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Accurate drift-invariant single-molecule force
calibration using the Hadamard variance
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ABSTRACT Single-molecule force spectroscopy (SMFS) techniques play a pivotal role in unraveling the mechanics and
conformational transitions of biological macromolecules under external forces. Among these techniques, multiplexed magnetic
tweezers (MT) are particularly well suited to probe very small forces, % 1 pN, critical for studying noncovalent interactions and
regulatory conformational changes at the single-molecule level. However, to apply and measure such small forces, a reliable
and accurate force-calibration procedure is crucial. Here, we introduce a new approach to calibrate MT based on thermal motion
using the Hadamard variance (HV). To test our method, we perform bead-tether Brownian dynamics simulations that mimic our
experimental system and compare the performance of the HV method against two established techniques: power spectral den-
sity (PSD) and Allan variance (AV) analyses. Our analysis includes an assessment of each method’s ability to mitigate common
sources of additive noise, such as white and pink noise, as well as drift, which often complicate experimental data analysis. We
find that the HV method exhibits overall similar or higher precision and accuracy, yielding lower force estimation errors across a
wide range of signal-to-noise ratios (SNRs) and drift speeds compared with the PSD and AV methods. Notably, the HV method
remains robust against drift, maintaining consistent uncertainty levels across the entire studied SNR and drift speed spectrum.
We also explore the HV method using experimental MT data, where we find overall smaller force estimation errors compared
with PSD and AV approaches. Overall, the HV method offers a robust method for achieving sub-pN resolution and precision
in multiplexed MT measurements. Its potential extends to other SMFS techniques, presenting exciting opportunities for
advancing our understanding of mechanosensitivity and force generation in biological systems. To make our methods widely
accessible to the research community, we provide a well-documented Python implementation of the HV method as an extension
to the Tweezepy package.
SIGNIFICANCE Single-molecule force spectroscopy techniques are vital for studying the mechanics and conformations
of biomacromolecules under external forces. Multiplexed magnetic tweezers (MT) excel in applying forces % 1 pN, which
are critical for examining noncovalent interactions and regulatory changes at the single-molecule level. Precise and reliable
force calibration is essential for thesemeasurements. In this study, we present a new force-calibration method for MT using
Hadamard variance (HV) to analyze the thermal motion of DNA-tethered beads. The HV method shows similar or higher
precision and accuracy to established techniques such as power spectral density and Allan variance. Most significantly, it
is drift-invariant, maintaining consistent performance across varying experimental conditions. This robustness against drift
ensures reliable force application and measurements at sub-pN resolution.
INTRODUCTION

Single-molecule force spectroscopy (SMFS) techniques
have emerged as powerful tools to investigate the behavior
of biological macromolecules under forces and torques
(1–6). SMFS measurements have provided comprehensive
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insights into various biological processes, such as, e.g., the
function of molecular motors and DNA and protein me-
chanics (6–12), interaction potentials between receptor-
ligand pairs or DNA and different binding agents (13–15),
as well as protein folding pathways and associated dynamics
(16–18). For many biologically relevant questions, it is crit-
ical to resolve low forces in the sub-pN range (% 1 pN), e.g.,
to reveal specific protein interactions or small conforma-
tional changes involved in regulatory processes including
cell motility, development, and differentiation. Here, MT
offer several important advantages compared with other
ety.
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FIGURE 1 Schematic of a magnetic tweezers

setup. (A) The DNAwith an extension Lext is tethered
between a substrate and a superparamagnetic bead.

External magnets exert a magnetic force (Fmag) on

the bead. Drag g and trap stiffness k act on the

bead parallel and vertical to the substrate in all three

dimensions x, y, and z (for simplicity, only high-

lighted in the x direction). (B) Field of view of our

MT setup. Red squares highlight 78 beads that

were tracked over time. The inset shows a zoom of

one bead’s diffraction ring pattern used for tracking.

Scale bar, 100 mm. (C) Example (simulated) time

traces of transverse fluctuations for different mag-

netic forces (left) and trap energy landscapes (right).

The histograms on the right are computed from the

time traces on the left.

Drift-invariant force calibration
established SMFS techniques such as optical tweezers and
atomic force microscopy (5,19–21): MT provide access to
a large force range of � 0:01 � 100 pN with high stability
and accuracy and high resolution in particular at low forces
and in a multiplexed format to measure hundreds of mole-
cules at the same time (1,6,12,22–26). The latter is essential
to obtain sufficient statistics from a single experiment, to
observe rare events and identify molecular subpopulations,
and to test diverse conditions and stimuli. Furthermore,
MT intrinsically measure at constant force without the
need for feedback control (12) and do not suffer from heat
generation or photodamage (27), which permits stable mea-
surements on timescales ranging from submilliseconds to
weeks (22,28). Notably, various magnet geometries have
been used to not only apply constant forces, but also to con-
trol and monitor torque and twist at the molecular level
(29–31).

In MT, molecules of interest are tethered between a
functionalized surface and small superparamagnetic beads
(Fig. 1 A). External magnets exert controlled forces and
torques on the beads and subsequently to the molecule of in-
terest. To achieve highly parallel or multiplexed measure-
ments, cameras with tens of megapixels can be used to
image large fields of view (R 0:5 mm2). Hence, tracking
of tens to hundreds of tethered beads at the same time be-
comes possible (Fig. 1 B), while applying constant forces
across the field of view (22). A first key step in SMFS mea-
surement is to perform an accurate force calibration to
obtain exact and reproducible results. The most common
approach for calibrating the forces is to make use of the
bead’s thermal motion (32–34). This method makes use of
the equipartition theorem, which links the variance of ther-
mal motion to the trap stiffness of the system and the ther-
mal energy kBT, where kB is the Boltzmann constant and T
the temperature. Since the temperature of the system is
easy to measure, calibration using thermal motion tends to
be more accurate and reliable than alternative methods
based on, e.g., bead sedimentation dynamics (27,35,36) or
calculations of the magnetic field and exerted force (37).

In the thermal motion-based force-calibration procedure,
the bead is trapped in a harmonic potential originating from
the combination of forces from the external magnetic field
and from the elastic response of the molecular tether (34).
One calibrates the forces by analyzing the thermal trajectory
of the bead (32). Typically, long (> 1 mm in contour length)
double-stranded DNA (dsDNA) molecules are used for this
force-calibration method, due to their well-known proper-
ties and force-response characteristics. In particular, at low
forces the force-extension relation for dsDNA is well
described by the worm-like chain (WLC) model (38–40).
In addition, DNA undergoes a sharp overstretching transi-
tion at � 65 pN resulting in a structural transition and cor-
responding abrupt length increase (41). Moreover, long
dsDNA molecules make it relatively easy to accurately
determine the thermal motion of the attached magnetic
beads for several reasons (42–44). First, tracking errors
(typically 1 � 2 nm) matter less for long tethers (45–47).
Second, long DNA tethers result in larger characteristic
times and hence slower thermal bead motion, which reduces
the impact of finite camera exposure times (34,42,48,49).
Third, off-center attachment (50) of a long DNA strand to
the magnetic bead is less of an issue than for short tethers,
since the extension of the tether is much larger than the
bead radius.

At long observation times (t[ 10� 4 s), hydrodynamic
effects between the bead and its aqueous environment can
be neglected (51) and the bead motion is well described
by the overdamped Langevin equation, which contains
Biophysical Journal 123, 3964–3976, November 19, 2024 3965
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FIGURE 2 Overview of processes affecting time

traces of tracked beads in MT. (A) Classification of

the spatial and temporal alterations of the intrinsic

thermal motion. Downsampling acts as a low-pass

filter introducing blurring and aliasing and is denoted

as ‘‘�’’, as it effectively acts as a convolution of

the signal. Additive noise contributions denoted

as ‘‘þ’’. We differentiate between drift (linear and

nonlinear) and colored noises (white, pink, and Brow-

nian noise). (B) Example traces for downsampling and

different additive noise types. The unaltered (ideal)

thermal motion bead trace for a sampling frequency

of 10 kHz is shown in gray in all panels; the same trace

downsampled to 72 Hz is shown in green. White, pink,

and Brownian noise, and linear and nonlinear drift

contaminated traces for signal-to-noise ratios (SNRs)

of � 2:4, � 1:6, 0.6, � 9:7, and 0.9 dB, respectively,

are shown in the colors indicated in the legend. All

traces were obtained via Brownian dynamics simula-

tions (materials and methods) assuming a force of

2.5 pN and a 1 mm bead. The individual SNRs were

chosen for visualization purposes.
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two parameters, the drag coefficient g of the bead and the
harmonic trap stiffness k (42). Using the equipartition theo-
rem, the trap stiffness k, which in turn is related to the force,
can be determined from the transverse thermal motion of the
tethered magnetic bead (33,34). Specifically, for a magnetic
bead confined to a harmonic trap in the MT, the equiparti-
tion theorem gives the real-space variance (RSV) by.

s2
i ¼ kBT

ki
; (1)

where i˛ fx;y;zg, kB is the Boltzmann constant, and T is the
temperature. Here, k is the spring constant of the trap along
i

the ith direction. Hence, stiff and soft traps result in small
and large variances of the bead trajectory, respectively
(Fig. 1 C). Conversely, if we measure the bead displacement
at a known temperature T, we can calculate the trap stiffness
ki for each direction.

In particular, the variance of bead motion in the transverse
direction parallel to the magnetic field is directly related to
the applied force Fz via (34).

Fz ¼ kkCzD ¼ kBTCzD
s2
k

; (2)

where CzD is the mean extension of the molecule in the z di-
rection. Note that, in principle, we could make use of the

fluctuations that are perpendicular to both the Fz and the
magnetic field, but in that case the measured extension of
the molecule must be corrected to include rotation of the
bead in the magnetic field (42).
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While conceptually straightforward, the RSV approach
has two key limitations: first, due to the finite shutter time
in camera-based tracking, the acquired signal is distorted
due to motion blurring and temporal aliasing (termed down-
sampling throughout this work, Fig. 2 A), which act as a
low-pass filter and lead to underestimation of the true vari-
ance (42,48,49). Hence, spatiotemporal information is lost if
the sampling frequency is too low, which leads to an over-
estimation of the applied forces (Fig. 2 B). Errors due to
the finite shutter time are particularly problematic for short
tethers and high forces since the characteristic time of the
intrinsic fluctuations decreases with increasing force and
decreasing tether length. A number of approaches have
been put forward to overcome the limitations due to finite
shutter time, including high-frequency tracking (43,47),
shuttered illumination (44,48), and the application of spec-
tral corrections in the analysis (42).

The second key limitation of the RSVapproach is that it is
susceptible to any kind of additive noise (52), which affects
MT measurements by introducing spatial alterations and
bias to fitting algorithms (53) (Fig. 2 B). Note that we
explicitly distinguish here between the intrinsic thermal
Brownian bead motion (sometimes also referred to as
‘‘noise’’ in the literature), which is our ‘‘signal’’ in the
context of force calibration, and additional detrimental
spatial alterations, which we call ‘‘additive noises’’
(Fig. 2 A). Among the types of additive noises, colored
noises, which follow a power-law spectrum, are well-known
sources for spatial distortions. There are three common
types of colored noise that can, in particular, cause
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erroneous force calibration of SMFS systems (Fig. 2 B):
first, the use of electric devices such as cameras in MT set-
tings for data acquisition and computer-based signal pro-
cessing generates white noise (54,55). White noise is an
additive type of colored noise resulting in broadening of
the bead trajectories and thereby underestimation of the
force. Second, resistance fluctuations in the electronic com-
ponents (camera, motors, etc.) (54) and structural relaxa-
tions of the DNA (56,57) (overstretching, solvent effects,
etc.) can induce pink noise. Pink noise is also known as
flicker noise and leads to random spatial shifts of the bead
trajectory. Third, similar spatial shifts can also emerge
from unaccounted physical processes (light-matter interac-
tions, rotational bead motion, etc.) that generate Brownian
noise (58) in addition to the thermal bead motion one wants
to extract and analyze. Like white and pink noise, Brownian
noise broadens the bead trajectories spatially and causes
force underestimation.

To address the challenges associated with downsampling
and colored noises, a number of extensions of Eq. 1 have
been introduced to obtain a better estimation of kk. These
calibration methods include 1) the power spectral density
(PSD) and iterative corrections of the camera effects (42),
2) the PSD with additional correction factors for tracking er-
rors and colored noises (49), and 3) the Allan variance (AV)
(49) method, which accounts for frequency instabilities.
However, none of these calibration methods can handle
drift, which is also a type of additive noise, and a well-
known issue in SMFS experiments, in addition to downsam-
pling and colored noises. While mechanical drift is
commonly corrected for in MT by tracking reference beads
(52), residual, uncorrected drift still remains in the data (46)
and linear drift can occur over any time interval of the total
measurement time (supporting material, section S1,
Fig. S1). In particular in multiplexed MT with a large field
of view, drift across the field of view can be an additional
limiting issue (Fig. 2 B). The Hadamard variance (HV)
(59) has been shown to offer significant advantages in
handling drift in metrology contexts, as it uses a second-or-
der finite difference method that renders it drift-invariant by
definition by canceling linear contributions (60). Hence, in
theory, the HV is more robust with respect to drift than
the PSD and AV methods, and insensitive to linear drift.
Furthermore, compared with the AV, the HVexhibits higher
resolution in estimating the frequency spectrum since it has
a smaller noise bandwidth (61).

To extend the existing force-calibration methods for mul-
tiplexed MT measurements, here we present a thermal mo-
tion-based model of the HV. We compare all three methods,
i.e., PSD, AV, and HV, using simulated and experimental
data traces. First, we test our method with simulated bead
trajectories at forces ranging from 0.5 to 80 pN.We compare
the thermal motion of an ideal trace to traces with various
sources of error, including downsampling, white noise,
pink noise, Brownian noise, and drift, at experimentally
relevant signal-to-noise ratios (SNRs) and drift speeds. We
simulate data with SNRs of � 10 to þ30 dB, which corre-
spond to 10 times higher noise compared with signal levels
and 1000 times higher signal compared with noise levels,
respectively. Overall, we make two important observations:
first, all three methods can account for colored noises, with
the HV method being more precise at SNRs of % 10 dB in
the presence of Brownian noise. Second, the HV method
is the most stable and accurate in the presence of linear
and nonlinear drift over the whole studied SNR and drift
speed ranges. Finally, application of the methods to experi-
mental data and quantification of the goodness-of-fit show
that the HV method gives the most precise force estimation
values, as we find the relative force errors for the HV to be
lower compared with PSD and AV. Overall, our findings
highlight that the HV is a suitable tool to process multi-
plexed SMFS data sets to obtain accurate and precise results
in the presence of colored noise and drift, which we expect
to be useful for the calibration of force spectroscopy tech-
niques and related applications.
MATERIALS AND METHODS

Todetermine the accuracy of the PSD,AV, andHVmethods in handling down-

sampling, colored noise, and drift, we employ simulations, analytical theory,

and experimental measurements. Here, we first describe our methodology to

simulate the Brownian dynamics of the bead-tether system, including down-

sampling, colored noise, aswell as linear and nonlinear drift. Second,we sum-

marize the theoretical background and formulae for the PSD, AV, and HV

methods, and third, the experimental details of theMT setup and force-calibra-

tion measurement are reported.

Notably, we focus on the Brownian motion along the axis parallel to the

magnetic field, which we term x position throughout this work. In principle,

all methods and procedures can also be applied to analyze the bead motion

in the y direction perpendicular to the magnetic field. In this case, however,

additional correction factors are needed that include free bead rotations

(42). In the z direction, we are only interested in the mean extension

(Lext ¼ CzD) to calculate the magnetic force (Eq. 2). Although linear drift

and other noises can lead to inaccuracies in the extension, the accuracy

of the estimation of the trap stiffness is more critically affected, as it scales

quadratically with measurement time compared with the linear scaling of

the extension. In addition, the extension Lext (e.g., � 7 mm in this work)

is much larger than the linear drift contribution (< 0:05 mm/s), rendering

the latter less significant.
Simulations of the bead-tether system and
inclusion of downsampling, colored noise, and
drift

Brownian dynamics simulations

Our goal is to mimic an experimental MT setting where a long dsDNA

tether (21 kbp) is tethered between a bead and a surface. We model this

as a bead-tether system in three dimensions. We assume that the bead is

pulled by a constant magnetic force perpendicular to the hard wall and

we model the DNA tether as a WLC whose contour (Lc) and persistence

(Lp) lengths are 7 mm (corresponding to 21 kbp) and 45 nm, respectively

(62). We note that we employ the inextensible WLC model, which does

not include enthalpic stretching of DNA or the dsDNA overstretching tran-

sition around 65 pN (41), since the focus of our simulations is to highlight
Biophysical Journal 123, 3964–3976, November 19, 2024 3967
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the effects of various types of noise on the traces, not to build a more real-

istic model for DNA.

Furthermore, collisions between the magnetic bead and solvent mole-

cules are included as a three-dimensional (3D) stochastic Langevin force

FL that depends on the proximity to the hard wall due to hydrodynamic ef-

fects. The 3D stochastic Langevin force FL obeys the fluctuation-dissipa-

tion theorem CFðiÞ
L ðtÞFðjÞ

L ðt0ÞD ¼ 2kBTgijðzÞdðt � t0Þ with dðt � t0Þ being

the Dirac distribution and gijðzÞ the Fax�en-corrected (62–64) diagonal

viscous drag matrix elements that account for the hydrodynamics of the

hard wall on the bead motion. By combining these effects, we arrive at

the overdamped Langevin equation that describes the motion of the mag-

netic bead as

gðzÞ _rðtÞ � Fmagbz þ FWLCbr ¼ FLðtÞ; (3)

with r ¼ ðx; y; zÞ being the position vector ðbr ¼ r =jrjÞ, Fmag the magni-

tude of the magnetic force, and FWLCðrÞ the WLC force given by the
7-parameterWLCmodel (40). To numerically solve the equation of motion,

we write Eq. 3 in the stochastic differential equation form,

dri ¼ aiðrÞdt þ
X3

j ¼ 1

bijðzÞdWj; (4)

where aðrÞhg� 1ðzÞ�Fmagbz � FWLCðrÞbr �, bijðzÞh ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTg� 1

ij ðzÞ
q

, and Wj
are independent Wiener processes. Then, we employ the Milstein method

(65) to cast the stochastic differential equation into the recursive relation,

riðtþDtÞ ¼ riðtÞþ aiðrÞDtþ
X3

j ¼ 1

bijðzÞDWj

þ 1

2
b33ðzÞ vbiiðzÞ

vz
ðDWiDW3 � DtÞ;

(5)

where DWi � N ð0;DtÞ is a Gaussian distributed random number with zero

mean and variance Dt. The custom Python 3 code implementing our Brow-
nian dynamics simulations of the bead-tether system is available at https://

github.com/alptug/WLC-BD. Using the simulation method introduced

above, we perform 50 independent simulations per magnetic force (0.5,

2.5, 12.0, 40.0, and 80.0 pN), microsphere size (representing the commonly

used MyOne [diameter 1 mm] and M270 [diameter 2.8 mm] superparamag-

netic beads), and SNRs (22; 500 simulations in total). We calculate the force

estimates for each simulated trace and use the average force from the 50 in-

dependent simulations as the final force estimate. The error bars then corre-

spond to the standard error.

Downsampling of simulation trajectories

We include downsampling as follows: we divide the simulation trajectory

into nonoverlapping windows of width 1=fs with fs being the sampling fre-

quency. Then, we calculate the average of each window, yielding samples

separated by 1=fs that form the desired downsampled trajectory. Temporal

aliasing is intrinsically included as a consequence of the relation hdsðf Þ ¼PN
k¼�N hð��f þkfNq

��Þ with hðf Þ and hdsðf Þ being the Fourier transforms of

the signal and downsampled signal, respectively.

Addition of colored noise and drift to simulation trajectories

To add colored noises, we follow a four-step recipe (66). 1) First, we

generate independent sets of Gaussian random numbers whose length

matches the trajectory length, which corresponds to white noise. 2) Then,

we take the Fourier transform of the noise and rescale the frequency contri-

butions to match the PSD profile of the colored noise, followed by taking an

inverse Fourier transform to revert to real space. 3) Next, we calculate the

powers of the pure signal and the noise by numerically integrating their

autocorrelation function. We then rescale the noise to SNRs ranging from

� 10 to þ30 dB, which covers and exceeds the range of noise typically
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encountered experimentally. Experimental SNRs are highly system specific

and depend on factors such as the imaging technique, measurement dura-

tion, camera resolution, setup and tracking stability, and also day-to-day

variations (46,47,67–69). To give a guideline for an upper bound of the

SNR range, we estimate the noise profiles of the reference beads as

described in the supporting material (section S5) and add it to an ideal trace.

This procedure yields an SNR upper limit of 5 � 15 dB. However, we

emphasize that this range is specific for our MT system and will deviate

for other instruments. 4) Finally, we add the rescaled noise to the ideal

signal to obtain the noisy trace with a defined noise type and magnitude.

To add linear drift to the trajectory, we add a line with defined slope, i.e.,

drift speeds of 0 � 50 nm s�1. To add nonlinear drift, we add colored noise

with a PSD that is strongly peaked at low frequencies (Sðf Þf1=f 4), using
the same procedure as for the other colored noises.
Closed-form expressions for the PSD, AV, and HV

To use the PSD, AV, or HV to determine k, we require expressions that

relate measurements of these quantities to k. To this end, we consider a sim-

ple model of the bead-tether system in one dimension. Specifically, we

model the whole bead-tether system as a harmonic trap of stiffness k

centered at the equilibrium position. Collisions between bead and solvent

molecules are modeled by a stochastic Langevin force FL that obeys the

fluctuation-dissipation relation given as CFLðtÞFLðt0ÞD ¼ 2kBTgdðt � t0Þ,
with g being the viscous drag coefficient. The bead’s motion is then well

described by the overdamped Langevin equation

kxðtÞþg _xðtÞ ¼ FLðtÞ: (6)

One way to infer the trap stiffness k is the use of the RSV method, as

described in the introduction. However, to also account for downsampling

and colored noise types, including white, pink, and Brownian noise, closed-

form expressions of the PSD and AV have been derived for the overdamped

Langevin equation (Eq. 6) to extract the trap stiffness k (see below). While

the PSD and AVapproaches have been used widely to obtain force estimates

from tweezer time traces, they can be susceptible to drift and other measure-

ment imperfections. Therefore, we derive here a closed-form expression of

the HV for Eq. 6 to establish an accurate drift-invariant force-calibration

technique. For clarity, we also visualize the impact of downsampling,

colored noises, and linear and nonlinear drift on the PSD, AV, and HV

methods (supporting material, section S2, Figs. S2 and S3).

Power spectral density

The PSD is a measure of the power contribution of the different signal fre-

quency components to the total signal given as

Sðf Þ ¼
Z N

�N

�Z N

�N

xðt � tÞxðtÞdt
�
e� 2pf tdt: (7)

The PSD Sðf Þ of the bead trajectory then follows from Fourier analysis of

the overdamped Langevin equation (Eq. 6). The downsampling-corrected

analytical closed-form expression of the PSD is given by (49,70).

Sðf Þ ¼ 2kBTg

k3

0BB@kþ
2gfs sin

2

�
pf

fs

�
sinh

�
k

gfs

�
cos

�
2pf

fs

�
� cosh

�
k

gfs

�
1CCA; (8)

with fs the sampling frequency. Notably, Eq. 8 holds for the special case of

equal finite camera exposure time t0 and sampling time ts ¼ 1=fs, i.e.,
t0 ¼ ts (70). This assumption is applicable to most modern video cameras

because the camera dead time (� 10� 6 s) is in general much smaller than

the sampling time (� 10� 4 to 10� 1 s). The PSD has a Lorentzian-like form

with a turning point at the corner frequency (Fig. 3 A).
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FIGURE 3 Illustration of the PSD, AV, and HVanalyses. Example plots of

the PSD (A), Allan variance (C), and Hadamard variance (E) methods applied

to ideal, simulated bead trajectories. The lower parts (D) represent the resid-

uals of theMLE fit to the simulated data. (B andD) Schematics of the position

difference calculations for the Allan (B) and Hadamard (D) variance. The

black dots for m ¼ 1 are the original signal. The black dots for m ¼ 2

and 3 are the position signals averaged over a bin comprising m points.

The (first- and second-order) position differences are shown as gray dots

and are derived from two and three consecutive data points for Allan and Ha-

damard variance, respectively. The arrows in panels B andD represent the bin

lengths; error bars in panels A, C, and E correspond to one standard error.
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Allan variance

The AVof the bead’s thermal motion is computed by separating the signal

into different observation time intervals or bins of length t, and calculating

the first position differences (first-order finite difference method), i.e., the

differences of two consecutive averaged data points, as a function of the

observation time bins (Fig. 3, B and C). Specifically, we calculate the AV

from the bead trajectories via (71).

s2
AVðtÞ ¼ 1

2m2ðM � 2mþ 1ÞXM� 2mþ1

j ¼ 1

" Xjþm� 1

i ¼ j

ðxiþm � xiÞ
#2

;

(9)
i i

tions xn are given by
with x the position average of ith bin. The position averages x of the posi-
xi ¼ 1

m

Xiþm� 1

n ¼ i

xn; (10)

with m ¼ t=ts (ts: sampling time) the overlapping bin lengths of the

observation time intervals. The bin lengths define the number of bins

M ¼ N � mþ 1 with N the total number of data points. Note that this cor-

responds to the so-called overlapping AV due to the consideration of over-

lapping time intervals. The closed-form expression of the AV for Eq. 6 is

then given by (49)

s2
AVðtÞ ¼ 2kBTg

k2t

�
1 � 3g

2kt
þ 2g

kt
e�

kt
g � g

2kt
e�

2kt
g

�
: (11)

Hence, to use the AV to obtain k, we calculate the AVof the measured x

trajectory of the bead. Then, we follow a strategy reported by Morgan et al.

(70) to fit the calculated AV to Eq. 11, with k and g being fitting parameters

using maximum likelihood estimation (MLE).

Hadamard variance

In contrast to the AV, the HV is based on the calculation of the second po-

sition differences (second-order finite-difference method), which eliminates

any additive linear signal contribution and thus renders it inherently insus-

ceptible to linear drift. The overlapping HV is defined as (72).

s2
HVðtÞ ¼ 1

6m2ðM � 3mþ 1ÞXM� 3mþ1

j ¼ 1

" Xjþm� 1

i ¼ j

ðxiþ2m � 2xiþm þ xiÞ
#2

;

(12)

with xi the position averages (Eq. 10; Fig. 3 D). The number of bins of the

overlapping HV is given as M ¼ N � mþ 1. The closed-form expression
of the HVof the bead motion (Eq. 6) then follows as

s2
HVðtÞ ¼ 2kBTg

k2t

�
1 � 5g

3kt
þ 5g

2kt
e�

kt
g

� g

kt
e�

2kt
g þ g

6kt
e�

3kt
g

�
:

(13)

The full derivation of the expression in Eq. 13 is given in the supporting

material (section S3). To implement a computational method to calculate

the HV from the bead trajectories and determine the trap stiffness k and

drag coefficient g from the HV curves, we followed a similar strategy as

Morgan et al. (70) employing an MLE fit of the HVas a function of obser-

vation times, with k and g being fitting parameters (Fig. 3 E). We imple-

mented the HV method in a python framework that extends the

Tweezepy package (70), which can be downloaded from https://github.

com/alptug/tweezepy.

Note that, in principle, it is possible to include spectral correction factors

for white, pink, and Brownian noise in Eqs. 8, 11, and 13, allowing one to

correct for such types of noise when they are well understood and quanti-

fied. However, as the purpose of this study is the quantification of each

methods’ susceptibility to these types of additive noises, we do not include

these corrections here.

We further quantify the uncertainties of the estimated parameters and

bias in the force estimates of all three methods (supporting material, section

S4, Figs. S4 and S5). We find that the uncertainties of the PSD, AV, and HV

methods are approximately equal in the presence of colored noises and

nonlinear drift, and all methods exhibit nonvanishing skewness in the dis-

tribution of relative errors, introducing bias. Therefore, in cases where
Biophysical Journal 123, 3964–3976, November 19, 2024 3969
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HV produces better estimates, it is due to a lower bias compared with the

other methods.
MT experiments

MT setup

We use a custom-build MT setup equipped with two linear stepper motors

(Physik Instrumente, Karlsruhe, Germany) to control the height of an

external magnet (1 mm gap) above the flow cell and its rotation, and a Pifoc

motor (Physik Instrumente, Karlsruhe, Germany) to adjust the focus of the

objective (40� oil immersion, Olympus, Tokio, Japan) (17,37,73,74). Im-

aging of the diffraction rings of the magnetic beads uses a tube lens

(f ¼ 150 mm), a 650 nm LED (Thorlabs, Bergkirchen, Germany) for illu-

mination, and an Optronis camera (CP80-25-M-72, Optronis, Kehl, Ger-

many) operated at sampling frequencies of 72 Hz (full field of view) or

400 Hz (reduced field of view). Bead tracking is achieved with an open

source Labview code that is based on a CUDA parallel computing algo-

rithm and quadrant interpolation (24,45).

DNA and flow cell preparation

We use a 21 kbp long dsDNA construct derived from lambda phage DNA,

which was prepared as described previously (75). The ends (� 600 bp) are

functionalized for attachment with multiple digoxygenin (Roche, Woerden,

The Netherlands) and biotin (Sigma-Aldrich, Burlington, MA, USA) mol-

ecules, respectively. Flow cells are built from two glass coverslips. The bot-

tom slide (24� 60 mm2 (#1), VWR, Darmstadt, Germany) is first

functionalized using (3-glycidoxypropyl)-trimethoxysilane (Thermo Fisher

Scientific, Waltham, MA, USA), then incubated with polystyrene beads

(Polysciences, Warrington, PA, USA) of 1 or 3 mm diameter in ethanol

(VWR, Darmstadt, Germany), which serve as reference beads for drift

correction. The top slide (24� 60 mm2 (#1.5), Carl Roth, Karlsruhe, Ger-

many) contains two holes with diameters of � 1 mm to connect the pump

system (Ismatec, Germany) for fluid exchange in the flow chamber. Both

slides sandwich a single layer of melted parafilm (Carl Roth, Karlsruhe,

Germany) with a cutout to form a � 50 mL channel that connects the inlet

and outlet of the flow chamber. After assembly, the flow cell is incubated

with 200 mg/mL anti-digoxygenin (Abcam, Cambridge, UK) in 1� PBS

buffer (Sigma-Aldrich, Burlington, MA, USA) for at least 2 h to allow later

DNA attachment via digoxygenin-anti-digoxygenin binding. The channel is

rinsed with 1� PBS and passivated with 100 mg/mL BSA (Carl Roth,

Karlsruhe, Germany) for 1 h to avoid nonspecific interactions, then rinsed

again. We use commercial streptavidin-coated magnetic beads with diame-

ters of 1 mm (DynaBeads MyOne Streptavidin C1, Thermo Fisher Scienti-

fic, Waltham, MA, USA) and 2:8 mm (DynaBeads M-270 Streptavidin,

Thermo Fisher Scientific, Waltham, MA, USA) that are attached to the

DNA via streptavidin-biotin binding. After coupling 1 mL of picomolar

DNA stock with 2 mL MyOne beads or 13 mL M270 beads in 100 mL 1�
PBS for around 30 s, we add the mixture to the flow cell and incubate for

several minutes before flushing out unbound material with 1� PBS. The

flow cell is mounted in a custom-built flow cell holder.

Force-calibration measurements

For the force-calibration measurements, we calibrate the distance between the

magnet and upper cover slide of the flow cell by slowly approaching the top

surface (towithin 0.01mm).We define the magnet position origin as the point

where it touches the top coverslip. Next, the tethered magnetic beads are

screened for attachment via multiple DNA molecules by measuring their

response to force and torque. First, we apply negative turns (� 70 turns) at in-

termediate forces (2 or 14 pN forMyOne orM270 beads, respectively), where

no change in extension is expected for beads tethered by single dsDNAmole-

cules. Beads attached via multiple tethers form braids during negative rotation

and thus decrease the extension.Multiple tethered beads are excluded from the

measurements. Furthermore, the tethers are screened for single-strand breaks
3970 Biophysical Journal 123, 3964–3976, November 19, 2024
byoverwinding theDNAat low force.We applypositive turns (70 turns) at low

forces (0.05 or 0.14 pN forMyOneorM270 beads, respectively) and record the

tether extension. Nicked tethers are not able to form plectonemes when over-

wound under low force and thus no change in extension is expected. For the

force-calibration measurement, we record time traces of the bead-tether com-

plex at 49 differentmagnet positions.We further record test traces at a low and

high force, i.e., a fully relaxed and an unconstrained stretched DNA tether, to

set the tether-bead coordinate system. In addition, we identify off-center

attached beads, which do not follow a 2D Gaussian position distribution in

the xy plane using the Shapiro-Wilk test for normality (exclusion criterion:

p< 0:05) and exclude them from the experiment.
RESULTS AND DISCUSSION

We present and critically test different methods to analyze
MT extension time traces for force calibration. To quantify
and compare the accuracy of the PSD, AV, and HV methods
in the presence of downsampling, colored noise, and drift,
we first analyze simulated bead trajectories created by our
Brownian dynamics simulations.
Testing the PSD, AV, and HV analyses using
simulated bead trajectories

As a first step, we simulate ideal (noise-free) thermal motion
trajectories (Fig. 2 B and materials and methods). We choose
simulation time steps that are two orders ofmagnitude smaller
than the characteristic (corner) time andwithin the stability re-
gion of theMilstein method (76). The corner frequency repre-
sents the turning point between purely diffusive bead motion
and being constrained by the trap. Tomimic thefinite exposure
time of the camera, we then downsample the trajectories by
partitioning them into nonoverlappingwindowswhosewidths
match the exposure time of the camera and taking the average
of each window. Next, we add either white, pink, or Brownian
noise, or linear or nonlinear drift to the ideal thermal motion
trace, since these are the most-common noise contributions
to experimental MT data (supporting material, section S5).
To test the effects of different levels of additive noise,we apply
noisewith differentSNRs.TheSNRs (SNRdB indB) are calcu-
lated as the ratio of the power of the ideal thermalmotion trace
(Psig) to the powers of the pure additive noise (AN) tracesPAN,
i.e., SNRdB ¼ 10 log10ðPsig =PANÞ. For linear drift, we add a
linear trend of defined drift speed, or slope, to the ideal thermal
motion trace.

To compare the three methods, i.e., PSD, AV, and HV,
regarding their accuracy and precision in handling the
different trajectory distortions, we next compute the PSD,
AV, and HV for our simulated traces and fit the correspond-
ing models, Eqs. 8, 11, and 13, respectively. We start by
looking at 1 mm beads and two forces, 0.5 and 12 pN,
and calculate the relative force errors according to
j1 �ðFmethod =FtrueÞj with methods comprising PSD, AV,
or HV (Fig. 4). In the presence of downsampling, all three
methods (PSD, AV, and HV) reach a relative error of

� 7� 10� 2 and � 2� 10� 2 for 0.5 and 12.0 pN,
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Drift-invariant force calibration
respectively, at sampling frequencies that exceed twice the
corner frequency, i.e., the Nyquist frequency (Fig. 4 A and
supporting material, section S6; Fig. S7). A stable plateau
of low relative force errors is thus reached at sampling fre-
quencies that fulfill the Nyquist theorem, i.e., exceed twice
the characteristic frequency of the fluctuations. We calculate
Nyquist frequencies of 2.75 and 54.81 Hz for 0.5 and 12 pN,
respectively. At frequencies around and smaller than the Ny-
quist frequency, the relative force errors become on the
same order as the applied force, indicating that the methods
are not invariant to downsampling, as expected from the
Nyquist theorem. However, taking a closer look at the
critical regime of sampling at the Nyquist frequency
(fs ¼ fNyquist), the HV method results in slightly lower force

estimation errors compared with the PSD and AV methods
for 0.5 and 12.0 pN (Fig. 4 B). Considering the error bars,
which correspond to one standard error, the differences be-
tween the methods are, however, statistically insignificant.
Moreover, the PSD, AV, and HV methods achieve similar
correction efficiencies, and all three methods perform
significantly better than the RSV method (supporting mate-
rial, section S7).

For the traces containing colorednoise,wefind that the rela-
tive errors for PSD, AV, and HV decrease with increasing
SNRs in the presence of white, pink, and Brownian noise
(Fig. 4 C and supporting material, section S8; Figs. S9–
S12), until the relative errors essentially plateau for high
SNRs. We find that the HV is on average most accurate in
handling Brownian noise and nonlinear drift at low SNRs
% 10dB (supportingmaterial, section S9, Fig. S13). Forwhite
and pink noise, no clear trend between the different methods
can be identified. For trajectories containing nonlinear drift,
the HV clearly gives smaller force estimation errors over the
whole SNR range compared with the PSD and AV methods.
Biophysical Journal 123, 3964–3976, November 19, 2024 3971
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Importantly, in the presence of linear drift, the relative
force estimation errors increase with drift speed for the
PSD and AV methods but stay constant for the HV method,
which highlights its robustness against linear drift (Fig. 4 D
and supporting material, section S10; Fig. S14).

In addition, we also simulate traces of the 1 mm beads at
an intermediate force of 2.5 pN and of the 3 mm beads (rep-
resenting M270) over a force range of 0.5–80 pN and
observe similar trends (supporting material, sections S9
and S10).

To further give a more general overview of the force esti-
mation accuracies of all methods, we next calculate the
mean normalized relative force errors srel;i by normalizing
the relative force estimation errors srel with respect to the
methods ði; jÞ and summing over all SNRs or drift speeds us-

ing srel;i ¼
P

SNRðor vdriftÞ
�
srel;i=

P
jsrel;j

	
(Fig. 4, D and E).

For comparison, here we also include the RSV method
described in the introduction (Eq. 1). Note that a full anal-
ysis of the RSV in the presence of downsampling and addi-
tive noises is included in the supporting material,
section S11.

As illustrated in Fig. 4 D, all four methods, i.e., RSV,
PSD, AV, and HV, achieve almost equal accuracy with
similar mean normalized force estimation errors at low force
(0.5 pN) and in the presence of white and pink noise. How-
ever, the good apparent performance of the RSV is
misleading and unreliable. As shown in the supporting ma-
terial (section S11, Figs. S15–S26), the RSVexhibits signif-
icantly high relative force estimation errors at low and high
SNRs and reaches a minimum error in the vicinity of 0 dB,
where the variance contribution of downsampling and
colored noises or drift cancel each other. This renders the
RSV method unreliable as a force-calibration method. For
Brownian noise, linear, and nonlinear drift, the HV method
results in the smallest mean normalized force estimation er-
rors compared with the PSD and AV (Fig. 4, D and E). At
high force (12 pN), the PSD, AV, and HV methods perform
much better than the RSVmethod, which is explained by the
dominant effects of downsampling on the accuracy of the
RSV method, for which the PSD, AV, and HV are approxi-
mately invariant at sampling frequencies larger than the Ny-
quist frequency. Note that, out of the three methods, the HV
clearly performs best in the presence of Brownian noise,
linear, and nonlinear drift, while performing similarly to
PSD and AV for white and pink noise.

Together, our simulations show that the HV method is
indeed the most stable, accurate, and precise in the presence
of drift and performs very well for the other colored noise
types, too. In addition, the relative errors using the PSD,
AV, and HV methods to determine the variances of the mo-
tion trajectories decrease in the presence of white, pink, and
Brownian noise with increasing SNRs, which is expected for
decreasing noise levels. To further confirm the suitability of
the HV as an accurate and drift-invariant method for force
3972 Biophysical Journal 123, 3964–3976, November 19, 2024
calibration in MT experiments, we apply the three methods
to experimental data traces.
Application of PSD, AV, and HV to experimental
data traces

Measurements are carried out using a 21 kbp dsDNA
construct and MyOne (diameter z1 mm) beads. As sam-
pling frequencies, we choose a rate that fulfills the Nyquist
theorem to minimize downsampling effects, i.e., 72 Hz. The
position of the external magnet is gradually changed over a
wide translation range. At each magnet position the bead
motion is tracked for several tens of seconds (Fig. 5 A).
Simultaneously, reference beads are tracked and used to cor-
rect for global mechanical drift. We calculate the forces
from the tracked and reference-corrected bead positions
for each magnet height using all three methods, PSD, AV,
and HV (Fig. 5, B and C). A typical force-calibration curve
is shown in Fig. 5 D. The force decreases approximately
exponentially with increasing magnet height, similar to
the magnetic field (37). Furthermore, the extension of the
DNA tether is well described by the 7-parameter WLC
model (Fig. 5 E). From the WLC fit, we find a contour
(Lc) and persistence (Lp) lengths of 6:8 mm and 44 nm,
respectively, which are in good agreement with the expected
crystallographic length of an � 21 kbp DNA construct and
with the literature values (37,62,75) for Lp ¼ 43 � 50 nm.

Next, we determine the standard force estimation error
from the covariance of the MLE fit to the experimental
data (supporting material, section S12). Note that we do
not know the ground truth of the forces that we calculate
from experimental traces, making it difficult to confirm
which method performs best in practice. However, one
can examine how well each method is internally consistent,
i.e., how well the MLE fits match the experimental data,
which we use as a metric for confirming the accuracy of a
method. Therefore, we calculate the relative force estima-
tion errors (standard force estimation error over force) as
a function of the force. We bin the relative errors to 12 force
steps in total (Fig. 5 F). We find that over the whole force
range, the HV method results in lower relative errors for
the studied bead-tether system than the PSD and AV. On
average, the HV errors are 18:0 and 9:4% lower compared
with the PSD and AV, respectively. A similar trend is found
for the M270 beads (diameter z2:8 mm; supporting mate-
rial, section S13, Fig. S27). This finding indicates that
the HV method is the most precise in analyzing the
experimental data. In addition, we assess the stability of
the HV method by adding artificial linear drift to the exper-
imental data in the x and y directions and evaluating the
resulting relative force estimation errors (supporting mate-
rial, section S14, Fig. S28). As the drift speed increases,
the relative force estimation errors for the PSD and AV
methods increase, and their applied force estimates per mag-
net position reduce significantly. In contrast, the HV method
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Drift-invariant force calibration
is completely unaffected. As a control, we also analyze the
relative bead-to-bead force errors and find a force uncer-
tainty of � 11%, which is in good agreement with previous
articles (37,44) that report a bead-to-bead variability of
approximately 10%, which is dominated by differences in
bead volumes and magnetic particle content (supporting
material, section S15, Fig. S29). Notably, this error is the
same for all three methods demonstrating that the bead-to-
bead variations are a systematic error of the system and in-
dependent of the applied method.
CONCLUSION

In conclusion, we introduce a robust thermal motion-based
method using the HV for processing and analyzing multi-
plexed MT data with high accuracy. By addressing common
sources of additive noise in comparison with conventional
methods such as the RSV, the PSD, and the AV, we find
that the HV method offers important improvements in
force-calibration precision. Through extensive testing with
Brownian dynamics simulations, replicating typical experi-
mental MT conditions, and including controlled levels of
common colored noise types and drift, we demonstrate the
superior performance of the HV method across a wide range
of SNRs and drift speeds. Notably, our results show consis-
tently lower force estimation errors with the HV method,
particularly in the presence of Brownian noise and nonlinear
drift at SNR% 10 dB, and excellent stability in the presence
of linear drift, ensuring reliable results across varying
experimental conditions. Application of the HV method to
experimental data sets further validates its effectiveness,
revealing an average reduction of force estimation errors
by 18:0 and 9:4% compared with the PSD and AV methods,
respectively. These findings highlight the suitability of the
HV method for accurate force calibration, which is impor-
tant for achieving sub-pN resolution and precision in multi-
plexed MT experiments.

Although the HV method has fewer degrees of freedom
for the distribution of a single stability estimate compared
with the AV method, the lost information primarily reflects
pathological effects such as linear drift. The HV method
outperforms the AV and PSD methods at higher forces
(R 12 pN), while the AV method shows marginal improve-
ments at lower forces (� 0:5 pN) in the presence of white
and pink noise. Given that experimental data tend to include
additional colored noise and drift, beyond white and pink
noise, the HV method overall is the more reliable option.
The HV approach consistently delivers equal or more accu-
rate and precise force calibrations in MT devices, outper-
forming both the AV and PSD methods in practice. In
terms of computational demands, the HV and AV methods
are comparable and less demanding than the PSD method.
Biophysical Journal 123, 3964–3976, November 19, 2024 3973
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In summary, our study contributes a new force-calibration
method to the existing repertoire, offering researchers a
powerful tool for obtaining accurate results that are essential
for advancing our understanding of molecular-scale interac-
tions and mechanical processes in biological systems. For
this purpose, we make our approach widely accessible via
a clearly documented open-source implementation of the
HV method as an extension of the existing Tweezepy (70)
package.
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