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Abstract
Rod-like objects at high packing fractions can exhibit liquid crystalline ordering. By controlling how the rods align near a boundary, i.e. the 
anchoring, the defects of a liquid crystal can be selected and tuned. For smectic phases, the rods break rotational and translational 
symmetry by forming lamellae. Smectic defects thereby include both discontinuities in the rod orientational order (disclinations), as 
well as in the positional order (dislocations). In this work, we use experiments and simulations to uncover the geometrical conditions 
necessary for a boundary to set the anchoring of a confined, particle-resolved, smectic liquid crystal. We confine a colloidal smectic 
within elliptical wells of varying size and shape for a smooth variation of the boundary curvature. We find that the anchoring 
depends upon the local boundary curvature, with an anchoring transition observed at a critical radius of curvature approximately 
twice the rod length. Surprisingly, the critical radius of curvature for an anchoring transition holds across a wide range of rod lengths 
and packing fractions. The anchoring controls the defect structure. By analyzing topological charges and networks composed of 
maximum density (rod centers) and minimum density (rod ends), we quantify disclinations and dislocations formed with varying 
confinement geometry. Circular confinements, characterized by planar anchoring, promote disclinations, whereas elliptical 
confinements, featuring antipodal regions of homeotropic anchoring, promote long-range smectic order and dislocations. Our findings 
demonstrate how geometrical constraints can control the anchoring and defect structures of liquid crystals—a principle that is 
applicable from molecular to colloidal length scales.
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Significance Statement

Liquid crystals are a prevalent phase of matter found in both synthetic and natural systems. The presence of topological defects dic
tates the macroscopic behavior of liquid crystals. The conventional technique for manipulating defects in liquid crystals involves the 
boundary anchoring. For molecules, chemical interactions can set the anchoring angle, but such strategies cannot be applied for 
nanorods and microrods, which have thus far been limited to planar anchoring. Here, for the first time, we control the perpendicular 
(homeotropic) anchoring of a confined, colloidal liquid crystal by defining the geometric conditions necessary for an anchoring tran
sition. We demonstrate that the anchoring determines the defect state of a model, colloidal smectic, a phase characterized by density 
modulation. We show that anchoring influences the defect quantity and type. Our work makes explicit the connection between 
boundary curvature and anchoring in liquid crystals, a principle that applies across length scales.
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Introduction
Topological defects are pervasive in diverse phases of ordered mat
ter, and their presence greatly affects system properties (1). Liquid 
crystals are prime examples (2), where topological defects in mo
lecular systems facilitate optical applications (3), particle assem
bly (4–6), and shape transformations in elastomers (7). At the 
hundreds of nanometer length scale, the liquid crystalline order
ing of metal (8) and semiconductor (9) nanorod superlattices tunes 
their plasmonic resonance (10) and light polarization (9, 11), re
spectively. At even larger length scales, liquid crystal defects 

influence biological processes in bacterial biofilm development 
(12–15), cell proliferation, and morphogenesis (16–21). The allow

able defect types are a consequence of the system symmetry. For 

instance, consider a two-dimensional (2D) nematic liquid crystal 

where the averaged local orientation of the rod-like molecules is 

described by the director n and the angle φ, respectively. The topo

logical charge of a defect, q, can be determined by enclosing the de

fect in a loop γ and calculating the change in director orientation 

around the loop, q = 1
2π
􏽈

γ ∇φdl (22). Nematic defects exhibit a min

imum charge magnitude of |q| = 1
2, reflecting the head–tail 
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symmetry of their rod-like components. These defects, known as 
disclinations, manifest as localized regions that violate orienta
tional order (22, 23). In more intricate smectic liquid crystals, 
translational symmetry is broken through the formation of lamel
lae, introducing a density modulation on top of orientational order. 
Consequently, smectics accommodate both disclinations and dis
locations, which are defects in the density periodicity (22, 24). The 
ability to control defects in more complex liquid crystal phases is 
essential for their application in nano- and bio-technologies (9, 
25–30).

Interest in smectics has been recently renewed due to advances 
in experimental techniques (31–40), topological classification (41– 
47), and continuum modeling (48–51). Defects in molecular smec
tics have been stabilized with topological and geometrical con
straints, but analyses have predominantly relied on mesoscopic 
modeling of the elastic energy F (31–33, 35–37), given by:

F = ∫ dV
B
2

∂u
∂z

−
1
2
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∂x
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⎭
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where V is the volume, u(x, z) is the displacement of the smectic 
lamellae, and B and K are the layer compression and the layer 
bending moduli, respectively (2). In the colloidal domain, theoret
ical efforts focused primarily on microscopic, classical density 
functional theory, and Monte Carlo (MC) simulations to map out 
smectic order in phase diagrams of hard rods (52–56). The phase 
diagrams have been probed experimentally with suspensions of 
rod-like viruses (57, 58) and silica particles (34, 59). Only in the 
past year has microscopic theory been connected to smectic elas
ticity (Eq. 1) (51). Similarly, researchers have recently started ex
ploring smectic defects from a microscopic viewpoint. Using 
simulations and experiments, colloidal smectics have been con
fined within various geometries, such as rectangles (38, 60, 61), 
hexagons (44), circles (62–64), and annuli (64–66), establishing a 
correlation between the confining geometry and the types of de
fects formed. The defects were found to adhere to global, topo
logical constraints (44, 46, 64, 66). Yet, these colloidal systems 
are constrained in their possible defect configurations due to the 
lack of control over homeotropic anchoring of liquid crystals at 
length scales larger than that of molecules (38, 67).

Anchoring, which describes the average rod alignment at a 
boundary (68), is essential for the manipulation of topological defects 
in liquid crystals. Directing the rod anchoring to be either tangent to 
the boundary (planar anchoring) or perpendicular to it (homeotropic 
anchoring) influences the configuration and types of defects pro
duced within a confined system. Thus far, full control of the rod an
choring has been limited to molecular systems. For small, liquid 
crystal molecules, the anchoring can be selected by choosing the ap
propriate surface chemistry, but these methods are not applicable to 
systems consisting of nanometer- to micrometer-sized particles. 
Since particle-based models rely predominantly on entropic interac
tions, only the geometry of the confining boundary can be tuned. In 
simulations and classical density functional theory frameworks, al
tering the entropic interactions of a particle with a wall has been 
shown to select a specific anchoring type (69–74). Planar anchoring 
at surfaces is commonly observed (38, 64, 75–77). However, control 
over the homeotropic anchoring of confined hard rods has still not 
been achieved in experimental systems (38, 69, 70, 72, 73). 
Realizing homeotropic anchoring solely from entropic interactions 
remains an ongoing challenge that must be addressed to effectively 
design liquid crystal defects in systems of particles (38, 78), crucial for 
directing the macroscopic properties of confined nanorod superlatti
ces (9–11), and biological systems (16–21).

Here, using a combination of experiments and simulations, we 
successfully achieve anchoring control in a model system: a 2D, 
colloidal smectic confined within ellipses of varying sizes and ec
centricities. We use this model confinement geometry, which is 
topologically required to form defects, in order to demonstrate 
that anchoring control directs the type and composition of defects 
formed. The ellipse geometry allows for a gradual variation of the 
local curvature, such that the critical curvature for anchoring 
transitions can be identified. Experimentally, we synthesize col
loidal silica rods with fluorescently labeled shells (Fig. 1A and B), 
which enable single-particle tracking of each rod using fluores
cence confocal microscopy. We confine the silica rods by sedi
mentation into elliptical wells fabricated with photolithography 
(Fig. 1C, top). The local confinement curvature is set by the system 
size, measured by the ratio of the ellipse short-axis radius to the 
rod length (r1/L), as well as the system shape, adjusted by r1/r2, 
the ratio of minor to major axes of the ellipse, respectively 
(Fig. 1C, bottom). The ratio r1/r2 determines the eccentricity e of 
a conic section, defined as e2 = 1 − (r1/r2)2, which, for an ellipse, 
takes on values between 0 (circular) and 1 (highly elliptical). The 
confinement size r1/L is varied from 0.6 to 5.9, and the confine
ment shape is varied with r1/r2 ranging from 0.2 to 1.0. In our 
MC simulations, we model the system using a 2D, monodisperse 
system of hard “discorectangles” (Fig. 1D, bottom). Working with 
an end-to-end, length-to-diameter ratio of ∼8, we study a smectic 
phase at packing fractions that exhibit meta-stable and short- 
range, quasi-tetratic order—local regions with fourfold rotational 
symmetry. To analyze these structures, we examine nematic and 
tetratic order parameters, along with an analysis of networks con
sisting of minimum and maximum density points. We identify 
network features and, for first time, leverage network loops to un
ambiguously distinguish disclinations, (edge) dislocations, and 
tetratic order. Both in simulations and experiments (Fig. 1D), we 
find that anchoring control from highly elliptical confinements 
stabilizes the smectic phase and induces dislocations. On the oth
er hand, more circular confinements give rise to disclinations and 
tetratic order. Interestingly, differences in the number and types 
of defects between experiments and simulations point to varia
tions in the smectic elasticity due to the presence of polydispersity 
in the rod size. With this work, we demonstrate anchoring control 
of a colloidal smectic, broadening the tunability of defect states in 
larger-scaled, liquid crystal systems.

Materials and methods
Experimental methods
In our experiments, we use fluorescently labeled silica rods that 
are imaged using high-resolution, confocal laser scanning micros
copy (Fig. 1A and B). Details of the synthesis can be found in 
Supplementary Material. Notably, each rod is labeled by a shell 
of fluorescent molecules, enabling single-particle tracking of 
each rod position and orientation, as well as particle-resolved 
characterization of smectic defects. To reduce the polydispersity 
of the obtained rods, the suspension was cleaned via centrifuga
tion (see Supplementary Material). Our fluorescently-labeled sil
ica rods have an average length of L = 8.6 ± 0.1 μm and diameter 
of D = 1.16 ± 0.02 μm, with polydispersities of 13% and 20%, re
spectively (Fig. 1B). Averaging over the length-to-diameter ratios 
of each measured rod gives L/D = 7.7 ± 0.1 (Fig. 1A). The rod 
length-to-diameter ratio used in our study is smaller than those 
used in previous investigations (38, 44, 63–66) and gives rise to 
additional metastable structures beyond smectic layering.
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To form a colloidal smectic, we concentrate the rods at the bot
tom of our samples via sedimentation. We note that confinement 
can alter the packing fraction at equilibrium compared to uncon
fined systems (Supplementary Material). The measured rod packing 
fraction ϕ in experiments varies between 0.60 and 0.85 across all con
finement geometries. For larger confinements that can fit more than 
four smectic layers across the short ellipse axis (2r1), we measure 
0.67 ≤ ϕ ≤ 0.85, with errors in ϕ ranging from 0.03–0.08 across sam
ples due to inaccuracies in particle tracking. With smectic ordering 
expected at ϕ ≈ 0.75 for our rod aspect ratios of L/D ≈ 8 (79), our con
fined rods are, within error, at packing fractions where smectic or
dering with metastable tetratic ordering is expected.

To match the refractive index of silica microparticles (∼ 1.45), 
the rods are sedimented in 91 wt.-% dimethylsulfoxide (DMSO, 
Sigma-Aldrich) in water, allowing for high-resolution confocal mi
croscopy and single-particle analysis (Fig. 1B). At the bottom of the 
samples are confining wells (Fig. 1C) fabricated on #1 cover glass 
(130-170 μm thickness, VWR) using contact photolithography 
(see Supplementary Material).

To alter the local curvature, we vary our elliptical confinements 
by changing their relative size and shape. The global curvature of 
the confinement is kept fixed and is described by the Euler charac
teristic (χ). Following the Poincaré–Hopf theorem, the total topo
logical charge q is conserved, with 

􏽐
q = χ = +1 (87, 88).

Computational methods
In our computational approach, we consider 2D monodisperse 
systems of rods modeled as hard spherocylinders of end-to-end, 
length-to-diameter ratio L/D = 8 (Fig. 1D, bottom). As the particles 
are confined to lie in a plane, they can be more precisely described 
as “discorectangles,” defined as a rectangle of length L − D and 
width D capped at each end by a semicircle of diameter D. The 
bulk phase behavior is studied using constant pressure (NPT) MC 
simulations under periodic boundary conditions. The equation 
of state is obtained from compression of an isotropic phase 
and expansion of a perfect smectic-like phase, using N = 1,000 
and N = 996 particles, respectively.

To mimic the experiments, we perform MC simulations of par
ticles confined within various 2D elliptical boundaries. Particles 
are forced to reside within the elliptical regions by assuming a 
purely hard interaction with the external walls, thereby favoring 
planar surface anchoring. As we are interested in smectic-like 
structures to match experimental observations, we choose to fix 
the area fraction of the confined particles at ϕ = NA p/A = 0.81, 

with A p = (L − D)D + πD2/4, the area of a hard particle and 
A = πr1r2, the area of the confining elliptical geometry. To obtain 
the desired value of ϕ = 0.81, where the smectic phase is stable 
in bulk, we slowly compress a low-density configuration with 
ϕ≪1, initially placed in a scaled confining geometry.

To speed up the equilibration of the MC simulations, we imple
ment, in addition to simple particle translation and rotation 
moves, MC moves in which square clusters of particles of dimen
sions approximately equal to the length of a single particle, are ro
tated by ±90◦. All simulations are run for at least 2.5×107 cycles. 
We sample equilibrium configurations in the canonical ensemble 
at constant temperature, number of particles, and confinement 
area. Unless stated otherwise, all the average quantities are meas
ured over 1,000 configurations selected from the last 106 MC 
cycles. We then compare computational and experimental results 
for each system size and eccentricity (Fig. 1D).

Results and Discussion
Confinement and anchoring
To examine the influence of confinement on smectic ordering in a 
smectic that exhibits metastable structures, we use rods with an as
pect ratio of L/D = 8 in simulations and L/D = 7.7 ± 0.1 in experi
ments. Simulations by Bates and Frenkel predicted the formation 
of a smectic phase in 2D rods with an end-to-end length-to-diameter 
ratio of L/D ∼ 8 at packing fractions ϕ ≥ 0.75 (79). Yet, there are 
subtleties in the pathways taken to form the smectic phase. The 
isotropic-to-smectic transition is not preceded by a uniaxial nematic 
state, hindering direct nucleation of a smectic phase through com
pression from an isotropic phase (79, 80). Instead, (short-ranged) 
metastable tetratic order is commonly observed (63, 79, 80). Bates 
and Frenkel find that even in simulations incorporating stack- 
rotation moves, a single-domain smectic phase can only be achieved 
by expansion to ϕ = 0.75 from a well-ordered and fully aligned crystal. 
Using rods with low aspect ratios L/D ∼ 8, we observe metastable, 
tetratic order in both our experiments and simulations, detailed in 
Supplementary Material, Fig. S1, and Video S1.

To quantify the nematic and tetratic order in our system, we 
employ the 2D local orientational order parameter 
Pm(r) = |〈exp(imθ j)〉r|, with θ j the angle formed by the orientation 
vector of the jth particle (û j = ( cos θ j, sin θ j)

T) with respect to an 
arbitrary fixed axis, the angular brackets · · ·〈 〉r denote an average 
over all particles intersecting a local circle around r with radius 
rc = 4D, and m is an integer (44). For m = 2, P2(r) measures the 

Fig. 1. A) Transmission electron (top) and fluorescence confocal (bottom) micrographs of synthesized colloidal silica rods, with length L = 8.6 ± 0.1 μm 
and diameter D = 1.16 ± 0.02 μm. Scale bars are 5 μm. B) Schematic of experimental setup depicting the glass container filled with silica rods suspended in 
91 wt.-% DMSO-in-water. The confinement wells are on the bottom coverglass, and the rods are sedimented into the wells. C) Schematic and micrograph 
of an elliptical confinement with r1/r2 = 0.4, r1/L = 3.0, made of SU-8 photoresist with a height of 10 μm. Scale bar is 50 μm. D) Example experiment and 
simulation snapshots.
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degree of local nematic order. Pm(r) takes values ∈[0, 1], where 0 
and 1 indicate low and high orientational order around r, respect
ively. We additionally calculate the global order parameter of the 
system Pm〈 〉 by determining the order parameter over the entire 
system area. We use global order parameter values to character
ize the degree of order in the system, while local order parameter 
values are used to identify disclinations.

At ϕ ≈ 0.75, in both experiments and simulations, confinement 
starts to influence the bulk ordering, depending upon the 

confinement shape and size. In Fig. 2, P2〈 〉 is plotted as a function 
of the system shape r1/r2 and size r1/L. A reduction in P2〈 〉 is ob
served when moving from the bottom left region, low value of 
r1/r2 and small system size, to the top right, high value of r1/r2 

and large system size. Generally, a decrease in r1/r2, i.e. an in
crease in confinement eccentricity, leads to higher P2〈 〉 values, in
dicating increased orientational order arising from well-aligned, 
smectic layers.

We attribute the increased smectic order with higher confine
ment eccentricity to the change in rod anchoring from planar to 
homeotropic near the ellipse vertices. The equation describing 
an ellipse boundary is given by x = r2 cos t, y = r1 sin t, where x 
and y are Cartesian coordinates, and t is the polar angle, which 
varies from 0 to 2π. The radius of curvature, Rcurv, for an ellipse 
varies around the perimeter, as illustrated in Fig. 2D, and is given 
by:

Rcurv(t) =
(r1

2 cos2 t + r2
2 sin2 t)3/2

r1r2
. (2) 

We define the smallest value of Rcurv for a given ellipse shape as 
Rmin, located at the ellipse vertices and focus on how P2〈 〉 varies 
with Rmin. For Rmin/L ≤ 0.5 (red regions in Fig. 2), we observe home
otropic anchoring at the ellipse ends, shown in Fig. 2C-i. This ho
meotropic anchoring results in a single smectic domain, 
characterized by a high P2〈 〉 value of ≥0.7. As we move towards 
intermediate Rmin values, (0.5 < Rmin/L ≤ 1, yellow regions in 
Fig. 2), we observe a reduction in P2〈 〉 from ∼ 0.7 to ∼ 0.5. We attri
bute this reduction in P2〈 〉 to an increase in the proportion of rods 
tilting away from the boundary normal at the ellipse vertices, as 
depicted in Fig. 2C-ii. Lastly, for confinements with Rmin/L > 1 
(blue regions in Fig. 2), we find a relatively uniform distribution 

of rod orientations, resulting in P2〈 〉 ≤ 0.4. An example is shown 

in Fig. 2C-iii. We ascribe the lower orientational order in the sys

tem to the predominantly planar anchoring around the confine

ment boundary. We note that in circular confinements, regions 

of uncontrolled homeotropic anchoring can occur due to adsorbed 

regions of tetratic ordering to the boundary, as observable in 

Fig. 2C-iii. Generally, Rmin decreases below some critical value be

yond which an anchoring transition from homeotropic to planar 

occurs.
To identify the critical radius of curvature R∗curv for an anchor

ing transition to arise, we analyze the average particle orientation 
at the boundary for all confinement geometries. The deviation of 
the average rod orientation angle 〈φparticle〉 from the tangential an
gle φtangent of the boundary (see inset in Fig. 2D) is calculated 
around the perimeter of the ellipse for each confinement. At 
each point around the perimeter, we draw a circle with a radius 
twice the rod diameter 2D and average the rod orientation 
weighted by the area of each rod that is enclosed within the circle, 
to determine 〈φparticle〉. Additionally, we calculate Rcurv at each in
crement using Eq. 2. The angle deviation σ = |(〈φparticle〉 − φtangent)|
is binned and then averaged as a function of Rcurv/L across all con
finement samples, as plotted in Fig. 2E. Additional details can be 
found in Supplementary Material and Fig. S2. We fit the average 
angle deviation σ〈 〉 as a function of Rcurv/L to an exponential decay, 
finding σ〈 〉 ≈ (0.27)exp[ − 0.93(Rcurv/L)] + 0.03 for experiments and 
σ〈 〉 ≈ (0.38)exp[ − 1.18(Rcurv/L)] + 0.02 for simulations. Defining 

planar anchoring as a rod orientation ±15 degrees from the tan
gent ( σ〈 〉 = 0.08π), we find the critical radius of curvature R∗curv/L ≈ 
1.9 for experiments and R∗curv/L ≈ 1.6 for simulations. We note that 
the noise of σ〈 〉 beyond R∗curv/L ∼ 2 is due to the occasional ad
sorbed region of tetratic ordering to the boundary, seen also in 

Fig. 2. Global nematic order parameter P2〈 〉 plotted for varying 
confinement shape r1/r2 and size r1/L for both A) experiments and B) 
simulations. The background colors denote different regimes, 
characterized by the smallest value of the radius of curvature Rmin for a 
given ellipse, where red is Rmin/L ≤ 0.5, yellow is 0.5 < Rmin/L ≤ 1, and blue 
is Rmin/L > 1. C) Simulation snapshots are shown on the right for 
confinement parameters of i) r1/r2 = 0.2, r1/L = 0.6, ii) r1/r2 = 0.6, r1/L = 1.7, 
and iii) r1/r2 = 1.0, r1/L = 2.3. The box color of each snapshot reflects the 
P2〈 〉 value, which are: i) 0.96, ii) 0.53, and iii) 0.16. D) The radius of curvature 

Rcurv varies around an ellipse perimeter. Example radii of curvature at two 
different points on the ellipse boundary are drawn here with the 
associated tangent line at each point. The radius of curvature is given by 
Eq. 2. The Cartesian axes are labeled in red, with the eccentric angle θ given 
by θ = tan−1 (r1/r2 tan t), where t is the polar angle. E) The average deviation 
σ〈 〉 of the average particle orientation 〈φparticle〉 from the boundary tangent 

angle φtangent (inset), is plotted as a function of Rcurv/L. A transition from 
homeotropic (perpendicular) to planar (tangential) anchoring is observed 
with increasing Rcurv/L. Both experimental (yellow triangles) and 
simulated data points (blue squares) are fitted to exponential decays.
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Fig. 2C. Generally, these regions are outliers in the overall anchor
ing behavior of rods, reflected by the low value of the noise com
pared to definitive homeotropic anchoring below R∗curv ∼ 2 (see 
also Fig. S3.)

The critical radius of curvature R∗curv being approximately twice 
the rod length L suggests that the excluded area of the rods 
changes with boundary curvature. As curvature varies, the rods 
alter their orientation relative to the boundary to achieve a 
more efficient packing. Instead of packing end-to-end as in planar 
anchoring, more rods can occupy the area near the boundary by 
stacking side-to-side, resulting in homeotropic anchoring. The 
tradeoff between minimizing the rod-boundary excluded area 
and the excluded area with neighboring rods appears to occur at 
a radius of curvature between L and 2L. To probe the robustness 
of our result, we measure R∗curv in simulations of rods with 
L/D = 5, 8, 11, and 14, confined within ellipses and for varying 
packing fractions ϕ to access both nematic and smectic phases. 
The angle deviation σ for each parameter is plotted against 
Rcurv/L in Fig. S3. Surprisingly, we find that all systems yield 
R∗curv ≈ 2L, regardless of whether the system is nematic or smectic 
(see Fig. S3 and Table S1). Our findings show that boundary curva
ture plays a crucial role in determining the anchoring condition 
for hard rods, with a robust critical radius of curvature yielding 
a homeotropic anchoring transition, irrespective of rod aspect ra
tio and packing fraction.

Smectic disclination structure
After establishing that local boundary curvature determines the 
anchoring of confined hard rods, we now demonstrate that en
tropic anchoring can control the disclination structure of a model 
smectic formed by rods with L/D ≈ 8. The defects in the system are 
influenced by both the local curvature of the confinement (the size 
and eccentricity) as well as its global curvature (fixed Euler 

characteristic χ = +1, which is a topological quantity that is invari
ant to smooth deformations). We first identify disclinations in ex
periments and simulations by mapping the local nematic order 
parameter P2 (Fig. 3A). Local P2 values can be used to identify dis
clinations. Our MC simulations run for at least 2.5 × 107 cycles, 
while our experiments are observed periodically over a period ran
ging from 1 to 5 months. In analyzing the smectic layer conform
ation, we ignore interstitials—single rods that orient parallel to 
the layers and are located in between them (54). Across varying 
confinement sizes and shapes, the observed disclination configu
rations can be categorized by four states that we identify as the 
bridge (B), pinned splay (PS), pinned bend (PB), and virtual (V) 
states.

Starting at large confinement dimensions with low eccentricity 
(r1/L ≥ 2.4, r1/r2 ≥ 0.6), the B state is observed. This state is charac
terized by two antipodal disclinations, disconnected from the 
boundary, typically with a large central smectic domain (44, 64). 
Disclinations are labeled by red lines in Fig. 3A, and for the bridge 
state, the red disclination lines are entirely within the bulk. Planar 
anchoring is maintained around the confinement boundary.

For intermediate confinement sizes (1.2 ≤ r1/L ≤ 2.4), two dis
tinct states are observed: the PS and PB states. Both states resem
ble the B state, featuring two, antipodal disclination lines and a 
central smectic domain. The difference between these states lies 
in the adsorption of the disclination lines to the boundary, which 
varies with the rod anchoring. In the PS state, the disclination 
lines are each adsorbed at approximately a single point on the 
boundary, as illustrated in Fig. 3A, Pinned Splay. Along the bound
ary, there is planar anchoring on either side of each red disclina
tion line. On the other hand, the PB state has linear portions of 
the disclinations adsorbed, as illustrated in Fig. 3A, Pinned Bend. 
The increased homeotropic anchoring at the boundary causes lar
ger portions of the red disclination line to be absorbed to the 
boundary. The PS state requires the director, which describes 

Fig. 3. A) Bridge (B), pinned splay (PS), pinned bend (PB), and virtual (V) disclination states observed for varying confinements. i) Idealized structures are 
shown with black lines representing smectic layers and red lines representing disclinations. Experiment ii) snapshots and iii) local P2 mapping (see color 
bars) are shown (scale bars are 10 μm). Simulation iv) snapshots and v) local P2 mapping are also shown. Disclination states are plotted for varying 
confinement size (r1/L) and shape (r1/r2), for both B) experiments and C) simulations. A transition from the V to the B state is observed with increasing 
confinement size and decreasing eccentricity (i.e. increasing r1/r2), passing through intermediate PB, PS, and composite states. The background colors 
again denote different regimes, characterized by the smallest value of the radii of curvature Rmin/L for a given ellipse, where red is Rmin/L ≤ 0.5, yellow is 
0.5 < Rmin/L ≤ 1, and blue is Rmin/L > 1. The Rmin/L regimes demarcate the shifts in disclination states, indicating a relationship between the 
curvature-imposed anchoring and the disclination state.
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the rod orientation, to splay at the point of disclination adsorp
tion. In the PB state, the smectic lamellae follow the curvature 
of the boundary and are bent without director distortion.

We attribute the rarity of the PS state to differences in elastic 
energy contributions of director splay and layer bend for the elas
tic constant K in Eq. 1 for hard-rod smectics. Wensink and Grelet 
explored these differences in the elastic response of hard-rod 
smectics with a recent work that connects microscopic theory to 
mesoscale elasticity (51). By extending the work of Straley (81) to 
smectics, they find that the elastic modulus for smectic layer 
bending is typically two orders of magnitude lower than that of 
splay in the director for hard-rod smectics. Therefore, the elastic 
constant K in Eq. 1 is dominated by director splay deformations. 
In other words, for colloidal smectics, layer bending without dir
ector splay has a minimal elastic energy penalty, making the PB
state more energetically preferred than the PS state.

Finally, in the case of extreme confinements (r1/L ≤ 1.2), the V
state is observed, characterized by the absence of disclinations 
in the bulk from increased homeotropic anchoring at the ellipse 
vertices (labeled by red lines at the boundary in Fig. 3A, Virtual). 
Additionally, in certain confinements of intermediate size and ec
centricity, composite states C are observed. We denoted which 
states are part of the composite using super- and subscripts: for 
example, a composite structure of B and PS is denoted CPSB .

The disclination structure depends on the confinement geom
etry (r1/r2 and r1/L) and thus the imposed anchoring. To visualize 
this dependence, we plot the disclination state with varying r1/r2 

and r1/L in Fig. 3B. In certain cases, the disclination state varies be
tween samples or relaxes over time, for which the ratio of ob
served structures is plotted.

At high eccentricity and confinement, we observe the V state 
(bottom left of Fig. 3B and C). With larger confinements and de
creasing eccentricity, the system configuration moves through 
the PB/PS states and ends with the B state at the largest and 
most circular confinements (top right of Fig. 3B and C). Similar 
to the plots in Fig. 2A and B, Rmin becomes greater with increasing 
r1/L and r1/r2 and is colored from red (Rmin/L ≤ 0.5) to yellow 
(0.5 < Rmin/L ≤ 1) to blue (Rmin/L > 1). The increase in Rmin begins 
to alter the anchoring condition from homeotropic to planar 
near R∗curv/L ≈ 1. The anchoring change directly affects the discli
nation states. The homeotropic-to-planar anchoring transition 
that arises with reduced boundary curvature produces disclina
tions (V state transitions to PB/PS states across Rmin/L = 0.5 
from red to yellow regions) and de-pins them from the boundary 
at Rmin/L > R∗curv/L = 1 (blue regions), pushing the disclinations 
into the bulk (B state).

The disclination state of a colloidal smectic is directly related to 
the dependence of anchoring on confinement curvature. Here, we 
explicitly establish the connection between curvature, anchoring, 
and disclination pinning to a surface. The anchoring condition of a 
colloidal liquid crystal, which is controlled by the confinement 
curvature, ultimately determines the disclination state.

Network analysis
We have thus far established the connection between confine
ment geometry, anchoring, and disclinations—defects in the 
orientational order marked by low values in P2. However, smectics 
also exhibit positional order and, consequently, dislocation de
fects. Identifying dislocations requires a method that reflects the 
broken translational symmetry of the smectic phase. Therefore, 
in order to analyze the effect of confinement geometry on 2D, 
edge dislocations, we leverage the single-rod resolution of our sys
tem to construct networks of minimum and maximum density 
using an analysis method recently introduced by Monderkamp 
et al. (46).

Briefly, each network consists of a set of vertex points identify
ing either rod centers or rod ends, from which a network is con
structed by employing a Delaunay triangulation on all these 
points. The boundary can be arbitrarily assigned to either the min
imum density (rod ends) or maximum density network (rod cen
ters). Here, we choose to always assign the boundary to the 
maximum density network. Next, the minimum and maximum 
density networks are separated, and empty loops are collapsed 
to single vertex points or lines. This process yields two interwoven 
yet distinct networks representing minimum (yellow lines, Fig. 4) 
and maximum (black lines, Fig. 4) density, respectively. We ex
clude interstitials from our analysis. A detailed protocol is avail
able in the Supplementary Material (see Fig. S4).

The maximum and minimum density networks possess topo
logical charge. The total topological charge of a network 

􏽐
q can 

be determined by summing the charges of every vertex point on 
the network, where the charge q is set by the number of adjacent 
connected points d: q = 1−d/2. In the case of the elliptical confine
ment, where the boundary is assigned to either the minimum or 
maximum density network, the system follows the Poincaré– 
Hopf theorem with 

􏽐
q = χ = +1. Further discussion on the 

Fig. 4. Network topology associated with (A) disclinations and (B) 
dislocations. A) Disclinations produce positive charge in the maximum 
density network and negative charge for the minimum density network 
and have total charge of 

􏽐
q = +1/2. B) Dislocations have a degeneracy in 

the assignment of network charges. They can be represented by a split/ 
merge in either the maximum density or minimum density networks. 
Each operation equivalently results in a total topological charge of zero. 
To distinguish dislocations from disclinations using network charges, we 
always assign the network split/merge to the maximum density network, 
highlighted by the red box (left). Schematics showing C) closed loops of 
the maximum density network corresponding to well-organized 
smectic-layers and D) closed loops of the minimum density network 
corresponding to tetratic regions.
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topological charge conservation can be found in the recent work 
of Monderkamp et al. (46).

However, in addition to topological charge conservation, we 
identify features within the networks that uniquely distinguish 
topological defect types. In this context, we show how vertex 
charges and loops in the network can be used to quantify the pres
ence of disclinations and dislocations, and to identify local tetratic 
order. Subsequently, we leverage these network features to exam
ine how the confinement geometry influences the occurrence of 
dislocations and the formation of metastable tetratic domains.

The topological charges assigned to vertices on the minimum 
and maximum density networks enable the identification of dis
clinations as well as dislocations, shown also in a recent study 
conducted simultaneously by Wittmann (82). In Fig. 4, we show 

schematics of a disclination (Fig. 4A) and a dislocation (Fig. 4B), 
with the maximum density networks depicted in black and the 
minimum density networks in yellow. Positively charged vertices 
are denoted by red dots, while negatively charged vertices are rep
resented by blue dots.

In the vicinity of a disclination, the maximum density network 
gains positive charges, while the minimum density network ac
quires negative charges. Regions with a discontinuous change in 
rod orientation result in the maximum density network ending 
at a single point, yielding a positive charge, and the minimum 
density network branching, forming a negative charge. The num
ber of positive vertices on the maximum density network (or simi
larly, negative vertices on the minimum density network) 
quantifies the amount of disclinations in a system. Disclination 

Fig. 5. Plotting network features for different confinement shapes, represented by different colors (see legend). Experiments are filled data symbols, while 
simulations are open data symbols. Insets show schematic representations of network features with the corresponding defect/order type. Positive A) and 
negative B) network charge for the maximum density network 

􏽐
qmax, is divided by the normalized confinement area 􏽥A = A/Ap, where A denotes the 

confinement area and Ap the particle area. 
􏽐

qmax/􏽥A is then plotted against 􏽥A. Positive maximum density network charge 
􏽐

q+
max is associated with 

disclinations, while negative maximum network charge 
􏽐

q−
max is associated with dislocations. Varying confinement shapes (r1/r2) are plotted in different 

colors, shown in the legend (A, top). The number of maximum density loops nmax D) and minimum density loops nmin E) is divided by the normalized 
confinement area 􏽥A = A/Ap, where A denotes the confinement area and Ap the particle area. n/􏽥A is then plotted against 􏽥A. Maximum density network 
loops are associated with ordered smectic layers, while minimum density network loops are associated with tetratic regions. Experiment snapshots for 
r1/r2 = 0.8, r1/L = 3.6 C and F, top) and r1/r2 = 0.2, r1/L = 1.9 C and F, bottom) demonstrate that, for comparable 􏽥A, the confinement with higher eccentricity 
has fewer internal q+

max (C, highlighted red dots), indicating disclination suppression, as well as more internal q−
max (C, highlighted blue dots), indicating 

dislocation promotion. Likewise, for comparable 􏽥A, the confinement with higher eccentricity has more maximum density loops (F, green loops), 
indicating high smectic order, as well as fewer minimum density loops (F, purple loops), indicating low tetratic order. Scale bars are 10 μm.
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lines exhibit an excess topological charge of +1/2 in the network, 
as shown in Fig. 4A. This is reflected in how the B, PS, and PB
states are made up of two disclinations (Fig. 3), resulting in a total 
charge of +1, as expected from the Poincaré–Hopf theorem.

On the other hand, for dislocations, the network charges from 
both the minimum and maximum density networks total to 
zero, as illustrated in Fig. 4B. A smectic dislocation is character
ized by either a splitting of one layer into two, or likewise a mer
ging of two layers into one, resulting in a discontinuity in the 
positional order. That a dislocation in smectics can be viewed as 
either a merger or a branching of layers is reflected in how the 
minimum and maximum density networks are drawn. We dem
onstrate the ambiguity in the network representation of disloca
tions in Fig. 4B. The change in layer number from a disclination 
can be equally represented in the network as either branching in 
the maximum density network (Fig. 4B, left) or equivalently, 
branching in the minimum density network (Fig. 4B, right). To al
low for a quantitative distinction between disclinations and dislo
cations using network charges, we choose to consistently 
represent a dislocation by branching the maximum density net
work. With this convention, negative vertices in the internal, max
imum density network uniquely identify dislocations. The 
amount of negative charge in the maximum density network 
then serves as a measure for the quantity of dislocations.

However, beyond the network vertices, loops in the network 
analysis can further identify system features. We show for the 
first time that loops in maximum and minimum density networks 
can be used to distinguish smectic versus tetratic ordering, re
spectively. With our rods having an aspect ratio ∼8, our system 
supports metastable, quasi-tetratic order, in addition to smectic 
order. Local tetratic regions are surrounded on all sides by discli
nations and possess a net-zero topological charge. Charges in the 
density networks alone cannot discriminate between tetratic re
gions and other defects that arise with smectic order. Instead, 
we examine closed loops in the network to quantify the degree 
of tetratic and smectic order. As shown in Fig. 4C, closed max
imum density loops capture smectic order by representing either 
two adjacent smectic layers that stretch across the confinement 
or a smectic dislocation. Conversely, as illustrated in Fig. 4D, 
closed minimum density loops capture tetratic order by enclosing 
a local region with rods differing in orientation by π/2 compared to 
their surroundings.

To quantify the amount of disclinations and dislocations with 
varying confinement geometry, we separately plot the total intern
al positive and negative charges on the maximum density network, 
􏽐

q+/−
max, for r1/r2 varying from 0.2 to 1.0 against the system size in 

Fig. 5A and B. The system size is measured by the confinement 
area A normalized by the area Ap of a single rod: 􏽥A = A/Ap. The to
tal positive charges 

􏽐
q+

max quantify the extent of disclinations in 
the system, while the total negative charges 

􏽐
q−

max quantify the 
number of dislocations. Experimental data is plotted with solid 
symbols, while simulation data is plotted with open symbols. In 
general, the plots of Fig. 5A show that 

􏽐
q+

max and 
􏽐

q−
max both in

crease with system size and scale with the area. Normalizing these 
quantities with 􏽥A reveals a flat distribution at larger system sizes, 
indicating that the defect amounts grow with the system size.

We focus first on intermediate system areas, where boundary 
effects dominate over bulk effects. Starting with disclinations and 
􏽐

q+
max in Fig. 5A, we see confinements with high eccentricity 

(r1/r2 ≤ 0.4) producing fewer positive charges in both experiments 
and simulations. This result agrees with our findings in Fig. 3, 
where higher eccentricity with decreasing r1/r2 leads to 
boundary-adsorbed disclinations (PS and PB states) that disappear 

in the V state with smaller systems. Increasing the confinement ec
centricity enhances homeotropic anchoring near the ellipse vertices, 
resulting in fewer/shorter disclinations in the bulk. Fig. 5C exempli
fies the decrease in positive internal vertices, signifying a reduction 
in disclination amount with increased eccentricity.

Turning towards dislocations and 
􏽐

q−
max in Fig. 5B, we now see 

major differences between experiments and simulations. 
Experiments show a larger amount of dislocations across the 
varying confinement geometries compared to simulations. We at
tribute this disparity in dislocation number to the polydispersity 
in the rods used in experiments, a factor absent in simulations. 
In Fig. S5, we detail how the incorporation of polydispersity in sim
ulations leads to increased magnitudes of 

􏽐
q−

max and a higher oc
currence of dislocations. Rods with lengths deviating from the 
average layer spacing induce shifts in the smectic layering, result
ing in the formation of dislocations.

Despite differences between experiments and simulations, the 
data consistently shows that confinement geometry generally af
fects the formation of dislocations in confined smectics and most 
significantly at intermediate system areas. Confinements with a 
higher eccentricity (r1/r2 ≤ 0.4) possess a higher negative internal 
charge, 

􏽐
q−

max, showing an increase in dislocations. In experi
ments, confinements with r1/r2 = 0.2 exhibit a higher amount of 
dislocations compared to other confining geometries, while in 
simulations, r1/r2 = 0.2, 0.4, and 0.6 all have more dislocations 
than more circular confinements. As shown by the examples in 
Fig. 5C, more elliptical confinements exhibit large smectic do
mains that can support dislocation formation, while more circular 
confinements exhibit almost no dislocations and feature multiple 
domains separated by disclinations.

The large smectic domain in confinements with high eccentri
city supports the creation of dislocations due to boundary curva
ture. Consider a confinement ellipse with r1/r2 = 0.2 and 
r1/L = 2.45. Using the boundary charges from the network analysis 
(Fig. S6), we determine the average smectic layer spacing λ to be 
λ = 1.1L. The number of layers m that can fit across the center of 
the ellipse is mcenter = 2r2/λ = 22.3. On the other hand, the number 
of layers that can fit along the bottom of the confinement is 
mbottom = C/(2λ) = 23.4, where C is the confinement circumference. 
The incommensurate number of layers from the center to the 
boundary leads to geometrical frustration that is relieved by the 
Helfrich–Hurault instability (40), which nucleates dislocations. 
The combination of long-range smectic order, the incommensur
ate number of layers from the curved boundary, and the rod poly
dispersity collectively contribute to the prevalence of dislocations 
in highly elliptical confinements.

Loops in the maximum and minimum density networks serve 
to further identify and quantify the degree of smectic and tetratic 
order. In Fig. 5D, we plot the number of loops in the maximum 
density network, nmax, for both experiments and simulations. 
Confining geometries with high eccentricity, specifically 
r1/r2 = 0.2, exhibit larger values of nmax compared to more circular 
confinements, most notably at intermediate system areas. A sys
tem with an intermediate, normalized area 􏽥A = 390 is shown at 
the bottom of Fig. 5F, where maximum density loops are high
lighted in green. Higher nmax values corroborate that high confine
ment eccentricity facilitates smectic order.

At intermediate system areas, confinements with higher eccen
tricity also exhibit lower nmin values and thereby less tetratic order 
than more circular confinements, consistent with confinement el
lipticity promoting smectic order. Fig. 5F highlights confinement 
geometries with r1/r2 of 0.2 and 0.6, both with comparable areas, 
􏽥A = 390 and 380, respectively. The more circular confinement 
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(Fig. 5F, top) has nmin = 3, reflecting three local, quasi-tetratic re
gions. In contrast, the more elliptical confinement (Fig. 5F, bot
tom) has no tetratic regions, with nmin = 0.

However, the ability of the boundary to influence the bulk order is 
limited by the system size. At larger areas, both 

􏽐
q+

max and 
􏽐

q−
max 

scale with the area with no discernible trend with confinement 
shape, r1/r2. Furthermore, for larger systems, nmax starts to scale lin
early with area, due to the emergence of metastable, tetratic order in 
the bulk. The appearance of local, quasi-tetratic regions in larger 
systems stems from the anchoring extrapolation length limiting 
the extent of order that a surface can impose into the bulk (40, 83– 
85). These quasi-tetratic regions introduce disclinations that disrupt 
the formation of maximum density loops, shown in Fig. 5D for 
r1/r2 = 0.2, where nmax approaches values observed in more circular 
systems. Circular confinements form disclinations due to the con
finement shape promoting planar anchoring, which disrupts the 
smectic order. An unconfined system also forms disclinations due 
to metastable, short-ranged, and quasi-tetratic order. Therefore, 
when elliptical systems with r1/r2 = 0.2 become sufficiently large, 
the bulk contains more disclinations due to the formation of local
ized, tetratic regions. The anchoring from the elliptical confinement 
can only suppress metastable, tetratic order in the vicinity of the 
boundary, within a distance set by the anchoring extrapolation 
length. The increase of quasi-tetratic order for r1/r2 = 0.2 with large 
areas is also evident in the number of loops in the minimum density 
network, nmin, as plotted in Fig. 5E. nmin positively scales with the sys
tem area with no discernible effect of confinement shape at large 
areas, which is once again a consequence of the anchoring extrapo
lation length. Upon increasing the system size, the liquid crystal has 
more available bulk area, allowing for the formation of metastable, 
tetratic structures.

Our network charge analysis enables the quantification of dislo
cations. Dislocations form in confinements with high eccentricity, 
due to homeotropic anchoring in high curvature regions creating 
long-ranged smectic order. Closed network loops distinguish 
smectic from tetratic order. Confinements with high eccentricity 
suppress metastable, tetratic order. The anchoring conditions 
formed by ellipses with high regions of curvature can be leveraged 
to curb metastable structures, yielding long-range order.

Conclusion
To sum up, we have demonstrated using both experiments and 
simulations that the anchoring and defect state of confined col
loidal smectics are directed by boundary curvature. By varying 
the size and shape of elliptical confinements, we effectively tune 
the local boundary curvature. The transition from planar to home
otropic anchoring is found to occur at a local, critical radius of 
curvature, approximately twice the rod length, R∗curv ≈ 2L, a robust 
quantity that holds across a broad range of rod aspect ratios and 
packing fractions. Being a local geometric quantity, we anticipate 
our finding to influence the future design of boundaries for anchor
ing control, beyond the enclosed confinements used in the present 
study. For instance, local curvature can be patterned topographic
ally along long walls and channels to achieve entropic, homeo
tropic anchoring over a large surface. The explicit demonstration 
of homeotropic anchoring via designed, local curvature over a 
large area is the subject of a future study. We then demonstrate 
the use of anchoring control imposed by the local boundary curva
ture to set the disclination state of the confined system. We employ 
a network analysis to distinguish disclinations and dislocations by 
examining topological charges, and we further expand the analysis 
to include network loops in the minimum and maximum density 

networks to differentiate smectic and tetratic ordering. The defect 
types in the smectic phase can be selected by adjusting the bound
ary curvature: planar anchoring in confinements with large curva
tures promotes disclinations, while homeotropic anchoring in 
highly curved, elliptical confinements favors dislocations. In ellip
ses of intermediate sizes, metastable structures can be suppressed 
when the anchoring extrapolation length covers a significant por
tion of the bulk, resulting in long-range smectic order.

Interestingly, both experiments and simulations consistently 
reveal the effect of boundary curvature on disclinations but 
with slight variations in the value of R∗curv and the number of dis
locations. We attribute this discrepancy to the polydispersity of 
rods in experiments, a factor absent in simulations. In Fig. S3 
and Table S1, we use simulations to probe the possible influence 
of polydispersity on R∗curv. For smectics formed at packing fraction 
ϕ = 0.81, we find monodisperse rods with L/D = 8 yielding 
R∗curv ≈ 1.58L, while polydisperse rods give an increased critical ra
dius of curvature of R∗curv ≈ 1.67L. It is therefore plausible that pol
ydispersity is a factor for why we measure a larger R∗curv in 
experiments compared to simulations. We additionally examine 
the effect of polydispersity on the production of dislocations 
across confinement geometries, shown in Fig. S5 and Table S2. 
We find that dislocations increase in systems with polydisperse 
rods. Disclinations, characterized by an excess network charge 
of 
􏽐

q = +1/2, are significantly affected by the topological frustra
tion arising from confinement. This topological frustration is 
largely unaffected by rod polydispersity (see Fig. S5 and 
Table S2). However, dislocations have a neutral topological contri
bution (

􏽐
q = 0) and are thereby more susceptible to local differ

ences in microscopic interactions and macroscopic properties. 
Polydispersity in the rod shape and size alters the excluded- 
volume interactions of the rods with a hard-wall boundary, poten
tially impacting the rod anchoring. Additionally, polydispersity 
may alter macroscopic, elastic properties. In recent work connect
ing microscopic interactions of hard rods to mesoscale elasticity 
(51), Wensink and Grelet found that the positional fluctuation of 
rods normal to their layer leads to a reduction in the layer bending 
modulus K in Eq. 1. Polydispersity, leading to deviations in rod 
lengths from the average smectic layer size, has been shown to in
crease inter-layer diffusion (86). Given the significant bend defor
mations experienced by smectic layers around a dislocation, 
polydispersity in rod length could potentially lower the energy re
quired to form a dislocation by reducing K. The effect of rod poly
dispersity on the mesoscale, elastic energy of lyotropic smectics 
remains to be fully elucidated and requires further study.

Lastly, we note an interesting observation in polydisperse, si
mulated systems, where rods with L/D < 4 sample a relatively 
large area of the confinement compared to longer rods, shown 
in Fig. S7 and Supplementary Material, Video S2. These shorter 
rods can group and locate in between smectic layers as intersti
tials. Across all confinements, the short rods can locate near the 
boundary as well as remain within the bulk. We also see short 
rods in experiments locating near boundaries (see Fig. 1D) as 
well as in disclinations (see Fig. 5C and F). We have removed inter
stitials from our analysis, but the size-selective interactions of 
rods near boundaries and defects is an interesting research ques
tion that requires further investigation.

To conclude, we have demonstrated the control of anchoring 
and defects in hard-rod smectics using only hard-wall interac
tions. As the rod anchoring depends solely on the local wall geom
etry, our findings are applicable to liquid crystalline systems 
across various length scales. The conclusions gained from this 
work help to establish design principles for the self-assembly 
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and defect control of larger-scaled liquid crystals, such as aniso
tropic cells (16–21) and nanorods (9, 25–30)—important for the de
velopment of bio- and nano-technologies.
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