and the
polymers are ideal. The diameter σp of the polymer-coils is
set equal to the diameter of the colloids σc. We show in Figure
8 and in the Supporting Information that a coarse-grained
description of such a system based purely on effective pairwise
depletion interactions, ML2, leads to strong deviations from
the FG model. In contrast, the FG model can be accurately
represented by the effective CG potential, ML108, that
accounts for many-body contributions.
The current method, which relies on descriptors of local

environments that are spherically symmetric, has demonstrated
promising results for systems with isotropic interactions. In
principle, our method could be extended to systems in which
the interactions are anisotropic, such as faceted nanocrystal
cores or particles with inhomogeneous distributions of ligands
on their surfaces. However, this would require descriptors that
can encode information about the orientational dependence of
the anisotropic interactions, which we will explore in future
work. Our simple yet accurate force-matching coarse-graining
framework will enable accurate and fast simulations of the
effective many-body systems to characterize, understand, and
predict the phase behavior and structure of relevant soft-matter
systems such as suspensions of charged colloids or microgel
particles.

Figure 8. Colloid-colloid pair correlation function measured in bulk systems at colloid packing fraction ηc = 0.45 and (a) reservoir polymer
packing fraction ηp

r = 0.5 and (b) ηp
r = 2.0. Filled circles correspond to the distributions measured in the FG model, while the dashed pink

and dotted blue lines represent the results obtained with the CG ML2 and ML108 potentials, respectively. (c) Typical configurations of the
simulated systems. See Supporting Information for more details.
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METHODS
Model and Simulation Details. Implicit Solvent. To mimic the

effect of a solvent in an implicit fashion, we follow the approach by
Fan et al.,34 where the pair interactions between nonbonded beads in
the nanoparticles are modeled through a modified LJ potential:
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is the standard LJ potential, σb = 0.47 nm and ϵ = 0.8365 kcal mol−1

are the length- and energy-scale parameters of the pair interactions,
respectively, r is the separation distance between pairs of beads, and rc
= 1.2 nm is the cutoff radius of the interaction. The parameter s
defines the strength of the attractive LJ interactions relative to the
original MARTINI value. In order to mimic good- and poor-solvent
conditions for the ligand chains, we use two values of s, namely, s =
0.1 and s = 0.3. Note that the limiting case of s = 1 recovers the
original LJ potential and mimics an extremely bad solvent (or
vacuum) for the NPs. Intramolecular interactions within the chains,
acting on the centers of bonded beads, are described via a harmonic
bond-stretching potential:

=b K b b( )
1
2

( )bond
b 0

2
(13)

where Kb = 149.3787 kcal mol−1 nm−2 is the bond force constant, and
b and b0 = 0.47 nm the instantaneous and equilibrium bond distances,
respectively. Similarly, the angle-bending between three connected
beads is modeled using a harmonic potential,

= K( )
1
2

(cos cos )angle
0

2
(14)

where Kθ = 2.9876 kcal mol−1 is the angle force constant, and θ and θ0
= 180° are the instantaneous and equilibrium angle-bending values,
respectively. Interactions between NC cores are neglected, as these
forces, for small NCs, are typically much weaker than the ligand−
ligand interactions.48,49

Molecular Dynamics Simulations of the FG Model. All molecular
dynamics (MD) simulations on systems with different number of NPs
are performed using the software package LAMMPS.50 The
simulation box is typically a cubic cell of volume V where periodic
boundary conditions are applied in all directions. Prior to MD
simulations, overlaps between ligand beads in the initial config-
urations are removed by energy minimization using the steepest-
descent algorithm. Simulations are then performed in the canonical
(NVT) ensemble at a temperature T = 300 K, which is kept constant
via a Nose−́Hoover thermostat. The equations of motion are
integrated with a typical MARTINI time step of δt = 20 fs, where
the NP cores can be either “diffusing” as rigid bodies or have their
centers of mass spatially constrained within the simulation box
volume. Typically, constraint MD simulations for computing the
mean forces are run for up to 5 × 107 steps, where statistics are
collected over the last 3 × 106 steps.

For validation of the CG potentials obtained by direct fitting of the
mean forces, we perform extra MD simulations of the FG model at
different densities by using N = 108 particles. These simulations are
run for up to 1 × 108 steps.
Thermodynamic Consistent Coarse-Graining. The effective

coarse-grained potential of mean force Φ(RN) described in the main
text can alternatively be formally conceived in the context of the
ef fective one-component Hamiltonian formalism.45,51 To demonstrate
this, we define the total Hamiltonian as a sum of interaction
Hamiltonians describing the interactions between the N nanoparticle
cores R( )N

cc , the interactions between the N nanoparticle cores and

the nl ligand beads R r( , )N n
cl

l , and the interactions between the nl
ligand beads r( )n

ll
l

= + +R r R R r r( , ) ( ) ( , ) ( )N n N N n n
cc cl ll

l l l (15)

where RN denote the coordinates of the nanoparticle cores, which are
treated as rigid bodies consisting of nc beads, and rnl the coordinates of
the ligand beads. In the canonical ensemble (N, nl, V, T), the partition
function, after carrying out the trivial integrations over the momenta
reads
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where Λα denotes the thermal de Broglie wavelength of species α. By
integrating out the degrees of freedom of the ligand beads, we obtain
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where we have mapped the fine-grained system of N nanoparticle
cores and nl ligand beads described by an interaction Hamiltonian

R r( , )N nl onto an effective coarse-grained system of nanoparticles
that is described by an effective one-component Hamiltonian

= +R R RF( ) ( ) ( )N
cc

N N
eff . Here, we have defined the Helm-

holtz free energy of the ligand beads in the external field of a fixed
configuration of nanoparticle cores at coordinates RN
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From these definitions, it follows that in the case that an observable
R( )N only depends on the coordinates of the centers of mass of the

nanoparticles RN, the ensemble average R( )N is identical in the
full system and in the effective one-component system
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Hence, the mean force acting on the center of mass of nanoparticle I
at a fixed configuration RN can be computed as
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where the first term R R( )/N
cc I is the force due to the bare

interactions between the nanoparticle cores, and the last term is the
force of the ligand beads on nanoparticle I averaged over all possible
configurations of the ligand beads.
Fitting Procedure. Training Data Set. As detailed in the main

text, two different data sets are built: (i) one containing information
about a pair of particles at different separation distances and (ii) one
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for configurations of 12 particles at varying density. In (i), the mean
forces acting on the center of mass of the nanoparticle cores are
collected over a total of 250 separation distances. Hence, a total of 2 ×
3 × 250 examples are used to construct the model. In case (ii), the
mean forces on all the particles are measured in 100 constraint MD
simulations, resulting in a total number of 12 × 3 × 100 examples.
Descriptors: Symmetry Functions and their Gradients. To

describe the local environment of a particle, we employ the SFs
proposed by Behler and Parrinello43 to represent high-dimensional
potential-energy surfaces based on neural networks. More precisely, to
characterize the local environment of a particle within a cutoff
distance Rc we employ the particle-centered spherically symmetric
radial SFs, defined as

=G I e f R( ) ( )
J

R R
IJ

(2) ( )
c

IJ s
2

(21)

which is a sum of Gaussians, where the parameters μ and Rs control
the width and position of the Gaussians with respect to particle I,
respectively, and where fc(RIJ) is a cutoff function which decays
monotonically and smoothly goes to 0 in both value and slope at the
cutoff distance Rc
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The second type of SF is the angular SF, G(3), which contains
information on the angular correlations and is defined as
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where the indices J and K run over all the neighbors of particle I, and
ξ and λ are two parameters that determine the shape of the function.
The parameter λ can have values of +1 or −1 and determines the
angle θIJK at which the angular part of the function has its maximum.
The parameters ξ and μa control the angular and radial resolution,
respectively.

The gradients of the radial SF, which we directly use to represent
the vectorial forces, can be straightforwardly calculated by the
repeated use of the chain rule for derivation. The gradient does take a
different form if the gradient is taken with respect to the particle for
which the SF is computed ∇IG(2)(I) or with respect to a different
neighboring particle ∇JG(2)(I), where J ≠ I. These analytical and
continuous gradients are given by
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and
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Note that we use the convention that RIJ = RI − RJ and RIJ = |RIJ|. For
the angular SF, computation of the gradient is still a straightforward
application of the chain rule, although it is more involved than for the
radial SF. In this case, the gradients read
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and
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where we have used the following auxiliary functions as introduced
in ref 52:
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Selection of Descriptors. The feature selection method employed
in this work is described in detail in refs 25 and 26. Here, we present
only a brief summary. We will use the acronym SFs to refer to the
symmetry functions and their gradients interchangeably. The first step
of the approach is to create a large but manageable pool of candidate
descriptors (gradients of SFs). Such a procedure is accomplished by
calculating, for every particle in the data set, M SFs with varying
parameter values, which in turn are selected following simple heuristic
rules with the goal of capturing most of the many-body correlations
within a certain cutoff radius. In all the cases presented in this work,
we have used a cutoff value of Rc = 2.5σc. The parameters for the
radial SFs employed for the generation of the initial pool for
constructing the models of systems containing two nanoparticles for
solvents s = 0.1, 0.3 are μ/σc

−2={0.00001, 0.0001, 0.001, 1.715, 3.429,
5.144, 6.858, 8.572, 10.286, 12.000, 13.715, 15.429, 17.143, 18.857,
20.572, 22.286, 24.000, 26.000, 28.000, 30.000, 32.000, 34.0000} and
Rs/σc = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3,
1.4}. The ones for the radial and angular SFs used in the models for
systems of 12 nanoparticles in both solvents are μ/σc

−2 = {0.001,
1.715, 3.429, 5.144, 6.858, 8.572, 10.286, 12.000, 13.715, 15.429}, Rs/
σc = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, μa/σc

−2 = {0.0001,
0.001, 0.01, 0.1, 1.0, 2.0, 4.0, 8.0}, λ = {1, − 1}, and ξ = {1.0, 4.0, 8.0,
12.0}.

In a second step, an optimal subset of NSF < M SFs is selected from
the pool in a stepwise fashion. The optimal subset should capture the
most relevant features of the local environment of a particle, as it is
subsequently used as the basis of a regression scheme to approximate
the mean force of a particle. The first selected SF corresponds to the
one with the largest correlation with the target function as quantified
by the square of the Pearson correlation coefficient, defined as

=c
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I k k I
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where = =I( , )k J
N G J

R1
( )k

I ,
represents the sum of the derivatives of

the kth SF for all N particles with respect to particle I, as used in the
definition of the model in eq 7. FI,α denotes the target mean force
component on particle I. k and F̅ correspond to arithmetic means
over all the configurations in the data set, and σSD(Ψk) and σSD(F) to
their standard deviations. Note that summation over vectorial
components is implied above. The second SF is then selected to be
the one that maximizes the increase in the linear correlation between
the set of selected SFs and the target data as determined by the
coefficient of multiple correlations, whose square is given by

= c R cR T2 1 (33)

where cT = (c1, c2, ...) is the vector whose ith component is given by
the Pearson correlation coefficient, ci, between the ith SF (gradient)
and the target data, and R is the correlation matrix of the current set
of SFs with elements Rij representing the Pearson correlation function
between the ith and jth SF. In the case of only one SF, R2 reduces to
ci2. R2 can also be computed as the fraction of variance that is
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explained by a linear fit (including an intercept) of the target function
in terms of the SFs in the set. The latter method of computing R2 is
slightly more expensive but is numerically more stable.25 By
maximizing the increase in the linear correlation with the target
variable, we guarantee that only SFs that add relevant information are
selected, while SFs that poorly correlate with the particle forces or free
energy are avoided along with highly correlated SFs which add
redundant information.25 This process is repeated iteratively, and
further SFs are selected until R2 stops increasing appreciably. This
indicates that the remaining SFs in the pool add negligible (irrelevant)
information to the model. Such a procedure constitutes a simple rule
to optimize the number of selected SFs, which are then used to
approximate the target function via simple linear regression.
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