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The Helfrich-Hurault (HH) elastic instability is a well-known mechanism behind patterns
that form as a result of strain upon liquid crystal systems with periodic ground states.
In the HH model, layered structures undulate and buckle in response to local, geometric
incompatibilities, in order to maintain the preferred layer spacing. Classic HH systems
include cholesteric liquid crystals under electromagnetic field distortions and smectic
liquid crystals under mechanical strains, where both materials are confined between
rigid substrates. However, richer phenomena are observed when undulation instabilities
occur in the presence of deformable interfaces and variable boundary conditions. Un-
derstanding how the HH instability is affected by deformable surfaces is imperative for
applying the instability to a broader range of materials. In this review, we re-examine
the HH mechanism and give special focus to how the boundary conditions influence the
response of lamellar systems to geometrical frustration. We use lamellar liquid crystals
confined within a spherical shell geometry as our model system. Made possible by the
relatively recent advances in microfluidics within the past 15 years, liquid crystal shells
are composed entirely of fluid interfaces and have boundary conditions that can be dy-
namically controlled at will. We examine past and recent work that exemplifies how
topological constraints, molecular anchoring conditions, and boundary curvature can
trigger the HH mechanism in liquid crystals with periodic ground states. We then end
by identifying similar phenomena across a wide variety of materials, both biological and
synthetic. With this review, we aim to highlight that the HH mechanism is a generic
and often overlooked response of periodic materials to geometrical frustration.
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I. INTRODUCTION

Subjected to shear, solids strain but fluids flow: what
else can happen? Between solid and liquid lie the liquid
crystalline phases of matter: like a crystal, they trans-
mit torque and shear stresses but only in some directions
and geometries. For instance, the long-range orienta-
tional order of a nematic liquid crystal, a phase where
the rod-like constituents tend to point in the same direc-
tion (the director), implies that if a rod is rotated away

∗ mlavrent@utk.edu
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from its preferred direction in one region, its surround-
ings will rotate with it. Nematics do not have transla-
tional order, so they do not support shear stresses. How-
ever, smectic and cholesteric liquid crystals do. Smec-
tics break translational symmetry by having the rod-like
molecules sort into layers, resulting in a density modula-
tion in one direction. Cholesterics form “pseudolayers”,
maintaining a constant density throughout the material,
but break translational symmetry due to a helical twist-
ing of the director. The thickness of a cholesteric pseu-
dolayer is defined by a rotation of the molecules by π,
as represented in Fig. 1a. Both smectics and cholester-
ics have one-dimensional periodicity in three-dimensional
samples, like a messy stack of cards. When extensional
shear is applied to a structure with a preferred layer
spacing, the layers can undulate in order to maintain
their preferred distance. This sort of response was stud-
ied by W. Helfrich and J.P. Hurault in the early 1970s
within the context of electromagnetic instabilities, de-
picted in Fig. 1b and 1c for a cholesteric (Helfrich, 1971;
Hurault, 1973). Today, we refer to all of these undulating
responses in layered systems as the “Helfrich-Hurault”
(HH) mechanism.

FIG. 1 Schematic of the classic Helfrich-Hurault instability
in a cholesteric liquid crystal. The mesophase is confined
between solid substrates with planar anchoring and can be
described as a lamellar system of period P0/2 (a). Undula-
tion in the periodic layers of the cholesteric along a single (b)
or along two perpendicular directions (c) develops under an
applied magnetic field (H) of sufficient magnitude.

The undulatory deformations of the HH instability are
similar in spirit to the martensitic patterns seen in crys-
tals, where changes in a crystal structure require accom-
panying volumetric changes (Ball et al., 1992). Indeed,
smectic liquid crystals have even been described as “the
weirdest martensite.” (Liarte et al., 2016). Within a
smectic, layers can break and rejoin, creating topological
defects, localized regions of disorder, such as dislocations
and disclinations. In general, topological defects result
from system frustration that can arise from either local
or global geometrical effects.

For example, Frank-Kasper phases, which catalogue
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the numerous possible arrangements of atoms in complex
alloys, are a renowned, historical illustration of struc-
ture from geometrical frustration (Frank and Kasper,
1958; Kleman and Sadoc, 1979; Mosseri, 2008; Sadoc and
Mosseri, 1999). The most locally compact packing of
four rigid, identical spheres is tetrahedral, in which each
corner of the tetrahedron represents the center of each
sphere. However, imperfections, i.e. defects, occur when
the tetrahedron is the unit structure for tiling space. Ge-
ometrical frustration in Frank-Kasper phases arise be-
cause tetrahedrons cannot fill space completely without
distortion. Their symmetry conflicts with a translation
symmetric tessellation since the dihedral angle of a tetra-
hedron is not commensurable with 2π (Kleman, 1989;
Kleman and Sadoc, 1979; Sadoc and Mosseri, 1999). De-
fects are necessarily present in the system because the
packing is “limited” by the shape of the packing unit.
Although tetrahedrons are unable to fill space, this “lim-
itation” actually has higher local densities and greater
vibrational entropy compared to face-centered-cubic or
hexagonal close-packings. This enables a wide array of
possible configurations that gives the packings of Frank-
Kasper phases freedom to deform in order to accom-
modate neighboring atoms (Kleman, 1989; Kleman and
Sadoc, 1979). Frank-Kasper phases demonstrate that not
only are defects often necessary to stabilize systems, but
that phases can also be constructed from geometrical in-
compatibilities. The regular network of disclinations in
Frank-Kasper phases requires only the tiling of polyte-
trahedra to be constructed.

It is not a coincidence that Sir F. Charles Frank is
the same “Frank” of both Frank-Kasper phases and the
Frank free energy density of a liquid crystal — underlying
both formulations is the importance of geometry in the
description of material properties. Classic examples of
geometrical frustration in liquid crystals are blue phases
— states that emerge when it is favorable to introduce
defects to minimize the chiral elastic energy of the bulk
(Marcus, 1981; Saupe, 1969). As it is for the network
of defects in Frank-Kasper phases, the defect networks
in blue phases also emerge from geometrical frustration
(Mosseri, 2008). Similar to how the imperfect packing of
pentagons on a plane can be made perfect when the plane
is curved into a spherical topology, the disclination line
networks of blue phases are removed from blue phases
in the curved space of S3. The defects in blue phases
can be thought of as the consequence of “folding out”
the 3-sphere onto Euclidean space (Sethna et al., 1983).
The conflict between local and global order, as demon-
strated by Frank-Kasper and blue phases, is a signature
of geometrical frustration. For a thorough review of blue
phases, we recommend (Wright and Mermin, 1989).

However, in these and countless other systems, local
geometrical frustration is often accompanied by global
geometrical, i.e. topological frustration, depending on
the global structure of the phase. Using the Gauss-

Bonnet theorem, for instance, it is possible to locally
measure the Gaussian curvature of a patch of surface
just by studying the curvature of closed loops. If you
can measure the curvature everywhere, it is then possi-
ble to deduce the global topology of the surface but only
if the boundary conditions are precisely defined. In some
cases, the boundary can be interpreted as yet another
defect at infinity. However, setting aside considerations
of the boundaries for now, the important issue here is
that local geometrical frustration causes problems in your
neighborhood: even if the Earth were a hemisphere that
ended with a precipice at the equator, we would still not
be able to draw perfect polygons on it. Either the angles
would not be quite right, the edge lengths would be un-
equal, or you could not get it to lie directly against the
Earth. This is geometrical frustration: a fundamental
incompatibility between one set of shapes (the polygons)
and the others (the Earth). Topological frustration needs
to be solved somewhere; geometrical frustration has to be
solved everywhere.

Liquid crystals are the ideal systems to differentiate
local from global geometrical frustration. Most liquid
crystal systems have open boundaries and the notion of
global topology is moot – defects can end on the inter-
faces between phases or at the sample wall, and they can
transform from bulk defects to boundary defects. The
frustration can come about because the geometric pa-
rameters do not match, the shapes do not match (square
peg, round hole), or, as in the blue phase, there is a local
geometry (double-twist) that cannot be extended into the
whole volume. The softness of liquid crystals, the abil-
ity to control and monitor their boundary conditions,
and the relatively straightforward method of real-space
detection of defects allows us to explore both local and
global geometrical frustration.

As pointed out by P. W. Anderson, there are many pos-
sible ordered phases associated with the symmetry break-
ing of an isotropic fluid phase, inducing a particular rigid-
ity in the material as characterized by an elastic energy,
written in terms of gradients of an order parameter. The
smectic and cholesteric considered here are particularly
complex ordered phases (Anderson, 2005), as they con-
tain both a nematic order and a rigidity associated with
the bending and compression of layers or “pseudo”-layers
(but are otherwise free to slide amongst themselves). The
corresponding elastic energies are discussed in detail in
the next section. We will also consider these lamellar liq-
uid crystals in complex confinements, where geometrical
frustration is often relieved through the HH mechanism.
This mechanism is particular to layered systems as it in-
volves a tradeoff between the bending and compression
of the layers under some applied perturbation. This phe-
nomenon is not possible in a conventional crystal, which
would always involve the breaking of bonds. To apply
the HH instability beyond the classical systems, we also
give additional scrutiny to boundary conditions.
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In the first studies by Helfrich and Hurault in the
1970s, the HH instability was examined in lamellar liq-
uid crystals confined between two solid substrates, with
undulation in the layers of liquid crystal induced by elec-
tromagnetic fields (Helfrich, 1971; Hurault, 1973). In
the 1990s, the development of polymer dispersed liquid
crystals (Doane, 1990, 1991), with applications in dis-
plays and privacy windows, accelerated fundamental in-
vestigations of static configurations in more complex ge-
ometries, such as within droplets and pores (Crawford
and Zumer, 1996; Lavrentovich, 1998). With the ad-
vance of lithographic techniques in the late 1990s and
early 2000s (Xia and Whitesides, 1998), the confining
surfaces of liquid crystals could be further shaped into
more elaborate, three-dimensional architectures, advanc-
ing alignment patterning (Gupta and Abbott, 1997; Lee
and Clark, 2001) and responsive liquid crystal technolo-
gies (Bukusoglu et al., 2016). Emerging, sensing applica-
tions also require exposure of the liquid crystal to other
fluid phases, resulting in systems with deformable inter-
faces, further increasing the complexity of boundary con-
ditions (Carlton et al., 2013). The investigation of liq-
uid crystals in more intricate geometries over these last
decades have led to a resurgence of interest in the HH
instability, as more researchers apply these confinements
to lamellar liquid crystal systems.

Many contemporary liquid crystal studies explore the
ordering of living matter as well. These include systems
beyond those of the classic HH instability that undu-
late to relieve geometrical frustration, including in the
morphogenesis of biological liquid crystals. Living liquid
crystals that exhibit undulating layers are pervasive in
nature, seen within a wide array of biological materials,
ranging from plant cell walls to arthropod cuticles (Beli-
aev et al., 2021; Bouligand, 1972b; Giraud-Guille, 1998;
Mitov, 2017; Rey, 2010; Roland et al., 1992; Srinivasarao,
2009). These systems are not only dynamic but also
typically have deformable boundaries at fluid interfaces.
Elucidating the coupling between deformable boundaries
and bulk deformations is then necessary to apply the HH
mechanism to a broader class of materials.

To isolate the effects of a fluid boundary on liquid
crystals within the laboratory, a synthetic system must
have both deformable interfaces and tunable thicknesses
to control the balance between bulk and surface forces.
An experimental system ideal for this purpose is a liq-
uid crystal shell, made possible in 2005 by the semi-
nal work of Utada et al. on microfluidics (Utada et al.,
2005). As first demonstrated by Fernandez-Nieves et al.,
using a liquid crystal as the middle phase in the produc-
tion of water-in-liquid-crystal-in-water double emulsions,
the liquid crystal can be shaped into a spherical shell,
making the system free-standing and stable (Fernandez-
Nieves et al., 2007). With simple adjustments of flow
rates and/or the addition of solutes in the surrounding
aqueous phases, both the thickness of the liquid crystal

shell and the molecular anchoring at the shell interfaces
can be dynamically varied at will. Liquid crystal shells
are then model systems for probing the role of curved,
deformable boundaries in both triggering the HH insta-
bility and stabilizing the resultant defect structures.

The purpose of this review is two-fold. First, the HH
instability is detailed as a mechanism of pattern forma-
tion that results from frustration in lamellar liquid crys-
tals, taking special care to distinguish local versus global
(topological) geometrical frustration. Second, the HH
instability is not only historically reviewed, but recent
work on cholesteric and smectic liquid crystal shells is
presented, to illustrate the mechanisms through which
deformable boundaries can influence and trigger layer un-
dulations.

In the following section, we briefly review the elastic-
ity of liquid crystals. In Section III, we dive into the
history of the HH instability and detail the classic HH
systems, where lamellar liquid crystals are confined be-
tween solid substrates. In Section IV, we consider liq-
uid crystals with deformable interfaces and describe our
model system: the liquid crystal shell. We then charac-
terize the HH instability in cholesteric shells in Section
V, where undulations can arise due to global geometrical
(i.e. topological) frustration and surface anchoring. We
then move to smectic shells in Section VI, where the HH
instability is triggered by local geometrical frustration
due to boundary curvature. We end by identifying the
HH instability across a wide range of elastic materials,
both synthetic and biological.

II. THE DRAMATIS PERSONÆ

Before plunging in, we pause briefly to outline liquid
crystal elasticity. There are any number of excellent
and thorough textbooks (Chaikin and Lubensky, 1995;
de Gennes and Prost, 1993; Kleman and Lavrentovich,
2004), that cover this but here we offer the reader a
highly abridged review. The simplest of the liquid crys-
talline phases is the nematic. In this phase, a preferred,
“long”-axis of the molecules aligns along a local direction,
represented by a unit vector n. At first glance this would
appear to be equivalent to a magnet where n would take
the place of the local spin, m, but the nematic phase has
an additional symmetry: n and −n represent the same
structure – the nematic is a line field not a vector field.
According to Frank (Frank, 1958), distortions away from
the uniform nematic phase are measured through four ge-
ometric quantities that are invariant under the nematic
symmetry: ~S = n(∇·n), T = n·(∇×n), ~B = (n·∇)n,

and G = ∇· ( ~B − ~S) – splay, twist, bend, and saddle-
splay, respectively. The Frank free energy density is a
rotationally-invariant expression in terms of these two
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vectors (~S, ~B), pseudoscalar (T ), and scalar (G):

f = 1
2K1

~S2 + 1
2K2(T + q0)2 + 1

2K3
~B2 +K24G. (1)

We note that ~S · ~B = 0 so there are no cross terms. This
free energy exhausts all the rotationally-invariant group-
ings of terms up to quadratic order in single gradients of
n. The four elastic constants inherit their names from the
expressions they multiply, for instance, K2 is the “twist”
elastic constant. Stability implies that K1, K2, and K3

are positive. Finally, because T is a pseudoscalar, q0
must be as well, and the existence of a pseudoscalar quan-
tity would imply that the material is chiral. To rational-
ize the names of these distortions, one can evaluate the
splay for the two-dimensional texture n = ρ̂ (~S = ρ̂/ρ)
and evaluate the bend for the two-dimensional texture
n = θ̂ ( ~B = −ρ̂/ρ), where ρ and θ are the standard po-
lar coordinates. Both twist and saddle-splay measure
three-dimensional textures: if n = [cos(qz), sin(qz), 0]

then T = −q, while if n = [x,−y, 1]/
√

1 + x2 + y2, then
G = 2/(1 +x2 +y2). The result for G can be understood
by viewing n as the unit normal to the saddle surfaces of
the surface family z = 1

2 (y2−x2), and then G is the neg-
ative of the Gaussian curvature at each point (Kamien,
2002).

In the absence of boundaries, the saddle-splay does
not contribute to the energy (via Stokes’ theorem).
When q0 = 0, a ground state is n = [0, 0, 1], while if
q0 6= 0 then it is straightforward to check that nc =
[cos(q0z), sin(q0z), 0] is a ground state. We call this he-
lically twisting ground-state the cholesteric or the chiral
nematic, and in this case, it has a pitch axis along ẑ.
By rotational invariance, these ground states can be ro-
tated in space, leading to a whole manifold of degenerate
ground states. The cholesteric ground state can then be
viewed in terms of pseudolayers of constant orientation.
Moreover, since a global rotation of n around the z axis
by an angle φ cannot change the energy, we know that at
long length scales, this global symmetry is promoted to a
Goldstone mode so that small ground state fluctuations
can be viewed as deformations of the pseudolayers. The
HH effect distorts these pseudolayers when the preferred
spacing π/q0 differs from a spacing imposed by fields or
boundary conditions.

We will also, in the following, discuss smectic phases.
In the smectic phase, translational symmetry is broken
and the molecules arrange themselves into actual layers,
creating a one-dimensional density wave with the ground
state being a set of uniformly-spaced, flat layers. These
layers generate a field of unit layer normals N . Since
the normals are only defined up to sign, the symmetry
of N is precisely that of the nematic director discussed
above. We can thus create an energy in complete analogy
with the Frank free energy, where we substitute n with
N in the discussion of the last paragraphs. However, it
is important to note that twist necessarily vanishes if N

is normal to a surface from the Frobenius integrability
condition (Capasso, 2018). Yet, there must also be an
energy penalty for deformations away from the preferred
spacing. To measure this, we introduce a phonon field,
u(x, y, z) that measures the deviation from the ground
state.1 Because the sign of u has the same u → −u
ambiguity as the vector n, we will measure deviations of
u along N and define the strain as e = N ·∇u, invariant
under (N , u)→ −(N , u). The free energy density is

f = 1
2Be

2 + 1
2K1

~S2
sm + 1

2K3
~B2

sm +K24Gsm, (2)

where the subscript sm refers to the quantities with n
replaced with N and where B is known as the bulk mod-
ulus (and should not be confused with the bend vector
~B!). Since we can parameterize the smectic layers as
level sets of φ = z − u(x, y, z), N = ∇φ/|∇φ| can be
calculated from u. For instance, N ≈ (−∂xu,−∂yu, 1) to
lowest order in gradients of u. Because the phase is com-
prised of nematogenic molecules, we must also include
the Frank free energy for the nematic director and there
is a coupling between N and n. In the smectic-A phase,
n prefers to align with N , while in the smectic-C phase
the layer normal and director prefer a fixed, nonzero an-
gle between them. This leads to yet another director-like
field which is the component of n perpendicular to N :
the c-director.

The deformations of the smectic-A layers and of the
cholesteric pseudolayers are controlled by the same free
energy density (Kleman and Parodi, 1975; Oswald and
Pieranski, 2005):

fe =
B

2

(
1− 1

|∇φ|

)2

+
K

2
(∇ ·N)2 (3)

where the first term accounts for relative dilation of the
layers and the second term is the curvature energy of the
layers. In the long distance limit, several layers away
from the boundary where the bulk layers are nearly flat
and planar, this free energy reduces to

fe =
B

2

(
∂u

∂z

)2

+
K

2

(
∂2u

∂x2
+
∂2u

∂y2

)2

, (4)

where the average layer normal (or the pitch axis) is along
ẑ. The K3 and K24 contributions are higher degree in
a gradient expansion and are, in this simplest case, ne-
glected. In the case of the cholesteric, we would replace
u with the deviation of the angle of the director field
in the plane perpendicular to the pitch axis. This ba-
sic free energy is the starting point for this review. Note
that this elastic free energy density applies to any system

1 Unlike a crystal, however, u(x, y, z) only has one component re-
flecting the one-dimensional density wave.



6

with one-dimensional, periodic ground states. Without
loss of generality, the periodicity is along the ẑ-direction,
and we can write the density (or pseudo-density) as

ρ(x) = ρ0 + ρ1 cos
[
q (z − u(x))

]
, (5)

where q is the ground state wavevector magnitude. The
first term in (4) measures the energy penalty for chang-
ing the periodicity while the second term measures the
energy cost of bending the “layers.”

We now dive into the history of the HH instability.

III. THE CLASSIC HELFRICH-HURAULT INSTABILITY

As has been made evident from the success of liquid
crystals in the display industry, liquid crystal technology
relies upon the material’s interaction with external fields.
Recall that the simplest liquid crystalline phase, the ne-
matic, is characterized by long-range order of the orien-
tation of anisotropic molecules with one “long” axis and
two, equivalent “short” axes.2 These axes are geomet-
ric, dielectric, and optical, leading to birefringent optics.
The dielectric anisotropy of liquid crystals enables their
manipulation with electromagnetic fields, and their bire-
fringence renders optically detectable responses. System-
atic investigations of liquid crystals under these external
fields became of special interest in the 1960s, the decade
when liquid crystal displays were first conceptually con-
ceived, and regular textures were soon experimentally ob-
served and identified. Some patterns were related to flows
or to other dynamical aspects — such as electrohydro-
dynamic convection in nematics (Helfrich, 1969) — but
others, found especially in layered or quasi-layered sys-
tems, remained static and exhibited well-defined wave-
lengths that resulted from direct competition between
liquid crystal elasticity and its anisotropic, electromag-
netic properties.

The possibility of such an instability was predicted by
Helfrich in the case of cholesterics, where the molecules
have a tendency to twist in a helical fashion, with the
pitch defined as the distance required for a 2π rota-
tion of the molecule along the pitch axis (Fig. 1) (Hel-
frich, 1970). Note again that cholesterics have a periodic
ground state, with no density modulation, but rather, a
modulation in orientation and consequently in the dielec-
tric tensor. Because of this, the periodicity in the system
is often referred to as “pseudolayers”.

Experimental data for the instability in cholesterics
emerged almost simultaneously in the early 1970s (Hel-
frich, 1970) and were followed by two successive theoret-
ical papers, first by Helfrich in 1971 and later refined by

2 These are the so called, “calamitic” nematics. Discotic phases are
also nematic though they have one short axis and two, equivalent
long axes.

J.P. Hurault in 1973 (Helfrich, 1971; Hurault, 1973). Ini-
tially associated with the cholesteric phase, as depicted
in Fig. 1, the HH buckling instability was rapidly identi-
fied as a generic mechanism to relieve stresses and strains
due to external stimuli in lamellar, periodic systems.

A. Cholesteric layer distortions from electric and magnetic
fields

The HH instability was first observed in cholesteric liq-
uid crystal cells (Gerritsma and Van Zanten, 1971a,b)
with strong planar anchoring, where the director n of
the molecules is aligned tangent to the top and bottom
walls. In this geometry, the cholesteric pitch axis, per-
pendicular to the nematic director n and along which
the director twists, has a uniform orientation perpendic-
ular to the parallel walls. The application of an elec-
tric field (Gerritsma and Van Zanten, 1971b; Rondelez
and Arnould, 1971) or a magnetic field (Rondelez and
Hulin, 1972; Scheffer, 1972) parallel to this helix gives
rise to square-grid patterns above a certain threshold
value (Fig. 2). Here, the driving force of the instabil-
ity is a gain in dielectric or diamagnetic energy when
the cholesteric helix begins to distort. In this geom-
etry, the HH instability occurs only in materials with
positive (nematic) diamagnetic susceptibility anisotropy
χa or dielectric anisotropy εa so that the director aligns
along the field, antagonizing the helix. The case of AC
electric fields is, however, more complex since the pres-
ence of conductivity and space charges can also lead to
frequency-dependent instabilities for both signs of dielec-
tric anisotropy εa (Hurault, 1973; Rondelez et al., 1972).

1. Original model

In the magnetic case, the threshold and the wavelength
of the patterns can be computed easily at the onset of un-
dulations with two assumptions: (1) the distortions are
small, and (2) the instability wavelength is much larger
than the cell thickness a, which is itself much larger than
the cholesteric pitch P0 = 2π/q0 (Ishikawa and Lavren-
tovich, 2001a). Recall that the continuous twist of the
director field is described as a pseudolayered structure of
P0/2 periodicity [Fig. 1(a)]. In the Lubensky-de Gennes
coarse-grained approach, the elastic free energy density
fe of a distortion from the planar texture is related to the
displacement u(x) of the pseudolayers along the z-axis,
corresponding to the direction of the initial helix (Brand
and Pleiner, 1981; de Gennes and Prost, 1993), yielding
a free energy density of the same form as Eq. (4), but
now with K rewritten as K̄ = 3K3/8 and B rewritten
as B̄ = K2q

2
0 . K̄ and B̄ are the effective elastic moduli

related to the Frank-Oseen elastic constants of twist K2

and bend K3 of Eq. (1). In the cholesteric, a distortion
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FIG. 2 (Left) Planar texture of a cholesteric phase ob-
tained from mixing 4’-pentyl-4-biphenyl-carbonitrile (5CB)
and cholesteryl oleate in a planar-aligned cell. Grandjean
zones correspond to a slight gradient of thickness resulting
in a discrete change in the number of π-rotations of the di-
rector. (Right) Under large enough AC voltages (∼1 kHZ),
typical square grid patterns are observed. Here, a 9V electric
field is applied across a 20 µm thick cell. Images are captured
with polarizing optical microscopy under slightly uncrossed
polarizers. The scale bar is 50 µm.

u(x) leads to a tilt of the pitch axis N from ẑ. To lowest
order we get tan2 θ = (∇⊥u)2 where ∇⊥ = x̂∂x + ŷ∂y.
For small distortions we have

θ ≈

√(
∂u

∂x

)2

+

(
∂u

∂y

)2

, (6)

with a concomitant change in the magnetic energy den-
sity of:

fm = −1

2
µ0χ̄aH

2θ2, (7)

where µ0 is the vacuum permeability and χ̄a = χa/2
accounts for the continuous twist of the director over a
pitch.

The HH model considers a simple undulation pattern
along one direction (x̂ here) and compatible with in-
finitely strong anchoring at the bounding surfaces z =
±a/2 [Fig. 1(b)]:

u(x) = u0 cos
(πz
a

)
sin(qx). (8)

The total free energy of such an undulation in a cell of
volume V can be computed from Eqs. (4)-(7):

Ft =

(
B̄π2

a2
+ K̄q4 − µ0χ̄aH

2q2
)
V

8
u20. (9)

At low fields, undulations are unfavored. An instability
occurs for a critical field Hc when the sign of the mini-
mum of Ft (with respect to q) changes from positive to

negative:

H2
c =

2
√
K̄B̄π

aµ0χ̄a
=

√
6K2K3πq0
aµ0χa

. (10)

This first-order approach also allows to compute the wave
vector amplitude qc at the threshold:

q2c =
π

a

√
B̄

K̄
=

2πq0
a

√
2K2

3K3
. (11)

The main predictions of the wavelengths and the
threshold of the HH model were satisfactorily checked
experimentally soon after the development of the theory.
However, the original model was found to be limited for
some experimental situations and thus was amended in-
crementally over time. In the following, we will show that
this basic free energy balance is recapitulated in layered
systems subject to stresses both internal and external. In
doing so, we gather all of these effects under the Helfrich-
Hurault umbrella.

2. Further theoretical refinements and experiments

For the sake of simplicity, we have reported the initial
approach of Helfrich and Hurault, which was based on a
simple one dimensional distortion of the layers. Even if
this theory gave the correct threshold field and instabil-
ity wavelength, it did not describe the geometry of the
instability. The early experimental examinations of the
HH phenomenon showed that undulations along a single
direction were rarely observed at the threshold, except in
large pitch systems, where a ∼ P0 (Hervet et al., 1973).
In most cases (large a/P0 ratios) square grid patterns
are observed at the onset (see Fig. 2). Delrieu gener-
alized the HH theory (Delrieu, 1974) and considered a
2D Fourier expansion of the displacement u of the lay-
ers. They showed that the square lattice [sketched in
Fig. 1(c)] was indeed the periodic 2D structure of lowest
energy at the onset for a field perpendicular to the layers.
They nevertheless also showed that the formation of one
dimensional stripe patterns at the onset was possible in
other geometries. For instance, when the applied field
is tilted, one direction of the plane can be energetically
favored over the other. In this case, the square lattices
appear above a second threshold field.

The model outlined in the last section is also too rough
to describe the evolution of the patterns above Hc. The
total free energy scales as the square of the undulation
amplitude u20 in Eq. (9). Therefore, it is necessary to
compute Ft with higher order terms included in the strain
to get a consistent undulation amplitude. These terms
provide a better description of the compression term in
Eq. (4), accounting for the tilt of the pseudolayers. In
terms of the phase field, a rotationally-invariant strain is
e = [1 − (∇φ)2]/2 (Kamien et al., 2009). In two dimen-
sions this gives to next-to-leading order:



8

fe =
B̄

2

[
∂u

∂z
− 1

2

(
∂u

∂x

)2
]2

+
K̄

2

(
∂2u

∂x2

)2

, (12)

which yields, after minimization of the free energy Ft:

u0 =
8

3

√
K̄

B̄

(
H2

H2
c

− 1

)
. (13)

However, the exact shape of the experimental pat-
terns was not scrutinized in the 1970s because of a lack
of appropriate experimental techniques. It was only
later, in a different cell geometry, that Ishikawa and O.
Lavrentovich closely examined an undulation pattern de-
veloping along a single direction (Ishikawa and Lavren-
tovich, 2001b). The two-dimensional system consisted
of cholesteric stripes formed in a cell with homeotropic
(perpendicular) anchoring of the liquid crystal director,
generating a fingerprint texture. The periodic stripes
were horizontally sandwiched between parallel spacers in
the cell, and a magnetic field was applied in the plane
of the cell, perpendicular to the stripes, allowing direct
examination of the patterns above Hc. The study em-
phasized the neglected role of anchoring on the bound-
ing substrates, where distortions could still be observed.
A finite anchoring yields amplitude undulations much
larger than the value predicted by Eq. (13), as well as
a reduced threshold value. This result was later con-
firmed for the square lattice of the original geometry by
Senyuk et al., who used fluorescence confocal polariz-
ing microscopy (FCPM) to image, in three-dimensions,
the distorted pseudolayers under an electric field (Senyuk
et al., 2006). We expound upon the influence of an-
choring and other surface energies on the HH mechanism
when we discuss liquid crystal shells.

The powerful FCPM technique was also employed to
analyze the evolution of the patterns generated by the
HH instability, in detail and with increasing fields. It con-
firmed that the hypothesis of a single Fourier mode in the
plane was valid only in a small range above the thresh-
old. When the field increased, the sinusoidal profile of
the square grid pattern gradually changed to a sawtooth
one, as predicted by Singer (Singer, 1993, 2000). The
study also showed that other thresholds were present at
higher fields. For instance, the two-dimensional, square
grid pattern was destabilized in favor of a 1D structure
of parallel walls at about twice the first threshold.

The cholesteric mesophase is the system in which the
HH effect was first discovered and theorized. Later,
cholesteric systems also enabled subtle experiments for
further fundamental studies of the instability. Indeed,
the resulting patterns have the advantages of being easily
controlled with an external field and of being very regular
and stable. This last point even suggested possible ap-

plications of these systems, such as the design of switch-
able two-dimensional, diffractive gratings (Ryabchun and
Bobrovsky, 2018; Senyuk et al., 2005). However, a
cholesteric phase strained by a magnetic field is not the
only scenario leading to an HH instability. Any layered
systems, such as smectic phases, are expected to show HH
instabilities under fields. Electric fields are often easier
to apply than magnetic fields but their effects are more
complex to analyze (for example, see (Bevilacqua and
Napoli, 2005)). More importantly for this review, HH
patterns can also be observed even in the absence of ex-
ternal fields. In the very first studies, it was already noted
that cholesterics exhibit square-grid patterns transiently
under temperature changes or mechanical deformation
(Gerritsma and Van Zanten, 1971b). This mechanical-
strain-induced HH instability is observed in many other
lamellar or columnar systems, including smectic liquid
crystals.

B. Mechanical layer strain in smectics

In smectics, molecules align and arrange into equally-
spaced parallel planes, creating molecule-thick layers
measurable as a one-dimensional density modulation.
The buckling instability of smectic phases was identified
shortly after the HH effect was observed in cholesteric
phases, but now with pseudolayers replaced by actual
layers. Unexpected laser light scattering was observed
in a smectic-A system, in which the nematic director is
parallel to the smectic layer normal. The system was pre-
sumed to be well-oriented, with the smectic layers paral-
lel to the bounding, homeotropic glass substrates, where
the molecules anchored perpendicularly to the bound-
ing surfaces. Yet, the scattered pattern observed was
well-defined, indicating the presence of periodic struc-
tures in the cell. The intensity of the scattered light was
shown to be extremely sensitive to the strain of the sam-
ple, strongly increasing with dilation but decreasing un-
der compression (Clark and Pershan, 1973; Delaye et al.,
1973).

1. Mechanically induced Helfrich-Hurault effect

The presence of a periodic pattern in strained smectic-
A samples was explained by considering displacements of
layers with ground state spacing a of the form:

u(x, z) = αz + u0 cos
(πz
a

)
sin(qx) (14)

where α = δa/a � 1 is the global applied strain (Clark
and Meyer, 1973). Eq (12) still describes the elastic free
energy density of the smectic-A phase, where the mod-
ulus K̄ = K is now the splay modulus of the director
and B̄ = B the bulk compression modulus. Together,
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they traditionally define the smectic penetration depth,
λ =

√
K/B, a length usually comparable to the molec-

ular size. Expanding in α gives an expression similar to
Eq. (9) for the total elastic energy:

Ft =

(
Bπ2

a2
+Kq4 −Bαq2

)
V

8
u20, (15)

showing the formal analogy between a uniform strain in
a layered system and the application of an external field.
Following the analysis in the previous section, α plays the
role of H2, and so the threshold strain is αc = 2πλ/a,
above which undulations ensue (Clark and Meyer, 1973;
Napoli and Nobili, 2009; Singer, 1993, 2000). Note that
α > 0 for the analogy to hold – compression does not lead
to buckling in this system. Since λ is a molecular length
scale, the instability appears for very small changes of
spacing, δa ≈ 2πλ and with wave vector amplitude q2c =
π/aλ, in concert with Eq. (11).

This analysis holds for lamellar phases under dilation,
including cholesterics, but a quantitative difference may
be present. A thermotropic smectic-A phase or a short-
period, lyotropic lamellar phase is a much stiffer material
than large pitched cholesteric phases, such as the ones
studied by Senyuk et al. with FCPM (Senyuk et al.,
2006). This implies that, for sample cells of comparable
thicknesses, the pattern wavelengths are much smaller
in a short-period, lamellar phase, but also that the si-
nusoidal profile of the undulation is rapidly destabilized
above the HH threshold. Indeed, smectic-A layers are of-
ten considered to be almost incompressible (B →∞), as
shown by the ubiquitous presence of topological defects
called focal conic domains in disordered samples (Friedel,
1922). These macroscopic structures consist of curved
but parallel layers whose common focal surfaces are de-
generated into three-dimensional curves, an ellipse and
a conjugate hyperbola (Bouligand, 1972a). However, in
experiments, the dilation of layers is not expected to be
absent from the bulk, but rather confined in curves or,
eventually, surface discontinuities (Bidaux et al., 1973;
Blanc and Kleman, 1999).

Because of this, in smectic-A samples, the simple undu-
lation pattern can only be optically observed just above
αc, provided thick enough samples are used. Increas-
ing the strain slightly above ≈ 1.7αc induces focal lines
(Clark and Hurd, 1982; Rosenblatt et al., 1977). Rosen-
blatt et al. have described an ideal four-fold grid pat-
tern in terms of ordered assemblies of geometrical stacks
of parallel layers, introducing parabolic focal conic de-
fects and their corresponding domains (Rosenblatt et al.,
1977). Such a structure almost satisfies the homeotropic
anchoring at the bounding plates while the distortions
from dilation remain confined in the line defects. While
the ideal square-grid pattern is rarely obtained in smec-
tics with a simple strain [a polygonal structure is often
observed, (Rosenblatt et al., 1977)] it should be noted

that the simultaneous application of a shear flow may
help the formation of very long-range, ordered square
lattices of parabolic, focal conic domains (Chatterjee and
Anna, 2012; Oswald and Ben-Abraham, 1982).

2. The role of dislocations and disclinations

Although these results all support the analogy between
electromagnetic field-induced and mechanically-induced
HH effects, a major difference exists in the temporal evo-
lution of the textures. Field-induced patterns are caused
by a gain in energy accompanying the reorientation of
the layers and are stable. On the contrary, after a uni-
form strain, the planar texture remains most favorable
and can be achieved if layers can be added to the slab.
Mechanically-induced textures are therefore transient or
metastable, as was emphasized by Clark, Meyer, and De-
laye in 1973 (Clark and Meyer, 1973; Delaye et al., 1973).
An efficient mechanism to relax the strain was expected
to be the climb of edge dislocations, which are unavoid-
ably present in a smectic slab (Bartolino and Durand,
1977b; Ribotta and Durand, 1977). Note that a smectic-
A wedge cell with a tiny angle on the order of 10−3

rad already gives rise to a linear density of about one
dislocation per micron. This mechanism is difficult to
observe directly in smectic-A systems. It can, however,
be studied in the vicinity of the smectic-A to smectic-C
transition (Blanc et al., 2004) and is easily observed in
cholesteric phases due to their larger, micron-scale peri-
odicities, as shown in Fig. 3. We note that, technically,
cholesterics do not have dislocations but χ-disclinations
since they do not have a density modulation (de Gennes
and Prost, 1993). We discuss cholesteric defects with
greater detail in Sec. V.

0s 7s 14s

FIG. 3 Relaxation of a dilated region displaying the
square grid pattern through the climb of an edge dislo-
cation loop during a compression-dilation sequence. The
cholesteric phase was obtained from mixing 4’-pentyl-4-
biphenyl-carbonitrile (5CB) with the chiral dopant (S)-4-
cyano-4’-(2-methylbutyl)biphenyl (CB15, 2.8 wt-%). Images
are obtained from bright field optical microscopy. The scale
bar is 200 µm.

Finally, we point out that buckling instabilities are not
only found in lamellar systems, but also in other mod-
ulated phases, such as columnar phases (Livolant and
Bouligand, 1986; Oswald et al., 1996). We expound more
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upon the HH instability in a broad range of materials in
the last section of this review.

IV. LIQUID CRYSTAL SHELLS

In the previous section, we reviewed the history of the
HH instability in both cholesteric and smectic liquid crys-
tals confined between glass plates. All of the previous ex-
amples have been in systems with solid boundaries. How-
ever, in sensing applications and in bio-materials, liquid
crystal systems with periodic ground states are often in
contact with fluid (liquid or gas) phases. The boundary
conditions are then deformable, resulting in an interplay
between bulk and surface energies that gives rise to more
complex dynamics and ground states.

Liquid crystal shells are attractive systems for inves-
tigating the effect of fluid interfaces on the HH insta-
bility, due to shell thickness tunability and fine control
over the system’s boundary conditions through a wide-
array of techniques, ranging from adjusting the system
temperature to altering the system chemistry (Darmon
et al., 2016a,b,c; Fernandez-Nieves et al., 2007; Koning
et al., 2013; Liang et al., 2013, 2011, 2012; Lopez-Leon
et al., 2012a; Lopez-Leon and Fernandez-Nieves, 2009,
2011; Lopez-Leon et al., 2011a, 2012b, 2011b; Noh et al.,
2020; Seč et al., 2012a; Tran et al., 2017; Zhou et al.,
2016). Shells are water-in-liquid-crystal-in-water double
emulsions, where a thin liquid crystal layer is confined
between an inner water droplet and a continuous water
phase, produced in microfluidic devices made of nested
glass capillaries [Fig. 4(a)]. In these devices, a water-
in-liquid-crystal compound jet is sheared by an outer
aqueous solution [Fig. 4(c)], leading to its breakup into
water droplets that are encapsulated by liquid crystal
[Fig. 4(b)] (Fernandez-Nieves et al., 2007; Utada et al.,
2005). This technique enables both the production of
highly monodisperse samples and independent control
over the size of the inner and outer diameters. The thick-
ness and curvature of shells can be selected by adjust-
ing flow rates during microfluidic production [Fig. 4(c)].
The shell thickness can also be varied through differ-
ences in density between the inner phase and the liq-
uid crystal [Fig. 4(b, bottom right)], as well as through
osmotic swelling or de-swelling, post-production. Tun-
ing the shell thickness with osmotic pressure is accom-
plished by changing the concentration of a solute, such as
salt or sugar, in the surrounding aqueous solutions (Dar-
mon et al., 2016b; Lopez-Leon et al., 2011b; Seč et al.,
2012a; Tran et al., 2017; Tu and Lee, 2012). Osmotically
swelling the liquid crystal shells is useful for observing the
temporal evolution of thickness- or curvature-dependent
phenomena (Darmon et al., 2016b; Durey et al., 2020b;
Lopez-Leon et al., 2011b; Tran and Bishop, 2020; Urban-
ski et al., 2017).

Furthermore, the anchoring at the inner and outer

water-liquid crystal interfaces of the shell can be set in-
dependently. In the simplest case, shells of 4’-pentyl-4-
biphenyl-carbonitrile (5CB) in contact with pure water
have matching planar boundary conditions on both the
inner and outer shell surfaces. The planar anchoring is
degenerate, which means that the director is free to ro-
tate on the surfaces. The planar anchoring strength can
be increased with the introduction of polyvinyl alcohol
(PVA) in the aqueous phases. This polymer surfactant
also increases the shell stability by decreasing the water-
liquid crystal interfacial tension and by inducing a repul-
sive force – a disjoining pressure – when the inner and
outer interfaces get closer. [Fig. 4(d), left]. The increased
shell stability allows for the shell anchoring conditions to
be dynamically and gradually tuned with simple modifi-
cations to the system, mainly through two mechanisms.

The first method involves quasi-statically bringing the
system temperature a few tenths of a degree Celsius be-
low the clearing point of the bulk 5CB. With slow ramps
in the temperature, the shells can undergo a series of
anchoring transitions, where the alignment of mesogens
with respect to the interface changes – either from planar
to homeotropic for increasing temperature or vice versa
for decreasing. In a shell where the temperature is slowly
increased, the anchoring shifts from matching planar an-
choring on the inner and outer shell surfaces, to hybrid
anchoring, and then to matching homeotropic anchoring,
before fully transitioning to the isotropic phase (Durey
et al., 2020a). This behavior has been linked to the PVA
polymer at the shell interfaces, which renders the liquid
crystal more disordered near the interfaces compared to
the bulk. The shell interfaces then favor the nucleation
of the isotropic phase. The melted layer and the bulk
nematic create a new, low-anchoring-strength interface,
accounting for the changes in anchoring observed in the
shell with increasing temperature [Fig. 4(d), middle].

The second technique relies on the dissolution of sur-
factants in the water phases. As small amphiphilic
molecules adsorb on the shells’ interfaces, their aliphatic
tails force the liquid crystal molecules to reorient, perpen-
dicular to the boundary, as illustrated in the right-most
panel of Fig. 4(d) (Drzaic and Scheffer, 1997; Noh et al.,
2016; Poulin and Weitz, 1998; Sharma and Lagerwall,
2018). This yields homeotropic boundary conditions with
a tunable anchoring strength that increases with the sur-
factant surface coverage (Brake and Abbott, 2002; Brake
et al., 2003a,b; Carlton et al., 2012; Lockwood et al.,
2008; Ramezani-Dakhel et al., 2018). For a cholesteric
twisting along a water-liquid crystal interface, it has been
shown that surfactants localize in the homeotropic re-
gions and are excluded from planar regions (Fig. 5) (Tran
et al., 2018). This cross-communication between the bulk
and the surface results in patterned chemical heterogene-
ity at the cholesteric interface and could manifest in other
liquid crystal phases in which the bulk competes with the
surface anchoring. Responsive surfactants enable further
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(a)

(b)
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(a) (b)

(d)

FIG. 4 (a) Schematic of a microfluidic device for nested glass capillaries used for producing liquid crystal shells. (b) Schematic
of a liquid crystal shell. If there is a density mismatch between the inner phase and the liquid crystal, then one side of
the shell will be thin from buoyancy effects. The scenario for a denser liquid crystal phase is shown in the bottom right.
(c) Microphotographs of capillary devices used to produce shells. The two photographs show the typical maximal (left) and
minimal (right) sizes one can attain with a given device geometry. Scale bar is 200 µm. (d) Schematics for techniques used
to change the anchoring at a water / liquid crystal interface [zoom-in of shell schematic in (b)]. In the presence of PVA, the
anchoring is strongly planar (left). The system transitions to a perpendicular (homeotropic) orientation when its temperature
is brought a couple tenths of a degree Celsius below the clearing point of the bulk 5CB, resulting from the presence of an
interfacial melted layer of 5CB and PVA (center). Homeotropic anchoring can also be regulated by adding surfactants to the
aqueous phase (right). The amount of adsorbed surfactant to the water-liquid crystal interface determines the homeotropic
anchoring strength.

control of surfactant adsorption and conformation at the
interface with means beyond the surfactant concentra-
tion, such as through temperature, pH, and UV light
intensity (Dogishi et al., 2018; Kwon et al., 2016; Sakai
et al., 2019; Sharma et al., 2019).

The flexibility of the shell system thus lends itself
to studying the role of surface tension, anchoring, and
boundary curvature on the HH instability. In the follow-
ing sections, the outlined techniques are employed to in-
vestigate undulating instabilities in cholesteric and smec-
tic shells.

V. CHOLESTERIC SHELLS

Since the classic HH instability was first discovered
in cholesterics, we begin by examining cholesteric shells,
made of 5CB doped with a chiral dopant, (S)-4-cyano-
4’-(2-methylbutyl)biphenyl (CB15). In the following, we
review how undulations can develop in the cholesteric

pseudolayers in response to global geometrical, i.e. topo-
logical, frustration, as well as changes in the mesogen
anchoring. We also review how undulations occur not
only within the bulk, but also at the interface itself.
Cholesteric shells demonstrate how fluid boundaries play
a significant role in the HH instability, while also illus-
trating that the instability is, at its core, a response to
local, geometrical frustration.

A. Planar cholesteric shells

Planar anchoring in cholesteric shells frustrates the
bulk ordering and induces structures that can be seen as
a manifestation of the HH instability, broadly construed.
Why is there frustration when the pitch axis does not lie
in the tangent plane of the shell? The answer is the global
geometry – the topology – of the system! Since it is the
director that lies in the planar shell’s tangent plane, the
Poincaré-Brouwer-Hopf theorem requires that the sum
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i

0.005 mM 
DLPC

ii

0.01 mM 
DLPC

iii

0.05 mM 
DLPC

FIG. 5 Laser scanning confocal micrographs of the lipid
surfactant 1,2-dilauroyl-sn-glycero-3- phosphocholin (DLPC),
labeled with 1 mol% Texas Red 1,2-dihexadecanoyl-sn-
glycero-3- phosphoethanolamine, triethylammonium salt
(TR-DHPE) demonstrates the cross-communication of the
liquid crystal and the adsorbed surfactant on a cholesteric-
water interface of a flat film within a TEM grid. The sur-
factant causes homeotropic anchoring, inducing stripe pat-
terns in the cholesteric. The cholesteric subsequently pat-
terns the surfactant, causing them to segregate into stripes
at the cholesteric-water interface. As the surfactant concen-
tration increases from i to iii, surface stripes become wider
and more disordered (ii) until regions where the cholesteric
twist violates the homeotropic anchoring condition are forced
away from the surface, as a result of the lipids saturating the
interface (iii). Adapted from (Tran et al., 2018).

of the indices of the zeros of a line field is equal to the
Euler character of the shell (Brouwer, 1911; Hopf, 1927;
Poincaré, 1885). Zeros of the line field are topological
defects – places where the local orientation is undefined,
while the index of the zero is its signed winding. For a
sphere, the Euler character is 2, and so the net winding
of the defects on the shell surface must be 2× 2π, man-
ifesting as four +1/2 defects, two +1 defects, or one +2
defect, two +1/2 defects and a +1 defect, or three +1
defects and one −1 defect, etc. Although the necessity of
a minimum number of defects can be thought of as topo-
logical frustration that arises from the system’s global
curvature, the defects can also be viewed as manifest-
ing from local incompatibilities, i.e., as local geometrical
frustration.

We begin by considering the simplest case of nematic
defects, i.e. defects in the director field. Moving in-
ward from the shell surface along its normal is equiva-
lent to moving along the cholesteric pitch axis, by def-
inition. Thus there is a slightly smaller sphere just be-
low the outer surface which also has planar anchoring
and thereby must also have these defects (note that the
global rotation of the director field does not contribute to
the defect charge). If the pitch axis remains radial from
the outer to the inner surface of the shell, then the shell
would consist of a series of concentric spheres each with
two-dimensional defects.

From the three-dimensional perspective, these defects
are not independent and would connect up into line de-
fects with net winding 4π. This is seen in planar nematic
shells, where the shell thickness controls the amount
and winding number of defects (Fernandez-Nieves et al.,
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FIG. 6 χ+1 disclination line in a planar cholesteric
shell: experiment and simulation. (a) Schematics of

χ+1, τ−1/2 and λ+1/2 disclinations in cholesterics. (b) A
simulated cross section of an m = +1 defect. Blue and yellow
regions respectively indicate zones of high splay and bend dis-
tortion; red indicates director singularities. (c) Micrographs
showing a side view of a shell with two m = +1 defects be-
tween crossed polarizers, revealing a visible nonuniform struc-
ture of the defect core, which is enlarged in (d). Scale bars
are 20 µm. Adapted from (Darmon et al., 2016a).

2007; Koning et al., 2016, 2013; Lopez-Leon et al., 2011b;
Vitelli and Nelson, 2006). Recall, however, that for a ne-
matic in three dimensions, integer-winding defect lines
are not topologically stable: they can “escape into the
third dimension” (Meyer, 1973). Of course, this deforma-
tion has an associated bend energy (and possibly twist)
and so for thin nematic shells, this does not happen.
However, as the shells thicken, the director goes smoothly
from being horizontal (parallel to the tangent plane of the
sphere) in the periphery of the defect to being vertical at
the core. The only singularities left in the system after
this escape are point defects, or “boojums,” that have
been “pushed away” to the shell surfaces (Lavrentovich,
1998; Volovik and Lavrentovich, 1983).

However, cholesteric defects are considerably more
complex than nematic defects. While a nematic is char-
acterized by a single director field, n, an unfrustrated
cholesteric is properly described at large scales by three,
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mutually-orthogonal, line fields: the director n, the pitch
axis P̂, and their cross product /n ≡ n× P̂. Winding de-
fects are now characterized by both their strength and
by the axis around which they rotate. Adopting the
notation by Friedel and Kleman (Friedel and Kleman,
1970), defects where the pitch axis and /n rotate around
the director are labeled λ. On the other hand, defects
where /n and the director axis rotate around the pitch
axis are labeled χ. Finally, defects in both the director
and pitch axis, where the two rotate about /n are labeled
τ . Examples of each of these defects are illustrated in
Fig. 6(a). Though similar in their algebra to defects in
biaxial nematics (Mermin, 1979), the existence of pseu-
dolayers spoils a precise correspondence (Beller et al.,
2014). However, just as in biaxial nematics, defects can-
not escape into the third dimension: as a defect in the
director attempts to escape, a new defect in either P̂
or /n appears. In the näıve mapping between cholesteric
pseudolayers and smectics, the χ defects correspond to
dislocations, while the λ and τ defects are the standard
disclinations. It should be noted that while the λ defects
do not have a singularity in the director field, they have
a singularity in the cholesteric structure since the pitch
axis is undefined.

To illustrate a χ defect, it is useful to view them as
line disclinations within a three-dimensional nematic, but
with an added modulation along their length due to the
cholesteric twist. Consider any point defect with m 6= 1
in a two-dimensional nematic: locally rotating the di-
rector by a constant angle at every point of the plane
will simply induce a global rotation of the defect. Thus,
a χ line disclination with m 6= 1 in a cholesteric can
be pictured as a two-dimensional point defect extended
in the third direction, which is then smoothly twisted
[Fig. 7(a)].

However, we see the possibility of a more complex χ
defect within a cholesteric shell that has (degenerate)
planar anchoring on the inner and outer boundary. A
cross-polarized micrograph of a shell with this morphol-
ogy is in Fig. 6(c). The pseudolayers form concentric
spheres with the smallest and largest corresponding to
the shell boundaries. The signature of the pseudolayers
is visible as a series of concentric dark rings, spaced apart
by half of the pitch [Fig. 6(d)]. The twist axis lies along
the radial direction, since it is perpendicular to those lay-
ers. One can imagine that defects in cholesteric shells are
radially-oriented, singular lines spanning the shell thick-
ness. Structures that seem like radial lines are visible
in Fig. 6(c). However, at higher resolution, the defects
appear to be more complex than a simple line, with pe-
riodic distortions along their length. We can imagine the
defect within the shell as a charge +1 χ disclination run-
ning from the inner to the outer surface, locally depicted
in Fig. 7(b)-i. Compared to χ disclinations with m 6= 1,
rotating the director of a +1 χ disclination produces an
alternating pattern of pure splay and pure bend defects

separated by a quarter pitch. Were we to trace out a
surface of constant director orientation, we would find
something with the topology of a helicoid – a dislocation
in the pseudolayers, as promised. However, the defects
deform – in the plane perpendicular to the disclination,
the director field attempts to unwind.

Though in the nematic, escaping into the third dimen-
sion could lower the amount of elastic distortion in the
system and remove any singularities in the director, this
is not possible in a cholesteric. The cholesteric’s triad of
line fields prevents a full escape of the line singularity.
The singularity can only escape in alternating regions
with a periodicity set by the pitch. Regions of high splay
retain director discontinuities at their centers, while the
regions of high bend in between are escaped. By escap-
ing, these bend regions become λ+1 defects. At the core
of a λ+1 defect, the director is vertical (i.e., radial in
the reference frame of the shell), and moving away from
the core, the director twists smoothly in all directions,
becoming points of double twist. On both interfaces of
the shell, the semi-escaped χ+1 line terminates with a
boojum as in the nematic. This semi-escaped χ+1 line is
shown in Fig. 7(b)-ii.

Moreover, the singularity in Fig. 7(b)-ii can relax fur-
ther into the structure in Fig. 7(b)-iii, to reduce the over-
all amount of elastic distortion. +1 splay defects can
open up into looped +1/2 disclinations. Inside those de-
fect rings, the director field is uniformly vertical. The
vertically-oriented director field at the core of the λ+1 de-
fects similarly expands. The line singularity in Fig. 7(b)-
i is replaced by a vertically aligned director field (i.e.,
radially aligned in the reference frame of the shell), as
depicted in Fig. 6(b) (Darmon et al., 2016a,b; Seč et al.,
2012b).

With the singularity in Fig. 7(b)-iii being the most
energetically favorable, we can imagine how the defects
form in experimental systems. Looking at a vertical
cross-section of the relaxed, semi-escaped χ+1 line, there
is a clear incompatibility in the director orientation be-
tween the center of the singularity and the director field
far from it. To connect the vertical director lines at the
center of the relaxed, semi-escaped χ+1 line with the con-
centric planar layers that constitute the rest of the shell,
undulations along the singularity can result (Fig. 7(b)-
iii, right). The “crests” of the undulations can gener-
ate λ+1/2 disclinations, while the “valleys” can create
τ−1/2 disclinations, reminiscent of alternating λ±1/2 de-
fects often seen in cholesterics (Beller et al., 2014). As
this system has rotational invariance around the axis of
the original χ+1 line, the τ−1/2 and λ+1/2 are looped
defects, as illustrated in Fig. 7(b), left (Darmon et al.,
2016a,b; Seč et al., 2012b).

The semi-escaped singularities in cholesteric shells can
be viewed through the lens of the HH mechanism. The
mismatch between the vertical director field lines and the
far-field, horizontal layers embodies geometrical frustra-
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FIG. 7 (Color online) (a) Schematic of the structure of a χ+1/2 line, which consists of a smoothly twisted m = +1/2 defect
line. The red line denotes the singularity, and the red dots mark the intersection of that line with the represented cross sections
of the director field. Blue lines at the right edge of the cross sections are drawn to guide the eye towards the rotation of the
m = +1/2 defects. (b) Schematics of the χ+1 line. i. “Textbook” version of the χ+1 line seen as alternating bend and splay
m = +1 director defects along a vertical singular line. ii. Semi-escaped version of i., in which the line singularity “escapes”
in between the splay defects, transforming regions of high bend into λ+1 defects. iii. The line in ii. is further relaxed. In the
left panel, the m = +1 splay point defects are relaxed into m = +1/2 loops, and the core of the λ+1 defects also expand. This
relaxation creates a column of vertically aligned nematic in the center of the defect. This is apparent in the right panel, which
depicts the director as black lines within a vertical cross section. In the right panel, connecting the horizontal layers of the
far field with the vertical layers in the center frustrates the system, generating undulations reminiscent of the Helfrich-Hurault
instability. The undulations produce periodic defects, highlighted by dashed boxes (top box: λ+1/2, bottom box: τ−1/2).

tion that is topologically-induced by the global curvature
of the shell. As in the classical HH systems, the frustra-
tion is relieved through periodic elastic distortions that
can generate a regular array of defects. However, unlike
the original HH analysis, the undulation wavelength in
planar cholesteric shells is set by the pitch — the pseu-
dolayer periodicity. This difference arises from how the
geometrical frustration in planar cholesteric shells is in-
duced by the system’s global curvature, rather than by
an external field. Defects in planar cholesteric shells re-
veal how topology, i.e., global curvature, can give rise
to local, geometrical frustration in layered liquid crystal
systems. That the frustration in planar cholesteric shells
is relieved through periodic distortions demonstrates the
ubiquity of the HH instability, interpreted in this broad
sense of relieving layer strain through an undulation with
its own periodicity. In this case, the “undulation” is a
periodic array of defects.

B. Homeotropic cholesteric shells

Beyond applied external fields and topological frus-
tration, the competition between the interface and the
bulk can also trigger the HH instability, exemplified by
cholesteric shells with homeotropic anchoring, shown in
Fig. 8. Homeotropic anchoring conditions are particu-
larly frustrating for cholesterics, as the anchoring always
favors an untwisted configuration of molecules and is in-
compatible with the pseudolayer structure preferred by
the bulk. This incompatibility induces defect structures

FIG. 8 (a) Polarizing micrograph of a cholesteric shell with
homeotropic anchoring, due to the presence of a surfactant
in the surrounding aqueous solution. (b) A polymerized and
dried cholesteric shell with homeotropic anchoring accentu-
ates interfacial deformations due to the underlying focal conic
domains. Scanning electron micrographs courtesy of Daeseok
Kim.

(arrays of disclination lines), much like the ones shown
in Fig. 7. However, unlike the case of planar anchor-
ing discussed in the previous subsection, the homeotropic
cholesteric shell typically has defects tiling the entire sur-
face – not just at a few, topologically-required points, ev-
idenced by the micrograph in Fig. 8(a). Indeed, the an-
choring incompatibility is an example of local frustration.
Additionally, the interface itself may locally undulate and
deform in response to these defects, to further accom-
modate the anchoring conditions, shown in the scanning
electron micrograph in Fig. 8(b). In this case, the surface
tension σ must necessarily play a role in establishing the
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shape of the fluid interface.
Consider the energy contributions of the boundary. A

fluid interface introduces both an anchoring energy and
a surface tension σ that will generally compete with the
bulk free energy. These boundary effects may be signifi-
cant, distorting the interface and modulating the order-
ing within the layered system (Meister et al., 1996a). As-
suming a simple model of the interface as a height field3

h ≡ h(x, y), a general surface energy at a fluid interface
would have the form

fs =

∫
d2x

√
1 + (∇h)2 [σ +A(ν̂,n)] , (16)

where σ is a surface tension and A(ν̂,n) is an anchoring
strength that will depend on the orientation between the
interface normal ν̂ and the nematic director n at the
surface. n is perpendicular to the pseudolayer normal N
in cholesteric phases, but Eq. (16) holds generally for all
lamellar liquid crystals (n can be parallel or at an angle
toN for smectic-A or other smectic phases, respectively).

FIG. 9 An undulated cholesteric fluid interface imaged via
atomic force (AFM), optical (OM), scanning electron (SEM)
and transmission electron (TEM) microscopies. The incom-
patible homeotropic anchoring at the surface forces the bulk
layers to undulate (orange line) and turn upward, forming
focal conic domain “hills”. From (Agez et al., 2011).

The anchoring term must be invariant under n→ −n,
so we can write A(ν̂,n) = W [1− (ν̂ ·n)2]/2, with an an-
choring strength W > 0 for homeotropic alignment and
W < 0 for degenerate planar alignment (Rapini and Pa-
poular, 1969). Note that this anchoring energy can com-
pete with the periodic ordering of the bulk. This is nec-
essarily the case for cholesterics (Meister et al., 1996a):

3 Note that h(x, y) is a Lagrangian displacement variable of the
surface while u(x, y, z) is the Eulerian displacement of the layers.
The difference matters at nonlinear order, in principle (Kamien
and Lubensky, 1999).

if the cholesteric pitch axis is oriented in any direction
away from the surface normal, the twist of the cholesteric
competes with the boundary condition of that surface,
whether planar or homeotropic. Indeed, when W > 0,
there is no configuration that is compatible with a pe-
riodic cholesteric and the surface would tend to unwind
the cholesteric, competing against the ground state pitch.
The anchoring therefore takes the role of an applied, elec-
tromagnetic field, but here, the reorientation of the di-
rector occurs only at the surface, instead of throughout
the entire system. Just as in the classic system, pre-
sented in Sec. III, anchoring can also trigger the HH-
instability, inducing undulations in the cholesteric pseu-
dolayers. These reorientations undulate the layers just
underneath the cholesteric surface, as indicated by the
orange line in Fig. 9.

The onset of undulations is not surprising when the
magnitudes of anchoring, surface tension, and bulk elas-
tic energies of typical systems are considered. For ex-
ample, in common cyanobiphenyl-type liquid crystals
with chiral dopants that induce micron-scale pitches,
the nematic-isotropic or aqueous interface has anchor-
ing strength W ∼ 102-105 kT/µm2 (Faetti and Palleschi,
1984) and surface tension σ ∼ 105-106 kT/µm2 (Kim
et al., 2004). The bulk elasticity terms have magnitudes
K1,2,3 ∼ 103 kT/µm (Bradshaw et al., 1985) and so when
the liquid crystal is forced to have defects (with cores
on the scale of 1-10 nm) to accommodate a frustrating
boundary condition, the defects can contribute energy
per unit area on the order of Ki/(10 nm) ∼ 105 kT/µm2.
Therefore, for the cholesterics considered here, all of these
energetic contributions can compete with one another.

Note that these surface instabilities differ in some ways
from the HH instability induced by a bulk field. In a ne-
matic, a boundary condition may reorient the nematic
order throughout the bulk, as in a liquid crystal display
cell. Thus, boundary conditions serve to orient the ne-
matic order just as a bulk field. In a layered system, how-
ever, deformations may be confined to a region around
the boundary with characteristic size equal to the pene-
tration depth λ ≈

√
K/B [see Eq. (3)], previously ana-

lyzed in detail for cholesterics with a free interface (Meis-
ter et al., 1996a). These localized deformations are also
observed in simulations, as shown in Fig. 10. Note that
both a bulk field and a surface anchoring term will intro-
duce a quadratic term proportional to (x̂·n)2 or (x̂·N)2,
with x̂ the direction of either the surface normal or the
applied field. For example, for a cholesteric, note the
similarity between the surface energy in Eq. (16), con-
taining the term A(ν̂,n) = W [1 − (ν̂ · n)2]/2, and an
electric field contribution fe = − 1

2∆ε ε0(E ·n)2, with ∆ε
the dielectric anisotropy (Yu et al., 2017). Both of these
terms may reorient the layered structure and create the
proper conditions for the HH mechanism. We will explore
the mechanism in the context of anchoring transitions in
more detail in the next subsection.
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In cholesterics, the ratio σ/W between the inter-
face surface tension σ and the homeotropic anchoring
strength W determines whether one finds a smooth
(σ/W � 1) or cusped (σ/W � 1) interface shape (Meis-
ter et al., 1996a). Moreover, depending on how the
cholesteric rearranges near the interface, the interface
shape will change to accommodate any defect structures.
These considerations also come up near the interface be-
tween a cholesteric and an isotropic phase, which favors
homeotropic alignment, as discussed in Sec. IV (Durey
et al., 2020a; Silvestre et al., 2016).

When bulk layer distortions become large and one is far
above the threshold for undulations, more complex states
emerge. Secondary instabilities are possible, where un-
dulations develop on top of the original undulations. For
cholesterics, layers may undulate in two orthogonal direc-
tions, creating an array of “focal conic” domains (Meis-
ter et al., 1996b; Senyuk et al., 2006), seen also in the
classic smectic system detailed in Sec. III.B. In extreme
cases, such as with very strong incompatible anchoring,
the layer structure will strongly distort or break up en-
tirely, yielding intricate defect structures (Seč et al., 2014;
Yada et al., 2003).

FIG. 10 (a) Cross section through a simulated cholesteric
shell with an isotropic-cholesteric interface. The layers are
distorted near the boundary and concentric in the bulk. Ar-
rows indicate “hills” formed by focal conic domains. The color
indicates the director n orientation relative to the radial di-
rection r̂. The pitch P0 to shell thickness t ratio is t/P0 ≈ 2.
(b) The distorted, outer interface is shown, with the direc-
tor distribution just underneath the surface colored by |n · r̂|.
From (Lavrentovich and Tran, 2020).

Multi-scale simulation methods are often employed to
capture the interplay between the anchoring energy, the
bulk elasticity, and the interfacial surface energy (Lavren-
tovich and Tran, 2020; Rofouie et al., 2015; Tran et al.,
2017). An example is shown in Fig. 10. We simulate
a cholesteric liquid crystal near coexistence between a
cholesteric phase (with a pitch, P0) and an isotropic
phase. By initializing a shell of the cholesteric inside a
bulk isotropic phase, it is possible to generate isotropic-
cholesteric, fluid interfaces. As previously mentioned in

Sec. IV, these interfaces have a weakly homeotropic an-
choring for the cholesteric, creating an anchoring incom-
patible with the concentric spherical layer arrangement
in the droplet bulk. We see in Fig. 10 that there is
layer reorientation and formation of focal conic domain
“hills” at the shell surface. The parameters and details of
the simulation are described in (Lavrentovich and Tran,
2020). These focal conic domain hills are also visible in
the cholesteric surface relief, shown in Fig. 9. Accounting
for a deformable boundary and surface tension in the HH
instability allows us to capture the interfacial deforma-
tions seen in homeotropic cholesteric shells.

C. Anchoring transitions

P0

CLC H2O

FIG. 11 Schematic of a cholesteric liquid crystal shell. The
red insets illustrate how changing the anchoring at the shell
interface alters the pitch axis orientation, which can lead to a
HH-like instability in the bulk (bottom right). From (Lavren-
tovich and Tran, 2020).

The HH instability can also describe transient states
that arise from transitions between the planar and
homeotropic structures detailed in the preceding subsec-
tions. The changing anchoring is analogous to the appli-
cation of an external field, but with molecular realign-
ment occurring only at the confining surfaces. As in the
classical HH instability, transitioning from one type of
anchoring to another at an interface causes the cholesteric
pseudolayers to reorganize in order to accommodate the
new boundary condition, leading to frustration in the
system. As described in the previous subsection, the
frustration in the layers can be relieved by an HH-like
mechanism, as illustrated for a cholesteric shell in Fig. 11
(Lavrentovich and Tran, 2020). In this subsection, we fo-
cus on modeling the onset of the HH instability triggered
by changes in anchoring conditions.

As detailed in Sec. IV, the anchoring on a cholesteric
shell can be tuned experimentally by the addition or re-
moval of surfactant in the surrounding aqueous phases.
For the planar to homeotropic anchoring transition, in
which surfactant is added to the outer aqueous solu-
tion, stripes with a 2P0 periodicity cover the cholesteric
shell surface without forming a distinguishable pattern
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FIG. 12 (a) Crossed polarized images of an initially planar
cholesteric shell (i) that has 4 topological defects with charges
totaling +2. After the shell is introduced to a solution includ-
ing 10 mM sodium dodecyl sulfate, the anchoring at the outer
shell surface transitions from planar to homeotropic, tilting
the pitch axis away from the radial direction. Large stripes
are generated at the shell interface with a periodicity around
10 µm, twice the pitch (ii). Arrows indicate defect locations.
(b) Simulations of an initially planar cholesteric shell (i) with
a 1.2 µm pitch, a 6.6 µm diameter and a 2.1 µm thickness is
minimized under moderate homeotropic anchoring conditions
(∼ 2 × 10−4 J/m2). After t = 5000 minimization steps, the
cholesteric pseudolayers undulate (ii) and generate stripes,
shown in the inset. Adapted from (Lavrentovich and Tran,
2020).

(Fig. 12). Defects in the nematic director are still present
in the system but do not influence the conformation of
the stripes beyond their termination at said defects, seen
in Fig. 12(a)-ii. Similar stripe patterns are captured
in Landau-de Gennes simulations of an initially planar
cholesteric shell set to minimize under homeotropic an-
choring conditions [Fig. 12(b)]. Large, transient stripes
are formed on the simulated shell surfaces in the begin-
ning of the minimization, similar to experimental obser-
vations. Cross sections of the simulated shell reveal that
the origin of the large stripes are undulations of the ini-
tially concentric, cholesteric pseudolayers [Fig. 12(b)-ii].
Furthermore, layer undulations are greatest in cross sec-
tions that intersect with the radial director defect, in-
dicating that defects are energetically preferred sites for
pitch axis and, consequently, cholesteric layer rearrange-
ment.

The transition to planar anchoring similarly produces
large surface stripes, where surfactant is removed from
the outer aqueous solution. However, unlike for the
transition to homeotropic anchoring, the composition of
stripe instabilities for planar transitions is dictated by

the initial shell patterning, seen in Fig. 13(a). As sur-
factant leaves the interface, weakening the homeotropic
anchoring, the planar stripes of the focal conic domain
widen until they reach a width ∼ 2P0, after which the
planar stripes are filled by orthogonal stripes that have a
2P0 periodicity. The overall double spiralled structure of
the initial focal conic domain is preserved [Fig. 13(a)-iv].

We note that the curvature and composition of the or-
thogonal stripes in the planar transition is reminiscent
of Bouligand arches, illustrated in Fig. 14(a). Bouli-
gand’s 1968 work on the chromosomes of dinoflagellates
attributed bands of bow-shaped lines found in thin sec-
tions of chromosomes to the chiral ordering of filaments
in the chromosomes (Bouligand et al., 1968). The arches
that fill in the striped texture of chromosomes are a result
of viewing them on a surface that cuts the cholesteric at
an angle from the pitch axis.

Indeed, anchoring transitions force the pitch axis to
tilt at an angle to the interface, as illustrated in Fig. 11.
It is therefore plausible that the structure of the stripe
instability is influenced by Bouligand’s geometrical ar-
guments. Specifically, the micrograph of Fig. 13(a)-iv is
evocative of the 1984 study by Bouligand and Livolant
of cholesteric spherulites (Bouligand and Livolant, 1984).
Fig. 14 reproduces their illustration that describes the
origin of double spiralled structures seen in their exper-
iments. A cholesteric with a vertical, unfrustrated pitch
axis is drawn with an angled view in Fig. 14(b) and is cut
into the shape of a hill. Viewing this hill from the top
[Fig. 14(b), top] uncovers a double spiral pattern that is
filled in by Bouligand arches.

Although this geometrical model hints at the bulk
cholesteric arrangement, this description does not ac-
count for the periodicity of the orthogonal stripes
that appear to follow an arch-like pattern. As with
the homeotropic transition, the organization of the
cholesteric layers can also be examined through Landau-
de Gennes simulations (Lavrentovich and Tran, 2020).
Fig. 13(b) depicts a cholesteric shell with a pitch axis
oriented along the z-axis. The focal conic domains are
slightly stretched at the poles along the z-axis, resulting
in greater regions of planar anchoring that are marked in
blue by the n · r̂ color map. Minimizing this shell under
planar anchoring conditions causes the stretched focal
conic domains to unwind, generating undulating stripes
[blue, Fig. 13(b)-ii] in regions where the planar anchoring
is increased, similar to experimental observations, shown
in Fig. 13(a). Cross sections of the shell after minimiza-
tion [Fig. 13(b)-ii] reveal that the orthogonal stripes arise
from undulation of the underlying cholesteric layers.

We can build a HH-type model of the planar anchor-
ing transition in cholesteric shells by estimating the en-
ergy scales associated with imposing an anchoring that
induces a tilt in the existing cholesteric pseudolayers on
a local patch of the emulsion surface. As detailed in
(Lavrentovich and Tran, 2020), the free energy of the
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FIG. 13 (a) Cross polarized micrographs of a thick cholesteric shell in an aqueous solution with 7 mM sodium dodecyl sulfate,
1 wt % polyvinyl alcohol, and 0.1 M sodium chloride that has a focal conic domain texture initially. The pitch is 5 µm. The
shell is transferred to another, similar aqueous solution, but without sodium dodecyl sulfate, and the texture evolves over time
(i-iv). As the outer interface loses homeotropic anchoring strength with surfactant removal to the surrounding solution, the
planar anchoring stripes widen (i-ii). When the stripes widen to the point of becoming greater than around twice the pitch
(∼ 10 µm), the planar stripes fill in with perpendicular stripes of a second periodicity that is also around twice the pitch. Scale
bars are 25 µm. (b) Simulations of an initially homeotropic cholesteric shell (i) with a 0.18 µm pitch, a 0.84 µm diameter and
a 0.18 µm thickness that has a pitch axis oriented along the ẑ-axis. The shell is minimized under planar anchoring conditions
(∼ 2 × 10−4 J/m2), resulting in a local energy minimum in which the stripes are partially unwound (ii), with a side view on
the left and a top view on the right. Undulations are visible at the poles, where the stripes have unwound. Adapted from
(Lavrentovich and Tran, 2020).

cholesteric pseudolayers in a small, flat area of the shell
surface can be written in the form given by Eq. (12).
Any antagonistic anchoring would tend to reorient the
pseudolayers. The associated anchoring energy would
have the form of Eq. (16). This anchoring energy in-
duces an undulatory instability (a modulation of u in a
direction perpendicular to the layers) whenever the an-

choring strength |W | > π
√
K̄B̄ [see Eq. (12)]. More-

over, the wave vector associated with the modulation is
qc = (B̄/K̄)1/4(π/2`)1/2, with ` being the size of the de-
formation region near the droplet surface (typically on
the order of the pitch). For the cholesteric shells shown
in Fig. 13(a), these heuristic arguments give reasonable
estimates for both the critical |W | ≈ 10−5 J/m2 and the
modulation wavelength 2π/qc ∼ 10 µm (Lavrentovich
and Tran, 2020).

For both the planar and homeotropic transitions, the
anchoring-induced, HH instability arises from local geo-
metrical frustration between the bulk layer arrangement
and the prescribed molecular orientation at the interface.
Yet, the conformation of the resultant stripes differs be-
tween the two anchoring transitions. For the transition
to homeotropic anchoring, the nucleation of undulated
stripes gives a random patterning, with the topologically-
required nematic defects serving as favorable sites for ini-
tial pitch axis reorientation. Thus, for the homeotropic

transition, the pitch axis is initially radial and tilts to be-
come tangent to the interface. Since all directions away
from radial are equivalent, the onset of the stripe instabil-
ity, i.e., the stripe nucleation, is disordered. For planar
transitions, pitch axis reorientation occurs first at the
pitch defects, evidenced by the unwinding of focal conic
domains, where the pitch axis begins to tilt towards ra-
dial. Pitch axis reorientation here is more constrained
than for the homeotropic transition. The shortest path
for the initially tangent pitch axis to tilt is along the
plane orthogonal to the interface that includes the pitch
axis. This constraint results in the onset of stripes being
perpendicular to, and thus ordered by, the starting stripe
pattern, set by the initially tangent pitch axis. Note that
the presence of topological defects is not necessary for
the anchoring-induced instability to occur. Although the
defects generated by topological frustration influence the
conformation of the stripe instability, the root cause of
the stripe instability remains a local, geometrical incom-
patibility between the bulk cholesteric layers and the an-
choring condition.

VI. SMECTIC SHELLS

In the previous section, we introduced the concept of
the HH instability in the context of cholesteric shells,
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FIG. 14 (a) Schematic of a cholesteric liquid crystal, with its
pitch axis oriented vertically. Planes S1 and S2 slice into the
cholesteric at an angle to the pitch axis. A curving, periodic
texture, called Bouligand arches, is apparent on the surfaces

of the planes. Plane S
′
1 simplifies the pattern on plane S1,

highlighting how Bouligand arches reveal cholesteric ordering
of the sliced material. Adapted from (Bouligand et al., 1968).
(b) Schematic of a cholesteric with a vertical pitch axis is cut
into a hill-like shape (side view). Viewing the hill from the top
reveals Bouligand arches that follow a double spiral pattern
(top). The double spiral pattern is emphasized by black lines.
Adapted from (Bouligand and Livolant, 1984).

where the instability arises as a way of reconciling an-
tagonistic boundary conditions. This is just one of the
multiple ways in which geometrical frustration can per-
turb the structure of a layered system embedded in a
spherical shell. Local curvature and global topological
constraints can also induce strain in the layers and set
off an undulating response, exemplified by smectic shells
with planar boundary conditions.

A. Planar smectic shells in experiments

The first study of smectic shells involved bringing 4’-
octyl-4-biphenylcarbonitrile (8CB) in a planar, spherical
shell close to the nematic/smectic phase transition tem-
perature, where the elastic ratio K3/K1 diverges (Liang
et al., 2012; Lopez-Leon et al., 2011a). This operation
entails the formation of a bend-free state in which the
nematic defects relocate to the equator. At the transi-
tion, a periodic pattern forms on the shell surface. In
Fig. 15(a) and (b) we show cross-polarized micrographs
of the lower and upper hemispheres of the same shell. We
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FIG. 15 Cross-polarized images of a smectic shell of radius
R = 98 µm and mean thickness h = 1.96 µm. (a) & (b) The
birefringent texture at the bottom of the shell (a) is different
from the birefringent texture at the top of the shell (b) due
to the different thickness of these two regions from a density
mismatch between the inner water phase and the smectic.
The inset reveals stripes on the lower hemisphere after im-
age enhancement. Two stripes are outlined at the bottom of
the inset to guide the eye. (c) Schematic of director arrange-
ments in a two-dimensional smectic shell. Theory predicts a
configuration with two s = +1 defects organized in a bipolar
fashion. (d) This configuration is energetically equivalent to
any other one that results from splitting the bipolar shell into
two halves by a plane Π that contain the two s = +1 defects,
and then, rotating one half with respect to the other one by
an angle that can have any value. (e) All the configurations
resulting from this transformation have four s = +1/2 de-
fects lying on a great circle. (f) This smooth texture is only
a first order description of the configuration observed exper-
imentally, where a periodic modulation of the smectic layers
is observed.

see four +1/2 defects required by topology and inherited
from the nematic state, as described in Sec. V.A. Here,
the four defects are equally spaced along the equator.
Additionally, two sets of longitudinal stripes divide the
shell into crescent domains. The first set of stripes con-
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nects defects 3 and 4 by semi-circles that run along
the upper hemisphere of the shell, while the second set of
stripes connects defects 1 and 2 by semi-circles that
run along the lower hemisphere of the shell. The first
set of stripes is visible on the upper hemisphere [see the
highlighted crescent domain in Fig. 15(b)]. The second
set of stripes is also visible in Fig. 15(a), especially in the
top half of the photograph [see the inset of Fig. 15(a)].
This second set of stripes is faint because the bottom
part of the shell is thinner than the top. The two set of
lines in each hemisphere are orthogonal to each other.

This stripe texture results from an intricate interplay
between the curvature of shell, the local energetic con-
straint of equally spaced layers, global topological con-
straints, and anchoring conditions. To understand this,
first consider the limit of vanishing shell thickness where
there is no frustration of the smectic layers between the
inner and outer surface, as shown in Fig. 15(c). The
condition of equal spacing results in the layers becoming
lines of latitude (Blanc and Kleman, 2001). The director
aligns along the lines of longitude, tracing out geodesics
(Kamien et al., 2009; Santangelo et al., 2007), depicted
as dashed lines in Fig. 15(c-f). In this situation, there are
two +1 defects at the two poles. However, each +1 defect
can be split in half, and the upper and lower hemispheres
can be rotated independently, as shown in Fig. 15(c) and
(d) (Bates, 2008; Blanc and Kleman, 2001; Shin et al.,
2008). The four +1/2 defects resulting from this simple
surgery sit on a great circle of the sphere [Fig. 15(e)]. The
energy difference between the state with two +1 defects
and those with four +1/2 defects comes from the de-
fect core energies and is negligible for large system sizes.
While there is a single state for two +1 defects, there
is an infinite number of states with four +1/2 defects.
Thus, generically, we expect to see four +1/2 defects in
the smectic shell, lying along a great circle. Further min-
imization of the director energy yields a rotation angle of
π/2, as depicted in Fig. 15(d). This configuration maxi-
mizes the distances between the +1/2 defects.

In experiments, however, the shells are three-
dimensional and have a thickness that leads to a frustra-
tion between the surface anchoring and the layer spac-
ing. Such frustration involves creating either disloca-
tions, layer dilation or anchoring violation, due to the
different curvatures of the inner and outer boundaries
(Lopez-Leon et al., 2012b). In a configuration without
dislocations, imposing planar anchoring at the bound-
aries necessarily implies layer dilation. Again, this frus-
tration is precisely the type that leads to the HH mech-
anism – the smooth texture sketched in Fig. 15(e) is dis-
turbed by the presence of a set of periodic lines and the
rapid variation of n across these lines. By examining
the birefringent texture of the experimental shells un-
der rotation, it has been observed that n is tilted by
an almost constant angle ±β [by a few degrees for the
shell in Fig. 15(a)] with respect to the two-dimensional

director field sketched in Fig. 15(e). Since n is tilted
in opposite directions in two adjacent crescent domains,
the visible lines that separate them roughly correspond
to symmetric curvature walls (Blanc and Kleman, 1999).
The sawtooth periodic undulation of the smectic layers
schematically represented in Fig. 15(f) is yet another HH
mechanism pattern observed at large strains and is con-
nected to the three-dimensional nature of the shells.

A zero-strain, smectic texture is possible in thick smec-
tic shells provided that the director tilts away from the
outer shell surface, incurring an anchoring penalty (see
(Lopez-Leon et al., 2012b)). A first approach to re-
lax this additional surface energy has been developed
by Manyuhina and Bowick (Manyuhina and Bowick,
2015). They examined the influence of a finite anchor-
ing strength W on a nematic shell texture with large
bending modulus K3 � K1 that is expected to mimic
the smectic behavior. Within the frame of nematic elas-
ticity, they adopted a perturbative approach for thick
shells, starting from the ideal two-dimensional structure
in Fig. 15(d), while imposing infinitely strong anchoring
at the shell inner surface, as well as allowing the director
to tilt with respect to the tangent plane and to vary along
the shell thickness. The authors proposed a plausible cri-
terion for the onset of director tilting, which should occur
when the shell mean curvature κ = 1/R gets larger than
W/K3. Moreover, they showed that the axisymmetric
texture is unstable beyond this same threshold, where a
spontaneous herringbone texture develops.

This first approach can be complemented with geo-
metrical considerations based on the elasticity of smectic
layers, more in line with the HH model. Indeed, the ex-
perimental results suggest that, in shells with strong pla-
nar anchoring, the strain associated to layer dilation γ is
released by undulations of the smectic layers, related to
a mechanical HH mechanism (Lopez-Leon et al., 2011a).

B. Strain from boundary curvature

Before delving into the specifics of the HH mechanism
in smectic shells, let us take a step back and consider
more generally how boundary curvature can strain smec-
tic layers. Consider an interface with some spatially
varying surface normal ν̂ ≡ ν̂(x, y), written in terms of
the height field h as ν̂ = (−∂xh,−∂yh, 1)/

√
1 + (∇h)2,

as depicted schematically in Fig. 16. For illustrative
purposes, consider a simple surface shape: h(x, y) =
d+ (2κ)−1[

√
1− (2κy)2− 1], where κ is the mean curva-

ture of the surface and d the film thickness at y = 0. For
|y| � 1/κ the surface has a parabolic profile h ≈ d−κy2
along the y direction. So, near the maximum of the
parabola, we expand in powers of y and consider the
interaction between the surface and the smectic layers in
the bulk.

Using the phase field φ ≡ φ(x), the layered structure
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FIG. 16 A schematic of an interface-induced instability in
which a curved, deformable interface (orange) described by
a height field h(x, y) induces undulations with characteristic
wavelength λ∗ in the blue layered system. At the interface,
the layer normals N prefer to be perpendicular to the in-
terface normal ν̂. As described in the main text, a curved
interface like this will dilate or compress the layers relative to
their preferred spacing t. The resultant strain may be relieved
via layer buckling in a perpendicular direction.

is recovered by solving φ = na for x, where n ∈ Z labels
the layer and a is the layer spacing [see Fig. 16]. Sup-
pose that, in an unperturbed configuration, the layers are
stacked along the y-direction so that φ = y. The layer
normal, then, is N = ∇φ/||∇φ|| = ŷ. If we have pertur-
bations in the layer spacing, this may be captured by a
small deformation: u = y−φ. In this case, the layers are
still roughly stacked along the y-direction, as sketched in
Fig. 16, but with deviations described by δφ. Then, as-
suming planar boundary conditions at the interface that
prefer an orientation N ⊥ ν̂, the surface free energy fs
at the interface for small δφ and small ∇h is given by

fs ≈
W

2

∫
dx dy (ν̂ ·N)2

∣∣
z=d

≈ W

2

∫
dx dy [∂z(δφ)− ∂yh]2

∣∣
z=d

, (17)

where W is an anchoring strength. We have substituted
ν̂ ≈ ẑ−∇h for the interface normal and N ≈ ŷ+∇(δφ)
for the layer normal. This surface free energy is mini-
mized for δφ(y, z) = −2κyz, representing a layer dilation
with increasing z. Therefore, at the top edge of the film,
the layer spacing experiences a dilating strain, γ ≈ 2κd
(relative to the spacing on the bottom of the film), with
d being the film thickness at y = 0. This dilation will
be energetically costly due to the bulk layer compression
elasticity. The system may relieve this energetic cost in
a variety of ways, including disrupting the layer struc-
ture via dislocations or developing layer undulations, as
illustrated for a generic curved surface in Fig. 16. Here,
one sees layers mostly stacked along the ŷ direction, but
undulating along x̂ to relieve the strain imposed by the
curvature of the interface.

The details of the layer relaxation are generally com-

plex, since the undulations will coexist with defects, and
the details of their interactions are subtle. Analogous
issues are seen in smectic systems confined to wedge ge-
ometries (Bartolino and Durand, 1977a). Yet, we can
make a basic estimate of the critical strain γ∗ (applied
along the layer normal N) required to induce an undu-
lation.

First, note that the layer compression and bending
moduli K and B, respectively, combine to yield a char-
acteristic length λ =

√
K/B, which governs the size of

deformations. This length scale is again the smectic pen-
etration depth, first introduced in Sec. III.B. Second, the
undulation instability occurs when the layer strain γ ex-
ceeds a critical value γ∗ ≈ 2πλ/` (or, equivalently, if the
layer stress exceeds Bγ∗), with ` being a characteristic
sample size in the direction of the applied strain. In the
case of our simple example of an interface h(x, y) = −κy2
with the layer normals along the ŷ direction and the
dilation induced by an interface curvature, ` would be
the extent of the bent region in the ŷ direction. How-
ever, the critical strain would also depend on the anchor-
ing strength W and would generally have a complicated
form. Alternatively, if the layers are arranged such that
N ‖ ν̂ and are dilated by a strain along that same direc-
tion (similar to the classic instability shown in Fig. 1),
then ` would be the film thickness d and γ∗ = 2πλ/d,
as expected. Furthermore, depending on the nature of
the mechanical deformation, there may be some modifi-
cations to γ∗ (Napoli and Nobili, 2009). For instance, the
surface tension at a fluid interface may modify λ, intro-
ducing an additional length λ→ λ+ λs, with λs ∼ σ/B,
with σ being the surface tension (Williams, 1995). Nev-
ertheless, the basic scaling γ∗ ∼ λ/` is predictive in a
wide range of cases in which this mechanical instability
is observed.

Note that the critical strain γ∗ may be connected to
the usual HH critical field Hc, since the strain γ intro-
duces an energy penalty due to the compression term
being proportional to B. The coefficient |χa|H2 is com-
pletely analogous to the stress γB (Delaye et al., 1973;
Fukuda and Onuki, 1995). The critical field then is di-
rectly related to γ∗ as

|χa|H2
c = γ∗B =

2πK

λ`
, (18)

which reduces to the γ∗ = 2πλ/` result. The connection
to the usual HH scenario, described in Sec. III.A.1, also
allows us to extract the characteristic wavelength λ∗ of
the undulations, given by

λ∗ = 2
√
πλ`, (19)

which is consistent with Eq. (11). The mechanism has
the same character in smectics and cholesterics (Clark
and Meyer, 1973) and the discussion in Sec. III.A.1 can
be directly mapped to these strain-induced undulations.
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The strain γ may be imposed externally due to a par-
ticular confinement, applied force, or thermal expansion.
If the strain occurs near a curved interface, the interface
geometry will modify the character of the undulations.
For instance, in a smectic with concentric cylindrical lay-
ers, a layer dilation induces an undulation along the cylin-
der axis. Unlike a flat geometry, the curvature makes the
onset of the undulations more complex, with the shape
of the layer playing an important role (de Gennes and
Pincus, 1976).

Now that we understand how boundary curvature can
strain smectic layers enough to trigger the HH mecha-
nism, we turn back to smectics in a shell geometry. In
the following, we consider the simpler case of a cylindri-
cal shell and build on that to interpret the spherical shell
data.

C. Cylindrical smectic shells
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FIG. 17 Schematics of a smectic confined between two cylin-
ders of radii R and R + h. The anchoring is planar on the
confining boundaries. (a) In absence of dislocations, a radial
texture necessarily induces some dilation in the thickness of
a smectic layer (shaded region). (b) The absence of dilation
in the bulk implies that the “orthoradial” thickness of a layer
d varies with the radial coordinate r. However, some dilation
is necessarily ejected to the outer surface.

Consider a smectic slab confined between two cylinders
of radii R and R0 = R+ h, with h� R and with strong
planar anchoring, i.e. n lies parallel to the inner and
outer cylinders, along êθ [Fig. 17(a)]. The equilibrium
layer thickness is a, and the appropriate smectic free en-
ergy is given by Eq. (3), with N the layer normal, which
maps to n for smectic-A phases, and 1−|∇φ|−1 = 1−d/a,
where d is the actual layer thickness. If the layers were
dilated but not curved [∇ · n = 0, as schematically rep-
resented in Fig. 17(a)], their thickness would increase as
d(r) = rcRa/R, where cRa is the layer thickness at the
inner boundary. Note that the constant cR is close to 1
and can be chosen to minimize the energy for the bend-
free state derived from Eq. (3). For h � R, we have
cR ≈ 1−h/2R with a smectic free energy per unit length
of fe ≈ πBh3/12R.

Even with an infinite anchoring strength, the elastic
energy decreases when we consider a more general sce-

(a)

(b)

(c)

<latexit sha1_base64="m92SuaWVAEsagV+4FknZcXhy5ig=">AAAB8XicbVDLSgNBEJz1GeMr6tHLYBDiJexKUI8BL3qLYB6YLGF20kmGzM4uM71iWPIXXjwo4tW/8ebfOEn2oIkFDUVVN91dQSyFQdf9dlZW19Y3NnNb+e2d3b39wsFhw0SJ5lDnkYx0K2AGpFBQR4ESWrEGFgYSmsHoeuo3H0EbEal7HMfgh2ygRF9whlZ66CA8YVpiZ5NuoeiW3RnoMvEyUiQZat3CV6cX8SQEhVwyY9qeG6OfMo2CS5jkO4mBmPERG0DbUsVCMH46u3hCT63So/1I21JIZ+rviZSFxozDwHaGDIdm0ZuK/3ntBPtXfipUnCAoPl/UTyTFiE7fpz2hgaMcW8K4FvZWyodMM442pLwNwVt8eZk0zsveRblyVylWb7M4cuSYnJAS8cglqZIbUiN1wokiz+SVvDnGeXHenY9564qTzRyRP3A+fwBTxZC5</latexit>

(a)

<latexit sha1_base64="5hvUgKZ4AyVQzWk1og1TMigTJsA=">AAAB8XicbVDLSgNBEJz1GeMr6tHLYBDiJexKUI8BL3qLYB6YLGF20kmGzM4uM71iWPIXXjwo4tW/8ebfOEn2oIkFDUVVN91dQSyFQdf9dlZW19Y3NnNb+e2d3b39wsFhw0SJ5lDnkYx0K2AGpFBQR4ESWrEGFgYSmsHoeuo3H0EbEal7HMfgh2ygRF9whlZ66CA8YVoKzibdQtEtuzPQZeJlpEgy1LqFr04v4kkICrlkxrQ9N0Y/ZRoFlzDJdxIDMeMjNoC2pYqFYPx0dvGEnlqlR/uRtqWQztTfEykLjRmHge0MGQ7NojcV//PaCfav/FSoOEFQfL6on0iKEZ2+T3tCA0c5toRxLeytlA+ZZhxtSHkbgrf48jJpnJe9i3LlrlKs3mZx5MgxOSEl4pFLUiU3pEbqhBNFnskreXOM8+K8Ox/z1hUnmzkif+B8/gBVS5C6</latexit>

(b)

<latexit sha1_base64="wZIJbrtgGCjOcwpqcplAfICq848=">AAAB8XicbVDLSgNBEJz1GeMr6tHLYBDiJexKUI8BL3qLYB6YLGF20kmGzM4uM71iWPIXXjwo4tW/8ebfOEn2oIkFDUVVN91dQSyFQdf9dlZW19Y3NnNb+e2d3b39wsFhw0SJ5lDnkYx0K2AGpFBQR4ESWrEGFgYSmsHoeuo3H0EbEal7HMfgh2ygRF9whlZ66CA8YVriZ5NuoeiW3RnoMvEyUiQZat3CV6cX8SQEhVwyY9qeG6OfMo2CS5jkO4mBmPERG0DbUsVCMH46u3hCT63So/1I21JIZ+rviZSFxozDwHaGDIdm0ZuK/3ntBPtXfipUnCAoPl/UTyTFiE7fpz2hgaMcW8K4FvZWyodMM442pLwNwVt8eZk0zsveRblyVylWb7M4cuSYnJAS8cglqZIbUiN1wokiz+SVvDnGeXHenY9564qTzRyRP3A+fwBW0ZC7</latexit>

(c)

<latexit sha1_base64="32arz58/mi5dMveiVIp3rb6HODk=">AAACA3icbVA9SwNBEN3z2/gVtdNmMQixCXcS1DJgo52CMYEkhLnNJFnc2zt254LhCNj4V2wsFLH1T9j5b9zEFH49GHi8N7M788JESUu+/+HNzM7NLywuLedWVtfWN/KbW9c2To3AqohVbOohWFRSY5UkKawnBiEKFdbCm9OxXxugsTLWVzRMsBVBT8uuFEBOaud3mgMw1EeCJuEtZbxooCNB24NRO1/wS/4E/C8JpqTAprho59+bnVikEWoSCqxtBH5Crcy9L4XCUa6ZWkxA3EAPG45qiNC2sskNI77vlA7vxsaVJj5Rv09kEFk7jELXGQH17W9vLP7nNVLqnrQyqZOUUIuvj7qp4hTzcSC8Iw0KUkNHQBjpduWiDwYEudhyLoTg98l/yfVhKTgqlS/Lhcr5NI4ltsv2WJEF7JhV2Bm7YFUm2B17YE/s2bv3Hr0X7/WrdcabzmyzH/DePgExn5fm</latexit> #
(r

ad
ia

n
s)

<latexit sha1_base64="FuiIkcK0A6XsxldzjMJBaBI04dI=">AAACC3icbVDJSgNBEO1xjXEb9eilSRCSg2FG43IMCKKeIpgFstHT6SRNeha6a8QwzN2Lv+LFgyJe/QFv/o2dZA6a+KDg9XtVdNVzAsEVWNa3sbC4tLyymlpLr29sbm2bO7tV5YeSsgr1hS/rDlFMcI9VgINg9UAy4jqC1Zzhxdiv3TOpuO/dwShgLZf0Pd7jlICWOmbmMifzTWAPEOE4Z1vtk+Rxg924HR0ex/mOmbUK1gR4ntgJyaIE5Y751ez6NHSZB1QQpRq2FUArIhI4FSxON0PFAkKHpM8amnrEZaoVTW6J8YFWurjnS10e4In6eyIirlIj19GdLoGBmvXG4n9eI4TeeSviXhAC8+j0o14oMPh4HAzucskoiJEmhEqud8V0QCShoONL6xDs2ZPnSfWoYJ8WirfFbOk6iSOF9lEG5ZCNzlAJXaEyqiCKHtEzekVvxpPxYrwbH9PWBSOZ2UN/YHz+AFGjmVw=</latexit> F
(r

)
(1

0
5

J
m

�
3
)

<latexit sha1_base64="KXCnIYb4GwQTFWA64rlsuddj6bU=">AAAB/3icbZDLSsNAFIYnXmu9RQU3bgaLUDclkaIuC250V8FeoAllMp22Q2eSMHMilpiFr+LGhSJufQ13vo3TNgtt/WHg4z/ncM78QSy4Bsf5tpaWV1bX1gsbxc2t7Z1de2+/qaNEUdagkYhUOyCaCR6yBnAQrB0rRmQgWCsYXU3qrXumNI/COxjHzJdkEPI+pwSM1bUPlQfsAVKclT2ZzFhmp1275FScqfAiuDmUUK561/7yehFNJAuBCqJ1x3Vi8FOigFPBsqKXaBYTOiID1jEYEsm0n07vz/CJcXq4HynzQsBT9/dESqTWYxmYTklgqOdrE/O/WieB/qWf8jBOgIV0tqifCAwRnoSBe1wxCmJsgFDFza2YDokiFExkRROCO//lRWieVdzzSvW2Wqrd5HEU0BE6RmXkogtUQ9eojhqIokf0jF7Rm/VkvVjv1sesdcnKZw7QH1mfP1aallc=</latexit>

r (µm)

<latexit sha1_base64="JG/Iy6VsTLCFtGo1ceGX5LTyYNY=">AAAB73icbVBNSwMxEJ34WetX1aOXYBHqpe5KUY8FL3qrYD+gXUo2m21Ds9k1yQpl6Z/w4kERr/4db/4b03YP2vpg4PHeDDPz/ERwbRznG62srq1vbBa2its7u3v7pYPDlo5TRVmTxiJWHZ9oJrhkTcONYJ1EMRL5grX90c3Ubz8xpXksH8w4YV5EBpKHnBJjpU5QUWfnQd/pl8pO1ZkBLxM3J2XI0eiXvnpBTNOISUMF0brrOonxMqIMp4JNir1Us4TQERmwrqWSREx72ezeCT61SoDDWNmSBs/U3xMZibQeR77tjIgZ6kVvKv7ndVMTXnsZl0lqmKTzRWEqsInx9HkccMWoEWNLCFXc3orpkChCjY2oaENwF19eJq2LqntZrd3XyvW7PI4CHMMJVMCFK6jDLTSgCRQEPMMrvKFH9ILe0ce8dQXlM0fwB+jzB7bmjyM=</latexit> d
(r

)/
d
0

<latexit sha1_base64="uCwgkw7/tekIXzwjOakJ1XrAOII=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0hEq8eCHjxWsB/QhrLZbtqlu5uwuxFK6F/w4kERr/4hb/4bN20O2vpg4PHeDDPzwoQzbTzv2ymtrW9sbpW3Kzu7e/sH1cOjto5TRWiLxDxW3RBrypmkLcMMp91EUSxCTjvh5Db3O09UaRbLRzNNaCDwSLKIEWxyyXev6oNqzXO9OdAq8QtSgwLNQfWrP4xJKqg0hGOte76XmCDDyjDC6azSTzVNMJngEe1ZKrGgOsjmt87QmVWGKIqVLWnQXP09kWGh9VSEtlNgM9bLXi7+5/VSE90EGZNJaqgki0VRypGJUf44GjJFieFTSzBRzN6KyBgrTIyNp2JD8JdfXiXtC9evu5cPl7XGXRFHGU7gFM7Bh2towD00oQUExvAMr/DmCOfFeXc+Fq0lp5g5hj9wPn8A1e6Ndw==</latexit>

1.56
<latexit sha1_base64="jInysy+8FTDqwMfxn7StD63Z2C8=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0hK/TgW9OCxgq2FNpTNdtMu3d2E3Y1QQv+CFw+KePUPefPfuGlz0NYHA4/3ZpiZFyacaeN5305pbX1jc6u8XdnZ3ds/qB4edXScKkLbJOax6oZYU84kbRtmOO0mimIRcvoYTm5y//GJKs1i+WCmCQ0EHkkWMYJNLvnuRX1QrXmuNwdaJX5BalCgNah+9YcxSQWVhnCsdc/3EhNkWBlGOJ1V+qmmCSYTPKI9SyUWVAfZ/NYZOrPKEEWxsiUNmqu/JzIstJ6K0HYKbMZ62cvF/7xeaqLrIGMySQ2VZLEoSjkyMcofR0OmKDF8agkmitlbERljhYmx8VRsCP7yy6ukU3f9S7dx36g1b4s4ynACp3AOPlxBE+6gBW0gMIZneIU3RzgvzrvzsWgtOcXMMfyB8/kDz96Ncw==</latexit>

1.52
<latexit sha1_base64="we73EpIZxtlxh4T7C3RlFF/ECc4=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0ikaI8FPXisYD+gDWWz3bRLdzdhdyOU0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2njet1Pa2Nza3invVvb2Dw6PqscnHR2nitA2iXmseiHWlDNJ24YZTnuJoliEnHbD6W3ud5+o0iyWj2aW0EDgsWQRI9jkku/WG8NqzXO9BdA68QtSgwKtYfVrMIpJKqg0hGOt+76XmCDDyjDC6bwySDVNMJniMe1bKrGgOsgWt87RhVVGKIqVLWnQQv09kWGh9UyEtlNgM9GrXi7+5/VTEzWCjMkkNVSS5aIo5cjEKH8cjZiixPCZJZgoZm9FZIIVJsbGU7Eh+Ksvr5POletfu/WHeq15V8RRhjM4h0vw4QaacA8taAOBCTzDK7w5wnlx3p2PZWvJKWZO4Q+czx/XcY14</latexit>

1.48
<latexit sha1_base64="7uazsavMZdfFivhKktNy7wSRJIs=">AAAB63icbVBNS8NAEJ34WetX1aOXxSJ4CokE9VjQg8cK9gPaUDbbTbt0dxN2N0IJ/QtePCji1T/kzX/jps1BWx8MPN6bYWZelHKmjed9O2vrG5tb25Wd6u7e/sFh7ei4rZNMEdoiCU9UN8KaciZpyzDDaTdVFIuI0040uS38zhNVmiXy0UxTGgo8kixmBJtC8t0gGNTqnuvNgVaJX5I6lGgOal/9YUIyQaUhHGvd873UhDlWhhFOZ9V+pmmKyQSPaM9SiQXVYT6/dYbOrTJEcaJsSYPm6u+JHAutpyKynQKbsV72CvE/r5eZ+CbMmUwzQyVZLIozjkyCisfRkClKDJ9agoli9lZExlhhYmw8VRuCv/zyKmlfuv6VGzwE9cZdGUcFTuEMLsCHa2jAPTShBQTG8Ayv8OYI58V5dz4WrWtOOXMCf+B8/gDRYY10</latexit>

1.44
<latexit sha1_base64="XwQO9wZ2spXIzWW9yL55VaotBZo=">AAAB63icbVBNS8NAEJ3Ur1q/qh69LBbBU0ikVI8FPXisYD+gDWWz3bRLdzdhdyOU0L/gxYMiXv1D3vw3btoctPXBwOO9GWbmhQln2njet1Pa2Nza3invVvb2Dw6PqscnHR2nitA2iXmseiHWlDNJ24YZTnuJoliEnHbD6W3ud5+o0iyWj2aW0EDgsWQRI9jkku/WvWG15rneAmid+AWpQYHWsPo1GMUkFVQawrHWfd9LTJBhZRjhdF4ZpJommEzxmPYtlVhQHWSLW+fowiojFMXKljRoof6eyLDQeiZC2ymwmehVLxf/8/qpiW6CjMkkNVSS5aIo5cjEKH8cjZiixPCZJZgoZm9FZIIVJsbGU7Eh+Ksvr5POles33PpDvda8K+IowxmcwyX4cA1NuIcWtIHABJ7hFd4c4bw4787HsrXkFDOn8AfO5w/LUY1w</latexit>

1.40

<latexit sha1_base64="hF1Jz2yapl15h9lEcuCHmRTFMVM=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU8hK/TgW9OCxgmkLbSib7aZdutmE3Y1QQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+N5305pbX1jc6u8XdnZ3ds/qB4etXSSKcp8mohEdUKimeCS+YYbwTqpYiQOBWuH49uZ335iSvNEPppJyoKYDCWPOCXGSj52PXzZr9Y815sDrRJckBoUaParX71BQrOYSUMF0bqLvdQEOVGGU8GmlV6mWUromAxZ11JJYqaDfH7sFJ1ZZYCiRNmSBs3V3xM5ibWexKHtjIkZ6WVvJv7ndTMT3QQ5l2lmmKSLRVEmkEnQ7HM04IpRIyaWEKq4vRXREVGEGptPxYaAl19eJa0LF1+59Yd6rXFXxFGGEziFc8BwDQ24hyb4QIHDM7zCmyOdF+fd+Vi0lpxi5hj+wPn8ATzOjaw=</latexit>

1.015
<latexit sha1_base64="Bnf4WnjYDub2j+ie4NV13tDvkTo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0hE1GNBDx4rmLbQhrLZTtqlm03Y3Qil9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5USa4Np737ZTW1jc2t8rblZ3dvf2D6uFRU6e5YhiwVKSqHVGNgksMDDcC25lCmkQCW9Hodua3nlBpnspHM84wTOhA8pgzaqwU+K7ne71qzXO9Ocgq8QtSgwKNXvWr209ZnqA0TFCtO76XmXBCleFM4LTSzTVmlI3oADuWSpqgDifzY6fkzCp9EqfKljRkrv6emNBE63ES2c6EmqFe9mbif14nN/FNOOEyyw1KtlgU54KYlMw+J32ukBkxtoQyxe2thA2poszYfCo2BH/55VXSvHD9K/fy4bJWvyviKMMJnMI5+HANdbiHBgTAgMMzvMKbI50X5935WLSWnGLmGP7A+fwBNTqNpw==</latexit>

1.010
<latexit sha1_base64="popTTgMXhV9y+unqHo6F8SQlhao=">AAAB7HicbVDLSgMxFL2pr1pfVZdugkVwVWakPpYFXbis4LSFdiiZNNOGZjJDkhHK0G9w40IRt36QO//GTDsLbT0QcjjnXu69J0gE18ZxvlFpbX1jc6u8XdnZ3ds/qB4etXWcKso8GotYdQOimeCSeYYbwbqJYiQKBOsEk9vc7zwxpXksH800YX5ERpKHnBJjJc+tO87loFpz7J8DrxK3IDUo0BpUv/rDmKYRk4YKonXPdRLjZ0QZTgWbVfqpZgmhEzJiPUsliZj2s/myM3xmlSEOY2WfNHiu/u7ISKT1NApsZUTMWC97ufif10tNeONnXCapYZIuBoWpwCbG+eV4yBWjRkwtIVRxuyumY6IINTafig3BXT55lbQv6u5VvfHQqDXvijjKcAKncA4uXEMT7qEFHlDg8Ayv8IYkekHv6GNRWkJFzzH8Afr8ATtJjas=</latexit>

1.005
<latexit sha1_base64="EWIJlB/Vmkxu9hWz7rMl5+m8Tzo=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNBDx4rmLbQhrLZTtqlm03Y3Qil9Dd48aCIV3+QN/+NmzYHbX2w7OO9GWbmhang2rjut1NaW9/Y3CpvV3Z29/YPqodHLZ1kiqHPEpGoTkg1Ci7RN9wI7KQKaRwKbIfj29xvP6HSPJGPZpJiENOh5BFn1FjJ9+qu6/arNTf/Lcgq8QpSgwLNfvWrN0hYFqM0TFCtu56bmmBKleFM4KzSyzSmlI3pELuWShqjDqbzZWfkzCoDEiXKPmnIXP3dMaWx1pM4tJUxNSO97OXif143M9FNMOUyzQxKthgUZYKYhOSXkwFXyIyYWEKZ4nZXwkZUUWZsPhUbgrd88ippXdS9q/rlw2WtcVfEUYYTOIVz8OAaGnAPTfCBAYdneIU3RzovzrvzsSgtOUXPMfyB8/kDM7WNpg==</latexit>

1.000
<latexit sha1_base64="xtY+HPizgAxPCPNgCt1jfbiXJs4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikqMeCHjxWtB/QhrLZbtqlm03YnQil9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5YSqFQc/7dgpr6xubW8Xt0s7u3v5B+fCoaZJMM95giUx0O6SGS6F4AwVK3k41p3EoeSsc3cz81hPXRiTqEccpD2I6UCISjKKVHnzX65UrnuvNQVaJn5MK5Kj3yl/dfsKymCtkkhrT8b0UgwnVKJjk01I3MzylbEQHvGOpojE3wWR+6pScWaVPokTbUkjm6u+JCY2NGceh7YwpDs2yNxP/8zoZRtfBRKg0Q67YYlGUSYIJmf1N+kJzhnJsCWVa2FsJG1JNGdp0SjYEf/nlVdK8cP1Lt3pfrdRu8ziKcAKncA4+XEEN7qAODWAwgGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNXBo0y</latexit>

1.0
<latexit sha1_base64="RzJJxKZXfD8vxxkKRP0iLQrrv9A=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hEtMeCHjxWtB/QhrLZTtqlm03Y3Qil9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5YSq4Np737RTW1jc2t4rbpZ3dvf2D8uFRUyeZYthgiUhUO6QaBZfYMNwIbKcKaRwKbIWjm5nfekKleSIfzTjFIKYDySPOqLHSg+dWe+WK53pzkFXi56QCOeq98le3n7AsRmmYoFp3fC81wYQqw5nAaambaUwpG9EBdiyVNEYdTOanTsmZVfokSpQtachc/T0xobHW4zi0nTE1Q73szcT/vE5momow4TLNDEq2WBRlgpiEzP4mfa6QGTG2hDLF7a2EDamizNh0SjYEf/nlVdK8cP0r9/L+slK7zeMowgmcwjn4cA01uIM6NIDBAJ7hFd4c4bw4787HorXg5DPH8AfO5w9hoI05</latexit>

0.8
<latexit sha1_base64="oWcEf2RCFhbE/qOp3ihwFt8aJ2o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hEqseCHjxWtB/QhrLZbtqlm03YnQil9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5YSqFQc/7dgpr6xubW8Xt0s7u3v5B+fCoaZJMM95giUx0O6SGS6F4AwVK3k41p3EoeSsc3cz81hPXRiTqEccpD2I6UCISjKKVHjy32itXPNebg6wSPycVyFHvlb+6/YRlMVfIJDWm43spBhOqUTDJp6VuZnhK2YgOeMdSRWNugsn81Ck5s0qfRIm2pZDM1d8TExobM45D2xlTHJplbyb+53UyjK6DiVBphlyxxaIokwQTMvub9IXmDOXYEsq0sLcSNqSaMrTplGwI/vLLq6R54fpV9/L+slK7zeMowgmcwjn4cAU1uIM6NIDBAJ7hFd4c6bw4787HorXg5DPH8AfO5w9emI03</latexit>

0.6
<latexit sha1_base64="vwAYicUjUTQQ/Aaa7OIfveVkEq8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0ikqMeCHjxWtB/QhrLZTtqlm03Y3Qil9Cd48aCIV3+RN/+N2zYHbX0w8Hhvhpl5YSq4Np737RTW1jc2t4rbpZ3dvf2D8uFRUyeZYthgiUhUO6QaBZfYMNwIbKcKaRwKbIWjm5nfekKleSIfzTjFIKYDySPOqLHSg+dWe+WK53pzkFXi56QCOeq98le3n7AsRmmYoFp3fC81wYQqw5nAaambaUwpG9EBdiyVNEYdTOanTsmZVfokSpQtachc/T0xobHW4zi0nTE1Q73szcT/vE5moutgwmWaGZRssSjKBDEJmf1N+lwhM2JsCWWK21sJG1JFmbHplGwI/vLLq6R54fqXbvW+Wqnd5nEU4QRO4Rx8uIIa3EEdGsBgAM/wCm+OcF6cd+dj0Vpw8plj+APn8wdbkI01</latexit>

0.4
<latexit sha1_base64="/Av/Am1pFGuXAOot4zyodZfqfJI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0hKUY8FPXisaGuhDWWznbRLN5uwuxFK6U/w4kERr/4ib/4bt20O2vpg4PHeDDPzwlRwbTzv2ymsrW9sbhW3Szu7e/sH5cOjlk4yxbDJEpGodkg1Ci6xabgR2E4V0jgU+BiOrmf+4xMqzRP5YMYpBjEdSB5xRo2V7j232itXPNebg6wSPycVyNHolb+6/YRlMUrDBNW643upCSZUGc4ETkvdTGNK2YgOsGOppDHqYDI/dUrOrNInUaJsSUPm6u+JCY21Hseh7YypGeplbyb+53UyE10FEy7TzKBki0VRJohJyOxv0ucKmRFjSyhT3N5K2JAqyoxNp2RD8JdfXiWtqutfuLW7WqV+k8dRhBM4hXPw4RLqcAsNaAKDATzDK7w5wnlx3p2PRWvByWeO4Q+czx9YiI0z</latexit>

0.2
<latexit sha1_base64="UL1+Pn/GMrlQ05kFZd0mEJlnxF8=">AAAB6nicbVBNSwMxEJ2tX7V+VT16CRbBU9mVoh4LevBY0X5Au5RsOtuGZrNLkhXK0p/gxYMiXv1F3vw3pu0etPVBwuO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2Mb2Z++wmV5rF8NJME/YgOJQ85o8ZKD27V7Zcr9p+DrBIvJxXI0eiXv3qDmKURSsME1brruYnxM6oMZwKnpV6qMaFsTIfYtVTSCLWfzVedkjOrDEgYK/ukIXP1d0dGI60nUWArI2pGetmbif953dSE137GZZIalGwxKEwFMTGZ3U0GXCEzYmIJZYrbXQkbUUWZsemUbAje8smrpHVR9S6rtftapX6bx1GEEziFc/DgCupwBw1oAoMhPMMrvDnCeXHenY9FacHJe47hD5zPH1WAjTE=</latexit>

0.0
<latexit sha1_base64="D6ZVJmzeUQsDkL3dOeJRJpwFMq0=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GNBDx4rmLbQhrLZbtqlm03YnQgl9Dd48aCIV3+QN/+N2zYHbX2wy+O9GWbmhakUBl332ymtrW9sbpW3Kzu7e/sH1cOjlkkyzbjPEpnoTkgNl0JxHwVK3kk1p3EoeTsc38789hPXRiTqEScpD2I6VCISjKKVfM91626/WrP/HGSVeAWpQYFmv/rVGyQsi7lCJqkxXc9NMcipRsEkn1Z6meEpZWM65F1LFY25CfL5slNyZpUBiRJtn0IyV3935DQ2ZhKHtjKmODLL3kz8z+tmGN0EuVBphlyxxaAokwQTMrucDITmDOXEEsq0sLsSNqKaMrT5VGwI3vLJq6R1Ufeu6pcPl7XGXRFHGU7gFM7Bg2towD00wQcGAp7hFd4c5bw4787HorTkFD3H8AfO5w8zuY2m</latexit>

100.0
<latexit sha1_base64="fDJa3B709M4L3sT2V8+N63s1BPU=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU9hI/TgW9OCxgmkLbSib7aZdutmE3Y1QQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa4Pxt1NaW9/Y3CpvV3Z29/YPqodHLZ1kijKfJiJRnZBoJrhkvuFGsE6qGIlDwdrh+Hbmt5+Y0jyRj2aSsiAmQ8kjTomxku9h7F72qzXs4jnQKvEKUoMCzX71qzdIaBYzaaggWnc9nJogJ8pwKti00ss0SwkdkyHrWipJzHSQz4+dojOrDFCUKFvSoLn6eyInsdaTOLSdMTEjvezNxP+8bmaimyDnMs0Mk3SxKMoEMgmafY4GXDFqxMQSQhW3tyI6IopQY/Op2BC85ZdXSevC9a7c+kO91rgr4ijDCZzCOXhwDQ24hyb4QIHDM7zCmyOdF+fd+Vi0lpxi5hj+wPn8ATtNjas=</latexit>

100.5
<latexit sha1_base64="Q8habHbbJrPopvuNxpU5MdpaFPw=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU0hE1GNBDx4rmLbQhrLZTtqlm03Y3Qil9Dd48aCIV3+QN/+N2zYHbX0w8Hhvhpl5USa4Np737ZTW1jc2t8rblZ3dvf2D6uFRU6e5YhiwVKSqHVGNgksMDDcC25lCmkQCW9Hodua3nlBpnspHM84wTOhA8pgzaqwU+J7ver1qzXO9Ocgq8QtSgwKNXvWr209ZnqA0TFCtO76XmXBCleFM4LTSzTVmlI3oADuWSpqgDifzY6fkzCp9EqfKljRkrv6emNBE63ES2c6EmqFe9mbif14nN/FNOOEyyw1KtlgU54KYlMw+J32ukBkxtoQyxe2thA2poszYfCo2BH/55VXSvHD9K/fy4bJWvyviKMMJnMI5+HANdbiHBgTAgMMzvMKbI50X5935WLSWnGLmGP7A+fwBNT+Npw==</latexit>

101.0
<latexit sha1_base64="rp3a23ZWgXaoyCFPsm1UxsI+idk=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU8hK/TgW9OCxgmkLbSib7aZdutmE3Y1QQn+DFw+KePUHefPfuG1z0NYHA4/3ZpiZF6aCa+N5305pbX1jc6u8XdnZ3ds/qB4etXSSKcp8mohEdUKimeCS+YYbwTqpYiQOBWuH49uZ335iSvNEPppJyoKYDCWPOCXGSj72sHvZr9Y815sDrRJckBoUaParX71BQrOYSUMF0bqLvdQEOVGGU8GmlV6mWUromAxZ11JJYqaDfH7sFJ1ZZYCiRNmSBs3V3xM5ibWexKHtjIkZ6WVvJv7ndTMT3QQ5l2lmmKSLRVEmkEnQ7HM04IpRIyaWEKq4vRXREVGEGptPxYaAl19eJa0LF1+59Yd6rXFXxFGGEziFc8BwDQ24hyb4QIHDM7zCmyOdF+fd+Vi0lpxi5hj+wPn8ATzTjaw=</latexit>

101.5
<latexit sha1_base64="eJgKZwoDvJ7ukbD8kDuMsCLcZKE=">AAAB7HicbVBNS8NAEJ3Ur1q/qh69LBbBU9iUoh4LevBYwbSFNpTNdtMu3WzC7kYoob/BiwdFvPqDvPlv3LY5aOuDgcd7M8zMC1PBtcH42yltbG5t75R3K3v7B4dH1eOTtk4yRZlPE5Gobkg0E1wy33AjWDdVjMShYJ1wcjv3O09MaZ7IRzNNWRCTkeQRp8RYyfdw3cWDag27eAG0TryC1KBAa1D96g8TmsVMGiqI1j0PpybIiTKcCjar9DPNUkInZMR6lkoSMx3ki2Nn6MIqQxQlypY0aKH+nshJrPU0Dm1nTMxYr3pz8T+vl5noJsi5TDPDJF0uijKBTILmn6MhV4waMbWEUMXtrYiOiSLU2HwqNgRv9eV10q673pXbeGjUmndFHGU4g3O4BA+uoQn30AIfKHB4hld4c6Tz4rw7H8vWklPMnMIfOJ8/NsWNqA==</latexit>

102.0

<latexit sha1_base64="y3b+6j1qDtUn6H0nl8svLk5pfcM=">AAAB+3icdVDLSgMxFM3UV62vWpdugkVwNcz03V3Bje4qWFtoh5JJM21o5kFyR1qG/oobF4q49Ufc+Tdm2goqeiBwOOdc7s1xI8EVWNaHkdnY3Nreye7m9vYPDo/yx4U7FcaSsg4NRSh7LlFM8IB1gINgvUgy4ruCdd3pZep375lUPAxuYR4xxyfjgHucEtDSMF8YAJtBQkNfj6k0thjmi5ZZshrNag1bZrnarFYsTep2o1yrYdu0liiiNdrD/PtgFNLYZwFQQZTq21YETkIkcCrYIjeIFYsInZIx62saEJ8pJ1nevsDnWhlhL5T6BYCX6veJhPhKzX1XJ30CE/XbS8W/vH4MXsNJeBDFwAK6WuTFAkOI0yLwiEtGQcw1IVRyfSumEyIJBV1XTpfw9VP8P7krmXbNrNxUiq3rdR1ZdIrO0AWyUR210BVqow6iaIYe0BN6NhbGo/FivK6iGWM9c4J+wHj7BLGFlZE=</latexit>

compression

<latexit sha1_base64="yIlRbwB/BFLk8E9/2eU6wEnTtK0=">AAACAXicdVBNSwMxFMz6bf2qehG8BIvgacna2tab4EVvClaFtpRs+laD2eySvBXLUi/+FS8eFPHqv/DmvzGtFVR0IDDMvMfLTJgqaZGxd29sfGJyanpmtjA3v7C4VFxeObVJZgQ0RKIScx5yC0pqaKBEBeepAR6HCs7Cq/2Bf3YNxspEn2AvhXbML7SMpODopE5xrYVwgzkPLWgBNImoRcOl7neKJebv7lRq5Splfo1V69vMEVauB5UdGvhsiBIZ4ahTfGt1E5HFoFEobm0zYCm2c25QCgX9QiuzkHJxxS+g6ajmMdh2PkzQp5tO6dIoMe5ppEP1+0bOY2t7cegmY46X9rc3EP/ymhlG9XYudZqhC/h5KMoUxYQO6qBdaUCg6jnChZHur1RccsMFutIKroSvpPR/crrtB1W/clwp7R2O6pgh62SDbJGA1MgeOSBHpEEEuSX35JE8eXfeg/fsvXyOjnmjnVXyA97rB2BJl4k=</latexit>

absence of strain

<latexit sha1_base64="mViccacP1irxr4xBib1kx9AsSrk=">AAAB+HicdZDLSsNAFIYn9VbrpVGXbgaL4KokNVi7K7jRXQV7gTaUyXTaDp1cmDkRa+iTuHGhiFsfxZ1v4ySNoKI/DPx85xzOmd+LBFdgWR9GYWV1bX2juFna2t7ZLZt7+x0VxpKyNg1FKHseUUzwgLWBg2C9SDLie4J1vdlFWu/eMql4GNzAPGKuTyYBH3NKQKOhWR4Au4NkxEUGFkOzYlUbNbvh1LBVtTKlxrHrpw1s56SCcrWG5vtgFNLYZwFQQZTq21YEbkIkcCrYojSIFYsInZEJ62sbEJ8pN8kOX+BjTUZ4HEr9AsAZ/T6REF+pue/pTp/AVP2upfCvWj+G8bmb8CCKgQV0uWgcCwwhTlPAIy4ZBTHXhlDJ9a2YTokkFHRWJR3C10/x/6ZTq9pnVefaqTSv8jiK6BAdoRNkozpqokvUQm1EUYwe0BN6Nu6NR+PFeF22Fox85gD9kPH2CeZ4k/E=</latexit>

dilation

FIG. 18 (a) Tilt, (b) relative dilation, and (c) free energy
density of a smectic layer as a function of the radial coordinate
r for a shell of 2 µm thickness and inner radius R = 100 µm,
using λ = 3 nm.

nario, where the smectic layers are allowed to curve into
an “S”-shape to maintain the layer spacing, as depicted in
Fig. 17(b). Treating the system as two-dimensional with
no variation along the cylinder, we consider the axially-
symmetric director field n(r, θ) = cosϑ(r)êr+sinϑ(r)êθ,
where ϑ(r) is the tilt of the director and the normal
of the layers, with respect to the unit radial vector
êr, [Fig. 17(b)]. The width of the layers is d(r) =
sinϑ(r)rcRa/R [Fig. 17(b)] and the free energy per unit
length is

fe =
B

2

(
1− cRr sinϑ(r)

R

)2

+
K

2
(∇ · n)2. (20)

To solve for the tilt angle, ϑ, we write the Euler-
Lagrange equation, which reads

d2ϑ

dr2
=
c2Rr

4 −R2λ2 − cRr
3R

sinϑ

r2R2λ2 tanϑ
− dϑ

dr

(
1

r
+
dϑ

dr

1

tanϑ

)
,

(21)
where we impose the boundary conditions ϑ(R) = ϑ(R+
h) = π/2 and λ is again the smectic penetration depth,
λ =

√
K/B. The tilt angle ϑ(r) and the shape of lay-

ers can then be obtained by numerically solving Eq. (21)
using standard two point boundary value methods and
optimizing the resulting elastic energy fe(cR) as a func-
tion of cR. Fig. 18(a) shows the numerical solution, ϑ(r),
for R = 100 µm and h = 2 µm, which are typical val-
ues for the shell radius and thickness of the experimental
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shells. The relative dilation of the layers d/a and the
free energy density fe(r) of the ground state configura-
tion are shown in Fig. 18. Three different regions can be
distinguished: the layers are slightly compressed in a thin
inner region, highlighted in blue, while dilation is mostly
confined at the outer surface, highlighted in red. The
dilation is nearly vanishing in the yellow region, between
the two boundary layers.

FIG. 19 Schematic of smectic layers with curvature walls,
separating domains in which n displays opposite orientations
±ω. If ω is not too high, the smectic layers undergo a contin-
uous bend across the wall.

The fact that dilation is expelled from the bulk is a well
known phenomenon for layered systems (Blanc and Kle-
man, 1999). Indeed, comparing the two terms of Eq. (3)
reveals that dilation can be present only in regions where
the curvature of the layers (∇ · n) is of order λ−1, i.e.
where the layers rapidly reorient, or near the common fo-
cal surfaces of a set of equidistant layers. That is why the
macroscopic textures of layered systems can be described
by an extended geometrical description, based on a com-
bination of domains with equidistant layers separated by
curvature walls of varying shapes, as illustrated in Fig. 19
(Blanc and Kleman, 1999). If the “mis-orientation” angle
2ω of a curvature wall is not too high, the layers remain
continuous. The width of a wall is thereby 2λ/ω, and its
free energy per unit area is

fw ≈
2K

λ
(tanω − ω) ≈ 2Kω3

3λ
. (22)

Here, the geometrical construction driven by a strong
planar anchoring at the inner surface yields sinϑ(r) =
R/r in the bulk and a tilt ω0 = π/2−ϑ(R+h) ≈

√
2h/R

at the outer cylinder. The dilation is thus expelled in a
curvature wall that contains most of the elastic energy
per unit length:

fe =
4Kπh

3λ

√
2h

R
. (23)

With this two-dimensional approach, dilation is con-
fined to the neighborhood of the outer cylinder. How-
ever, three-dimensional distortions of the director field

are expected to further lower the resulting elastic energy.
For example, with degenerate planar anchoring on both
cylinders, the elastic energy can be entirely relaxed when
the director is oriented along the other principal curva-
ture direction, where curvature is null (Fig. 20).

(a) (b)

FIG. 20 Schematic of smectic layer arrangements in a cylin-
drical shell. In three dimensions, the distortion of the smectic
layers is efficiently relaxed by an overall rotation of the layers,
allowable when the anchoring is planar degenerate.

D. Spherical smectic shells

Geometrical frustration is even more evident in spher-
ical smectic shells of finite thickness. Contrary to the
cylindrical case considered in the previous section, the
elastic energy cannot be globally relaxed in a spherical
shell. Unlike a cylinder which only bends in one direction,
the two principal curvatures on a sphere are nonvanish-
ing (and equal). Thus the geometrical strain remains,
regardless of the layer orientation with respect to the
surface.

Let us first examine the vanishing thickness limit
shown in Fig. 15(c). Such an ideal smectic sphere has
two +1 defects located at the north and south poles,
and the surface director is given by n = êθ, written
with the usual spherical coordinates r, θ, ϕ and the corre-
sponding unit vectors êr, êθ, êϕ. Similar to the cylindri-
cal case shown in Fig. 17(b), a geometrical construction
from the inner sphere of radius R for shells with finite
thickness is also possible, giving rise to a director field
n = sinϑ(r)êθ ± cosϑ(r)êr, where sinϑ(r) = R/r.
The resulting angular misfit of the smectic layer tilt
at the outer surface of a shell of thickness h is still
ω0 = arccosR/(R+ h) ≈

√
2h/R, as it was in the cylin-

drical shell. Therefore, the resulting half-curvature wall
located at the outer sphere has an elastic energy:

Fe ≈
4π(R+ h)2K

3λ
ω3
0 . (24)

However, this azimuthally homogeneous geometry is
not optimal since it still has significant elastic distortion
with high energetic costs. Taking inspiration from the ex-
perimental images of Fig. 15(a) and (b), we now consider
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(a)

(c)
(b)

FIG. 21 (Color online) (a) Spherical coordinates used to de-
scribe the smectic textures of a shell. (b) The director field
n(r, θ, ϕ = 0) defined on the ϕ = 0 plane is used to con-
struct the director field in its vicinity (blue lines). The re-
gion of the shell near the inner surface is complemented with
a set of lines (yellow) tangent to each great circle (denoted
by a green line), issued from n(r = R, θ, ϕ = 0). Below,
for clarity, the same construction is shown for an oversized
shell. (c) The field of normals thus constructed defines par-
allel smectic layers (green surfaces) that are devoid of defects
in a limited neighborhood −χ < ϕ < χ, but the process can
be iterated periodically along the azimuthal direction (shown
here for the region −3χ < ϕ < −χ) at the cost of additional
curvature walls Πχ of tilt mis-orientation ωχ. The latter tilt
mis-orientation remains close to β, following our experimental
conditions.

other textures where the smectic layers are no longer ro-
tationally invariant around the z-axis. Such textures can
be geometrically constructed, and we show here that they
have lower elastic energies compared to the homogeneous
case.

Consider the texture sketched in Fig. 21(a). This
texture is one of the simplest geometric constructions
that shares several features with the experimental shells
shown in Fig. 15. It consists of pairs of crescent do-
mains repeated along the azimuthal angle ϕ with a pe-
riod ∆ϕ = 4χ. The crescent domains are separated by
π/χ curvature walls, denoted Πχ in Fig. 21(c) which ac-
count for the layers roughly tilted by an angle β with
respect to the latitude lines. The elementary texture in
−χ ≤ ϕ ≤ χ is issued from a director field defined at
ϕ = 0 (arbitrarily chosen), for R ≤ r ≤ R+ h:

n(r, θ, ϕ = 0) =
R cosβ

r
êθ +

√
1− R2 cos2 β

r2
êϕ. (25)

This field shows several attractive features at ϕ = 0.
(See additional details in Appendix A). First, this con-
struction exactly ensures planar anchoring on the inner
and outer spheres. Second, the director field’s depen-
dence on r maintains that the smectic layers are fully per-
pendicular to the spherical shell’s surfaces (Lopez-Leon
et al., 2012b) at the ϕ = 0 meridian. The cross-section
width w of the smectic layers in the plane ϕ = 0 increases
with r (Fig. 21(c), blue plane), similar to Fig. 17(a) for
the cylindrical case. Yet, the actual thickness of the lay-
ers, wêθ.n, is constant with r. (See Appendix A, Fig. 37.)

Is a neighboring set of parallel layers compatible with
the smectic-A elastic field in a spherical shell? How far
can the layers extend along ϕ without defects? To answer
these questions, first note that the director field unam-
biguously defines straight lines made of the smectic layer
normals in a neighborhood of ϕ = 0, as long as β 6= 0
(see Appendix A). These lines that define the smectic
layer normals can remain straight in a significant part
of the shell thickness but not within a region above the
inner sphere, beyond some critical rc and ϕc. In this
sub-region, to accommodate the spherical curvature, the
set of straight layer normals has to be adjusted to follow
tangents of great circles in the sphere. These tangent
lines are the ones issued from (R, θ, 0), tangent to the
director n(R, θ, 0) [see Fig. 21(b)]. Since great circles are
geodesics of the sphere, this construction ensures that the
corresponding layers remain parallel to each other, while
being perpendicular to the inner sphere (Blanc and Kle-
man, 2001).

The field defined from ϕ = 0 depends solely on the
angle β. However, the field cannot be extended to the
whole shell without additional defects. The closest sin-
gularity point in the azimuthal direction can be analyti-
cally determined (see Appendix A). It has the following
spherical coordinates: (rc, π/2, ϕc) with rc = R/ cosβ
and sinϕc = sin2 β. The bulk elastic energy diverges at
such singularities. These singularities can only be safely
neglected if χ, the crescent angle, is upper bounded by
ϕc.

Taking this constraint into account, we consider the
energy of this entire geometric construction as a function
of two free parameters: β and χ. The total energy FT
accounts for the half curvature walls present at the outer
sphere, as well as for the Πχ walls between the crescent
domains. FT can be computed using the values of both
the misfit angles at the outer shell surface and the angles
of the Πχ walls using Eq. (22). The tilt of the layers ωe at
the outer surface is zero at ϕ = 0 (by construction) and
increases with ϕ. This construction thereby favors low
values of χ, resulting in narrow crescent domains. How-
ever, narrow crescent domains also require an increasing
number of Πχ walls (whose misfit angle ωχ ∼ β only
weakly depends on χ). At a given β value, the total en-
ergy FT therefore decreases with χ, which tends to favor
χ ∼ ϕc.
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FIG. 22 Effect of the shell thickness in the smectic texture. (a-c) Cross-polarized images of smectic shells with a normalized
mean thickness h/R = 0.020, h/R = 0.036, and h/R = 0.145, respectively. The focus is set on the top of the shell (the thickest
region). The insets highlight (a) primary curvature walls (h/R = 0.020), (b) secondary curvature walls (h/R = 0.036), (c)-i
tertiary curvature walls (h/R = 0.145), and (c)-ii focal conics (h/R ≈ 1) in smectic shells. (d) Evolution of the angular width
of the crescent domains 2χ and the tilt of the layers β of a smectic shell as a function of its relative thickness h/R. The
experimental points (filled circles) are compared to the results of the minimization of FT (β, χ) (empty squares).

For the experimental values R and h of the shells that
we examined, the minimization of FT (β, χ) shows a large
reduction in the elastic energy compared to Eq. (24) (see
Appendix A, Fig. 40). Moreover, we can obtain from
our experiments the period and amplitude of the smectic
texture, which are highly dependent on the shell thick-
ness. As the shell becomes thicker, the angular period de-
creases, and the wavelength of the undulations increases,
resulting in fewer crescent domains. This effect can be
qualitatively seen in Fig. 22(a)-(c), where the number of
crescent domains dividing a shell decreases as the normal-
ized thickness, h/R, increases. Additionally, the tilt an-
gle β inside the domains concomitantly increases with the
thickness. Fig. 22(d) shows the evolution of these param-
eters as a function of the normalized thickness, h/R. The
experimental measurements compare well with the nu-
merical values obtained by the minimization of FT (β, χ).

Note finally that these geometric considerations are ap-
propriate for studying the ground state of a thick smec-
tic shell for which h/R > γ∗ is much above the critical
strain to induce the initial mechanical HH instability. It
would also be interesting to study very thin shells and
to observe the onset of the instability. The wavelength
λ∗ of the initial instability should be given by Eq. (19).
For example, at the equator, the relevant length scale
over which the mechanical deformation occurs is just the
shell circumference 2πR, so we would expect λ∗ ≈ 5 µm
for the λ ≈ 30 Å layer spacing of 8CB confined to a shell
with radius R = 100 µm, for example. This is consis-
tent with the spacing of the initial curvature walls (for
instance, see Fig. 22(a)).

In addition to the quantitative changes observed for
the amplitude and period of the instability, further in-
crease of the shell thickness entails deeper structural

changes. In very thin shells, only the primary curva-
ture walls previously considered can be distinguished,
and the modulation is simple [Fig. 22(a)]. However, in
thicker shells, primary curvature walls of large tilt an-
gle (β > 10 degrees) are filled in with secondary curva-
ture walls of a few degrees of tilt to form a herringbone
texture [Fig. 22(b)], and the secondary curvature walls
can be further patterned by tertiary curvature walls with
increasing shell thickness [Fig. 22(c)]. Observations of
the light extinction between crossed polarizers show that
each set of walls are roughly perpendicular to the aver-
age orientation of the modulated layers. In very thick
shells, this hierarchical organization is broken and is re-
placed by a complex texture made of focal conic domains
[Fig. 22(c)-ii], reminiscent of the ones observed in large
single spherical droplets with planar anchoring (Blanc,
2001; Blanc and Kleman, 2001; Fournier and Durand,
1991).

The appearance of the secondary and tertiary patterns
in thick shells can be qualitatively understood in the ge-
ometrical framework previously discussed. After the first
instability, the tilt ωe of the layers at the outer spheres
has strongly decreased but is almost nowhere null. The
layers are roughly tilted with an angle ±β1 with respect
to the latitude lines. Iterating the process with smaller
angles β2 allows for the decrease of ωe once again, at
the cost of additional curvature walls of smaller energy.
The dilation that was localized only at the outer sphere
in the rotational invariant construction is then strongly
reduced, while a part of it is redistributed in the whole
shell in the form of mis-orientation walls.

The smectic layers, antagonized by the system’s spher-
ical geometry, form periodic structures to maintain their
preferred spacing, patterning the shell with curvature
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walls. The wavelength of these structures increases, and
they are filled in by hierarchical patterns with increas-
ing shell thickness, similar in spirit to the undulations
observed in planar anchoring transitions of cholesteric
shells. The incompatibility of the shell curvature with
the smectic layers and the emergent, periodic textures
that result exemplify how geometrical frustration is at
the core of the HH mechanism.

VII. OTHER CAUSES OF THE HH MECHANISM

The liquid crystal shells examined in this review un-
derwent the HH instability due to frustration from topo-
logical constraints, changes in anchoring conditions, and
boundary curvature. Other sources of frustration have
also been found in other systems, including changes in
layer spacing due to phase transitions and sample thick-
nesses incompatible with the layer spacing, which can be
described by the classic strain response of HH. Before re-
viewing other phenomena that fall into the HH umbrella,
we note that there are other possible contributions to the
HH mechanism in lamellar systems.

A striking example is the work of Loudet et al. on
smectic-C* films. Recall that unlike the smectic-A phase,
a smectic-C phase has its nematic director canted at a
non-zero angle with the layer normal and the projection
of the director onto the plane of the layers is referred to as
the c director. Finally, a smectic-C* phase has the same
geometry as smectic-C on each layer but, because of in-
trinsic chirality, the c director rotates from layer-to-layer.
The period of the c rotation is typically much longer
than the period of the smectic layers and will not alter
the ensuing discussion (Meyer et al., 1975; Selmi et al.,
2017). A geometrical mismatch occurs at the smectic-A
to smectic-C transition where the molecules tilt relative
to the smectic layer normal, decreasing the layer thick-
ness. Indeed in thin films of the smectic-C phase, the
meniscus exhibited stripes that appeared to correlate to
the interface shape, and Loudet et al. hypothesized these
structures to be the result of the HH instability (Loudet
et al., 2011). A bright-field image in Fig. 23(a) shows the
meniscus of a compound in the smectic-C* phase (SCE-
9, from Merck, England, at 25 degrees Celsius). Here,
the stripes are attributed to splay deformations of the c
director, induced by frustration from the surface (Meyer
and Pershan, 1973). Note that particles within smectic-
C thin films are also found to induce similar structures,
due to thickness gradients created by wetting of the in-
clusions (Conradi et al., 2006; Gharbi et al., 2018; Harth
and Stannarius, 2009).

Another factor that can affect the HH mechanism is
saddle-splay. Saddle-splay is an oft-neglected term in
the Frank free energy because it is a total derivative and,
by Stokes’ theorem, contributes at the system surface.

However, when topological defects form, they also pro-
vide additional boundaries in the sample, between the
defect core and the ordered surrounding. Classic stud-
ies of the saddle-splay term in nematics use thin nematic
films with hybrid anchoring, where there are homeotropic
and degenerate planar conditions on the two confining
surfaces. In this case, the saddle-splay contributes to
a stripe instability (Sparavigna et al., 1992, 1994). We
would expect analogous contributions at, say, the inter-
face of a cholesteric, if the interface prefers a different
orientation of the layers than the bulk. The saddle-splay
contribution in the case of uniformly spaced smectic lay-
ers is proportional to the Gaussian curvature of the layers
and, according to the Gauss-Bonnet theorem, becomes
a purely topological contribution. As such, we do not
expect it to be pertinent for small undulation instabili-
ties (Ishikawa and Lavrentovich, 2001a), but it certainly
contributes when the layered system develops cusps and
folds (DiDonna and Kamien, 2003). The saddle-splay
term also plays a role if the nematic order is distorted
at a fluid interface. For instance, in the case of thin ne-
matic films with deformable boundaries, the saddle-splay
is also involved in the onset of stripe instabilities, which
have been the subject of some interest since the early
1990s and remains a topic of interest in the current mil-
lennium (Barbero and Lelidis, 2015; Delabre et al., 2008;
Manyuhina and Ben Amar, 2013; Manyuhina et al., 2010;
Sparavigna et al., 1994).

Finally, an incompatibility of the layer number and
the sample thickness can also trigger undulations. The
boundary condition may force the system to have an in-
teger number of layers between the top and bottom of
a film. This creates an intrinsic strain on the layers if
the film thickness d is not an integer multiple of the pre-
ferred layer size t. If the sample has a deformable surface,
the surface itself will undulate and the surface tension σ
will play a role in determining the onset of the instabil-
ity, as shown for the 1995 study by Williams of a block
copolymer system (Williams, 1995). Layer strain induced
by the incompatibility of the system thickness with the
number of layers has also been simulated in cholesterics
(Machon, 2017). The induced corrugations on the inter-
face from undulation instabilities are ubiquitous across
systems with periodic ground states.

In summary, the interface plays an essential role in the
undulation of layered systems, as it provides a mecha-
nism for applying strains to the system through anchor-
ing conditions, surface tension, and boundary curvature,
amongst other sources. The HH mechanism, in turn,
typically modulates the shape of a deformable interface,
introducing corrugations. These features may be under-
stood by taking into account the basic elastic proper-
ties of the layered system (i.e., layer bending and com-
pression), along with the anchoring energy and surface
tension at the interface. In any individual case, the en-
ergetic contributions from the anchoring conditions, the
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FIG. 23 (a) Bright-field (transmitted light) optical micro-
graphs of the meniscus of a smectic-C* film (compound SCE-
9, T = 25 degrees C). (b) Interferogram of the sample at
the same location as in (a), obtained with phase shifting in-
terferometry (PSI), reveals distorted interference fringes. (c)
Superposition of the micrographs in (a) and (b), show how the
c-director splay distortions seen in bright-field correspond to
the interface undulations captured by the interferogram. (d)
Polarized micrograph of the smectic-C* meniscus reveals two
regions: region 1 exhibits radial stripes, shown also in (a)
and region 2 shows a two-dimensional structure of focal conic
domains. (e) Schematic depicting the HH instability as a
possible origin of smectic layer undulations from the smectic-
A—smectic-C phase transition (left is before, right is after
the transition). After the phase transition, the director tilts
with an angle θ, causing the natural layer spacing of a0 to
reduce to a0 cos θ. Although the phase transition causes a
decrease in the natural layer thickness, the gradient in menis-
cus thickness fixes in a certain number of dislocations in the
system, thereby fixing in a certain number of layers and the
thickness. A mechanical stress analogous to a dilation of the
smectic-C layers results from this incompatibility, triggering
undulations to accommodate the director tilt. Adapted from
(Selmi et al., 2017).

surface tension, and the bulk elasticity must be accounted
for. The complex interplay between these various con-
tributions generates an astonishing number of variations
on this theme of geometrical-frustration-induced undula-
tions.
VIII. HELFRICH-HURAULT: HERE, THERE, AND
EVERYWHERE

As seen in the systems we have reviewed thus far, un-
dulations in smectics and cholesterics are induced by
geometrical frustration, with important and often ne-
glected contributions from deformable boundaries, inter-
facial curvature, and surface anchoring conditions. How-
ever, similar responses to bulk and surface incompatibil-
ities are also prevalent in other materials with periodic
ground states. These same mechanisms can be extended
to account for phenomena seen in both biological and
other synthetic systems. In the final section of this re-
view, we demonstrate the ubiquity and utility of the HH
mechanism by reviewing undulating responses across a
wide array of materials, beyond the traditional smectic
and cholesteric phases.

A. Twist-bend nematic phases

Liquid crystal phases formed by banana-shaped, bent-
core mesogens undergo the HH instability through undu-
lation of their structures in response to mechanical stress,
such as applied electric and magnetic fields or a reduc-
tion in layer-spacing with decreasing temperature. De-
pending upon their rigidity and the presence of system
chirality, bent-core molecules can form over 50 types of
liquid crystal phases, including a wide range of layered
liquid crystals, including smectic and cholesteric phases
(Fig. 24) (Jákli et al., 2018). Strains on the periodic
structure of these smectic and cholesteric phases will un-
dergo the HH mechanism, similar to systems discussed
previously. However, banana-shaped molecules can also
form a twist-bend nematic phase (Fig. 24(b)), in which
the director follows a helicoid at a constant oblique an-
gle with respect to the helical axis, resulting in twist and
bend deformations throughout the system. Twist-bend
nematics have a nanoscopic, molecular-scaled pitch but
can create periodic textures on the micron-scale, depend-
ing on the system thickness. We focus here on the HH
mechanism exhibited in twist-bend nematics.

FIG. 24 Schematics of bent-core molecules (left-most) form-
ing (a) a nematic, uniaxial liquid crystal (N), (b) a twist-bend
nematic with an oblique helicoid (Ntb), and (c) a cholesteric
(chiral nematic, N∗) liquid crystal with a right helicoid. The
pitch for Ntb phases is typically on the order of 10 nm.
[Adapted from (Mandle, 2016).]

The model bent-core molecule first studied is 1”,7”-
bis(4-cyanobiphenyl-4-yl)heptane (CB7CB). CB7CB
within a glass cell treated for planar anchoring can form
focal conic domains that are reminiscent of those ob-
served in smectic phases, depicted in Fig. 25(b). Friedel
and Grandjean established that the presence of focal
conic domains represents a phase with one-dimensional
positional ordering (Friedel and Grandjean, 1910).
However, x-ray diffraction and deuterium magnetic
resonance measurements of CB7CB reveals no density
modulation, while suggesting some form of chirality in
the system (Cestari et al., 2011). These findings led
Cestari et al. to be the first to conclude that CB7CB is
a twist-bend nematic. Similar to cholesterics, twist-bend
nematics can form a pseudolayer structure defined by
the pitch [Fig. 24(b) and (c)].

Both CB7CB and KA(0.2) [another twist-bend ne-



28

40 µm 20 µm

FIG. 25 Micrographs (a & b) and schematic (c) of stripes
formed by bent-core molecules in the nematic twist-bend
phase, sandwiched between a 10-µm thick, planar cell. The
micrographs in (a) and (b) are KA(0.2) and CB7CB, re-
spectively. (a) KA(0.2) has stripes shown through crossed-
polarized light microscopy, distinguishable also by the diffrac-
tion pattern in the top-most inset. The white arrow indicates
the direction of rubbing. The bottom inset depicts the mod-
ulation of the helical axis of KA(0.2), made larger in (c).
(b) The stripes in CB7CB are more complex, generating ar-
rays of focal conic domains. The period of stripes in (a) and
(b) are proportional to the cell thickness. (c) The thickness-
dependent stripes in twist-bend phases are well-captured by
the HH model, illustrated in the schematic. The thickness
of the pseudolayer, p, is the pitch of the conical helix. The
direction of the heliconical axes (short lines) undulate in the
x-direction, with a period `. [Adapted from (Challa et al.,
2014).]

matic material, composed of 20 mol% 1”,9”-bis(4-cyano-
2’-fluorobiphenyl-4’-yl)nonane (CBF9CBF) added to a
mixture of five odd-membered liquid crystal dimers with
ether linkages containing substituted biphenyl mesogenic
groups (Adlem et al., 2013)] can generate optically de-
tectable stripes within planar glass cells [Fig. 25(a)]. The
stripe periodicity is micron-scaled, at least an order of
magnitude larger than the measured pitch of the twist-
bend nematic’s conical helix. The stripe periodicity also
depends on the system thickness, and the stripes are not
thermodynamically stable. For samples with dielectric
anisotropy both greater than and less than zero, the
stripes could be eliminated by applying an electric or
magnetic field. Only upon decreasing the temperature of
the system afterwards would the stripes return (Borshch
et al., 2013; Challa et al., 2014). That this periodicity is
larger than the phase’s intrinsic periodicity and that the
stripes are not thermodynamically stable are all prop-
erties reminiscent of the HH instability in smectics and
cholesterics.

Stripes and focal conic domains dependent upon sys-
tem thickness or process history are signatures of the HH

instability, as exemplified by the smectic and cholesteric
shells discussed in previous sections. Challa et al. use
a “coarse-grain” model of twist-bend phases to describe
the optical stripes seen for both CB7CB and KA(0.2).
The framework of the HH instability is then applied
(Fig. 25(c)) to capture the critical magnetic field strength
necessary for stripe elimination, and to estimate the elas-
tic properties of CB7CB and KA(0.2) (Challa et al.,
2014). Notably, the undulations in twist-bend phases are
hypothesized to be created by the shrinking of pseudolay-
ers from decreasing the system temperature, reminiscent
of the stripe formation in smectic-C menisci.

Lastly, we note that twist-bend nematics are also the
first example of a fluid with local polar order without den-
sity modulation, and measurements on structures gener-
ated by the HH mechanism confirm this. Pardaev et
al. performed light scattering on a twist-bend nematic
sample exhibiting parabolic focal conic domains that nu-
cleated from the HH instability to detect the existence
of this local polar order, evidenced by a second harmonic
signal that is absent in the parabolic focal conic domains
of smectic-A phases (Pardaev et al., 2016). Again, struc-
tures attributed to the HH instability since the 1970s,
such as parabolic focal conic domains in smectics and
cholesterics, are being found in recent phases, like the
twist-bend nematic phase, illustrating the pervasiveness
and relevance of this mechanism in partially-ordered sys-
tems.

B. Lyotropic liquid crystals

FIG. 26 Mean-field phase diagram, adapted from (Gompper
and Klein, 1992), of amphiphillic molecules in solution. The
various ordered phases are indicated. The dark regions have
two-phase coexistence. We will particularly focus on undula-
tions in the Lα lamellar phase and in the hexagonal columnar
phase HI .

A significant class of materials that also exhibits spa-
tially modulated phases including cylindrical, layered,
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and foam-like configurations are lyotropic liquid crystals,
which are collections of amphiphilic molecules in a sol-
vent. The mixtures can involve multiple components, but
often include surfactant molecules and a solvent mixture
that may contain salts or organic compounds, such as
cyclohexane or alcohols. The thermodynamic phase of
these materials is controlled by the concentration of the
solute (typically the surfactant molecule), along with the
temperature. An exemplary phase diagram is shown in
Fig. 26. Note that at sufficiently low temperatures T ,
we transition between a series of various ordered phases
as we increase the concentration φ of the amphiphile in
solution. The typical sequence of phases starts with a
dilute micellar solution at low concentrations, transition-
ing to a hexagonal arrangement of micellar cylinders at
higher concentrations, then to a lamellar arrangement
(or a bicontinuous phase Q, shown in Fig. 26), until fi-
nally transitioning to an inverted micellar cylinder phase
at high concentrations. All of these ordered phases are
spatially modulated structures with some characteristic
length of spacing λ. As such, frustration imposed on the
system that competes with the spacing λ may lead to
undulation instabilities.

The aqueous nature of lyotropics allows one to strain
the system in a myriad of ways, including via shear flows
and doping with nanoparticles, which may in turn be
controlled with electric or magnetic fields. Many of these
perturbations result in the HH mechanism because the
lamellar phase (Lα in Fig. 26) is for all intents and pur-
poses equivalent to the layered smectics and cholesterics
described previously in this review. For the lyotropic
lamellae, shear flow may be applied to induce layer un-
dulations (Diat et al., 1993; Marlow and Olmsted, 2002).
At small shear rates, the buckling instability may be di-
rectly related to an undulation produced by a dilative
strain, with a characteristic length given by λc ∼

√
λ`,

with λ being the lamellar spacing and ` being the sample
thickness (Zilman and Granek, 1999). It is also possible
to induce undulations in these smectic-like states via con-
finement that is incompatible with a particular number
of layers, which then reduces the problem to essentially
an identical analysis as a smectic liquid crystal in a cell
(MacKintosh, 1994).

Under larger flows, the lamellar phase may break up
into a packing of multilamellar vesicles (Diat et al.,
1993; Gulik-Krzywicki et al., 1996; Sierro and Roux,
1997) or analogs of focal conic domains (Pommella et al.,
2013). An example of the resultant structure is shown in
Fig. 27(a). Under these more extreme shear conditions,
interesting intermediate phases may also form, including
a phase in which multilamellar cylinders orient along the
shear direction (Zipfel et al., 2001). These multilamellar
cylindrical structures may, in turn, also exhibit undula-
tions via, for example, the alteration of the spacing be-
tween lamellae or an induced curvature (Santangelo and
Pincus, 2002).

FIG. 27 (a) Freeze fracture electron microscopy section of
a lyotropic lamellar phase after an applied shear, adapted
from (Gulik-Krzywicki et al., 1996). The lamella turn into
a dense packing of multilamellar “vesicles”. (b) Polarized
microscopy image, adapted from (Ramos et al., 1999), of a
lyotropic columnar phase (HI in Fig. 26) undergoing an in-
stability to a herringbone pattern. This is achieved by doping
the material with magnetic nanoparticles and applying a field
B (blue arrow) which acts to reorient the cylinders.

The cylindrical phases (HI and HII in Fig. 26) also
have interesting ground states that can undergo the HH
mechanism. The characteristic size λ between adjacent
pairs of cylinders may be frustrated by an applied strain
or cylinder reorientations under flow or applied fields.
The cylinders may accommodate these strains by undu-
lating or buckling. It is also possible to induce undula-
tory instabilities in the cylindrical phases by, for example,
doping the phase with magnetic particles and then reori-
enting the phases with an applied magnetic field. At high
fields, a herring-bone structure is observed as shown in
Fig. 27(b) [(Ramos et al., 1999)], reminiscent of the her-
ringbone structures we see in smectic shells, described in
Sec. VI.A.

Given the multi-component mixtures involved in form-
ing the lyotropic phases and the complex set of interac-
tions in forming the ground states with an associated
characteristic length λ, it is difficult to model these sys-
tems without resorting to a phenomenological descrip-
tion. One possibility is to use molecular dynamics simula-
tions. However, even simple, single lipid bilayers present
challenges, even with the rapid advance of computational
tools (Moradi et al., 2019). To our knowledge, there are
no existing detailed, microscopic models of these HH-like
responses in lyotropic materials.

C. Diblock copolymers, polymer bundles, & sheets

Block copolymers also exhibit ordered lamellar phases
similar to lyotropic liquid crystals (Fig. 26). However,
unlike lyotropics, block copolymers typically have a fixed
density. Therefore, tuning between different ordered
phases is achieved by changing the structure of the con-
stituent polymers themselves, instead of varying the con-
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centrations of system components, as is typically done
for lyotropic systems. Here, we focus primarily on di -
block copolymers, where two polymers of A and B-type
monomers are grafted together.

FIG. 28 (a) A TEM micrograph of a diblock copolymer un-
der a large uniaxial strain (300%), exhibiting a characteristic
herringbone structure. This structure may develop from an
HH mechanism. Adapted from (Cohen et al., 2000). (b) Two
snapshots of a diblock copolymer lamellar phase shown af-
ter the indicated number of minutes under an applied electric
field E. The lamellae are initially oriented horizontally, and
the applied field reorients the layers. Three regions are in-
dicated, with different reorientation behaviors, including an
undulation-like mode, but with a sharp kink that is on the
order of the lamellar spacing. Adapted from (Liedel et al.,
2015).

The two A and B segments of the copolymer typically
have some incompatibility, which is captured via a Flory-
Huggins term in the free energy: χ

∫
ψA(r)ψB(r) dr,

where ψA,B are the local volume fractions of A and B-
type monomers [taken to satisfy ψA(r) + ψB(r) = 1]. A
self-consistent mean-field analysis of the total free energy
does a reasonable job in predicting the observed phases of
these materials, which include a lamellar phase, a phase
with hexagonally-packed cylinders, and gyroid phases,
amongst others (Bates and Fredrickson, 1990; Mai and
Eisenberg, 2012). In the weak segregation limit, where
the A and B portions only weakly demix, the system
is effectively described by a Brazovskii-type free energy
(Brazovskĭı, 1996; Fredrickson and Helfand, 1987):

fcp =
1

2

∫
[r + (q − q∗)2][ψ(q)]2dq +

µ

6

∫
[ψ(x)]3 dx

+
u

24

∫
[ψ(x)]4 dx, (26)

where ψ(x) (and its Fourier transform ψ(q)) describes
the deviation of the relative A/B monomer density from
the well-mixed, disordered phase. The unstable mode q∗

is related to the wavelength λ∗ of the AB domains via
q∗ = 2π/λ∗. In the strong segregation limit, the (q−q∗)2

term has to be replaced with an appropriate interaction
term that couples the Fourier transformed fields ψ(q) at
different modes q (Kawasaki and Kawakatsu, 1990).

The phases of block copolymers are analogous to the
lyotropic phases, highlighted in Fig. 26. Although the ly-
otropics typically have more dilute phases, such as a sus-
pension of spherical vesicles, these phases are not achiev-
able in a block copolymer. The major difference between
the two systems is that the amphiphile concentration
φ is replaced with the relative density of the A and B
monomers ψ, which always has some molecular variation
due to the block copolymer molecular structure. We fo-
cus primarily on the lamellar and cylindrical phases to
examine the HH instability in diblock copolymers. For
these phases, perturbations of the system away from the
ground state can be examined in both the weak- and
strong-segregation limits.

The lamellar phases of diblock copolymers exhibit the
same undulatory instabilities as discussed for the other
lamellar phases. Uniaxial strain applied perpendicular
to the lamellae leads to the HH instability, similar to the
classic smectic and cholesteric systems (Wang, 1994). At
large strains, the copolymer can develop a “herringbone”
structure, reminiscent of those observed in the smectic
shells of Sec.VI.D (Cohen et al., 2000). An important
difference, however, is that the phases of diblock copoly-
mers depend on an interaction parameter χ and can ex-
hibit a strong segregation regime, when the A and B
portions of the copolymer are highly repulsive, or a weak
segregation regime, when χ is small. Yet, it is possible
to perform a perturbative analysis to examine the HH
instability in both regimes. In the strong segregation
limit, the approach is the same as for magnetic systems,
which we detail later in this section (Asciutto et al., 2005;
Sornette, 1987). In the weak segregation limit, a smectic-
like free energy can be derived by perturbing away from
a uniform stripe phase ψ(x) = A cos(2πd̂ · x/λ), with d̂
being the direction of the stripes/lamellae. The details
of such an analysis are given in (Matsumoto et al., 2015).
It is also possible to model the HH instability by simu-
lating the relaxation of a system with the free energy in
Eq. (26) under an appropriate perturbation.

For diblock copolymers, a possible perturbation that
induces an undulation is a strain from an electric field
applied normal to the lamellae. Since the lamellae pre-
fer to lie along the field, the applied field rotates them.
The resultant undulations may be phenomenologically
described by a smectic-like free energy with an associated
HH-like instability (Onuki and Fukuda, 1995). We note
that such a phenomenological theory has some deviations
that are better captured by a self-consistent field theory
treatment (Matsen, 2005, 2006), where the basic predic-
tion λ∗ ∼

√
λ` holds (Matsen, 2006) under certain con-

ditions. However, it is also possible for the block copoly-
mers to develop an instability at a wavelength that is
close to the lamellar spacing itself (λ∗ ∼ λ). The undula-



31

tions may also occur in two-dimensions, creating a square
lattice of deformations that are reminiscent of parabolic
focal conic domains, detailed in Sec. III.B (Tsori and An-
delman, 2008; Xu et al., 2005).

In general, the layer reorientation mechanism of di-
block copolymer systems under an applied field is com-
plex, and there is a sustained interest in elucidating all of
the possible regimes (Orizaga and Glasner, 2016). One
may observe some of the subtleties in Fig. 28(b), where
three different regions are identified in a single sample,
under the same applied field. Despite the variety in the
morphology of the instability, in all cases, we observe a
frustration between some applied strain and the equal
layer spacing of the ground state, as with the other sys-
tems considered in this review.

FIG. 29 Schematics of diblock copolymers under strain. (a)
Uniaxial strain γ applied perpendicular to the cylinders in
a hexagonal phase of the diblock copolymer results in a HH
undulatory instability of the cylinders, similar to the ones
shown in (b) for bundles of elastic fibers. The bundles ex-
hibit undulation instabilities as in the columnar phases of di-
block copolymer (and discotic liquid crystals). The buckling
in the fiber bundles, with characteristic size λ∗, comes from
geometrical frustration resulting from the incompatibility of
disclinations in the cylindrical packing and the equal cylinder
spacing. Figure is adapted from (Bruss and Grason, 2018).

The columnar, or hexagonal, phases of diblock copoly-
mers also exhibit HH-like instabilities. Applying a uni-
axial strain perpendicular to the length of the cylinders
may induce undulations as the cylinders try to maintain
the same spacing under strain (Fig. 29(a)). The resul-
tant instability in the cylinders, illustrated schematically
in Fig. 29(b), may be analyzed in the same fashion as the
lamellar system (Hamley, 1994; Pereira, 2002).

A related instability is also found in bundles of elastic
filaments (Bruss and Grason, 2018). There, the instabil-
ity arises when one has a defect in the hexagonal packing
of fibers. The packing defect, a disclination, is incom-
patible with the equal spacing of the cylinders in the
packing. The cylinders then buckle to relieve this frus-
tration (Bruss and Grason, 2018). Depending on the type
of disclination, one can find various deformation modes,
two of which are shown in Fig. 29(b). This is yet another
example where geometrical frustration leads to a spatial
modulation – the central theme of this review.

FIG. 30 Photographs of wrinkles in a stretched elastic sheet
having a characteristic periodicity given by λ∗ ≈ 2

√
πλ`,

where ` is the film length and λ ∼ (B/T )1/2 is an elastic
characteristic length scale, where B is the bending stiffness
and T is the tension in the film. Note how similar this wave-
length is to the classic Helfrich-Hurault instability size given
in Eq. (19). (Adapted from (Cerda and Mahadevan, 2003)).

The Helfrich-Hurault mechanism can also be seen
in thin, polymeric sheets, with undulations shown in
Fig. 30. The interfacial undulations of lamellar elastic
fluids, detailed in Sec. VI.B, can be generalized to include
the wrinkling of an elastic sheet. For a polymeric sheet to
have undulations, the single layer of length ` is stretched,
creating wrinkles in the material with characteristic size
λ∗ ≈ 2

√
πλ`, similar in form to Eq. (19) (Cerda and Ma-

hadevan, 2003). While the undeformed system in this
case is isotropic, there is still the characteristic length
scale λ ∼ (B/T )1/2 provided by the bending stiffness B
of sheet and the applied tension T . In contrast to lamellar
liquid crystals, the source of this length scale is not inher-
ent to the material and requires external forces (Cerda
and Mahadevan, 2003) or geometrical frustration (Aha-
roni et al., 2017; King et al., 2012; Paulsen et al., 2016;
Tovkach et al., 2020) to arise. Despite these differences,
the characteristic length in stretched, polymeric sheets is
analogous to the characteristic wavelength in Eq. (11) for
either the cholesteric or the smectic penetration depths.
The HH mechanism can thereby occur in both systems,
resulting in corresponding undulation wavelengths.

After these wrinkles form in a single sheet, it is possible
to get secondary undulations. Indeed, the original, pri-
mary wrinkles can be likened to a two-dimensional smec-
tic. The wrinkles resist deformation and can be mapped
to a smectic liquid crystal energy (Aharoni et al., 2017;
Tovkach et al., 2020). If they are subjected to additional
forces or boundary frustration, these wrinkles can them-
selves undergo the HH mechanism in response to strain
in the preferred wrinkle spacing. Such secondary undu-
lations would be reminiscent of those detailed previously
in Sec. V.C and VI.D for cholesteric and smectic shells,
respectively. The diversity of polymeric systems high-
lighted in this section demonstrate how the HH model ap-
plies to systems across length scales. Strain and geomet-
rical incompatibilities can generate spatial modulations
in systems varying in size, from hundreds of nanometers
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to the centimeter scale.

D. Columnar liquid crystals

The HH instability has also been postulated as the stri-
ation mechanism for columnar phases. Cagnon, Gharbia,
et al. were the first to observe an undulation instability in
columns of a thermotropic, discotic liquid crystal form-
ing stripes under both compression and dilation of the
system, reminiscent of the HH instability of smectics un-
der dilation (Cagnon et al., 1984; Gharbia et al., 1985).
They used the HH model to discover that the curvature
elastic modulus of thermotropic, columnar liquid crystals
can be six orders of magnitude larger than that of ther-
motropic smectics and nematics, possibly due to column
entanglements.

A decade after the work of Cagnon, Gharbia et al.,
Oswald, et al. observed similar undulatory behavior in
hexagonal, lyotropic liquid crystals, with strain intro-
duced by a directional growth apparatus, in which the
sample, sandwiched between two glass plates, is pulled
across a pair of hot and cold ovens (Oswald et al., 1996).
Compared to the dilation experiments, the lyotropic sys-
tem of Oswald et al. underwent undulatory instabilities
due to thermal effects, thereby experiencing mechanical
stress in both vertical and in-plane directions. Their
measurements and calculations further indicated that the
columns in their system are not correlated at large dis-
tances. However, whether that conclusion can be drawn
for thermotropic systems remains unknown due to ex-
perimental difficulty in obtaining thermally induced stri-
ations in thermotropic, discotic liquid crystals. Further-
more, isolating the formation of stripes through macro-
scopic dilation of lyotropic systems is also challenging
because of difficulties in mitigating water evaporation.

Water evaporation has been suggested as a source
of frustration that could induce undulatory instabilities
for lyotropic systems in more recent experiments. Kaz-
natcheev et al. studied a lyotropic liquid crystal that
forms columns in the chromonic phase (Kaznatcheev
et al., 2007). Lyotropic chromonic mesophases are typi-
cally formed by plank-like molecules with aromatic cores
surrounded by polar groups that can also form columns.
In water, the molecules form charged columns by stacking
face-to-face in order to hide their aromatic cores. Because
the inter-disk association is through weak, noncovalent
interactions, the assembled columns are polydisperse,
with their average lengths dependent upon the molec-
ular concentration of the disks, the disk ionic strength,
the depletant concentration, and the temperature (Tor-
tora and Lavrentovich, 2011).

Kaznatcheev et al. used a sulfonated
benzo[de]benzo[4.5]imidazo[2,1-a]isoquinoline[7,1] dye
as the lyotropic, chromonic liquid crystal and observed
stripes appearing after film deposition, exposed to air.

FIG. 31 (a) Schematic of the evaporation of a particle sus-
pension within a sessile droplet occurs more rapidly at the
droplet edges, driving particles to the contact line, resulting in
the “coffee ring” effect (inset, adapted from (Larson, 2017).)
The coffee ring effect for an aqueous solution of Sunset Yel-
low results in phase coexistence, with isotropic (I) near the
center, then nematic (N), and finally columnar (C) when mov-
ing radially outward (bottom). (b) Domain walls are formed,
visible under polarizing microscopy (left), resulting from the
buckling of columns (yellow line, right schematic). (Adapted
from (Davidson et al., 2017).) (c) The coffee ring effect is
slowed when the droplet is immersed in oil instead of air, re-
sulting in the columns forming a neat nematic phase. (d)
Further evaporation leads to a controlled herringbone texture
from the buckling of columns (bottom schematics, adapted
from (Lydon, 2010)). Cross-polarized micrographs courtesy
of Kunyun He.

The stripe direction was perpendicular to the column
direction, indicating that the stripes resulted from buck-
ling of the columns. They described the striations with a
HH model, hypothesizing that the evaporation of water
creates mechanical stress in the system by decreasing
the separation between adjacent columns. The excess
space caused by the evaporation must be filled by either
adding new columns or tilting the columns. Creating
new columns would generate dislocations that then
propagate throughout the system, which is energetically
costly and slow. However, tilting of the columns could
occur rapidly, so would then be more favorable, again
reminiscent of the classic HH instability.

Investigating lyotropic, chromonic systems with gra-
dients of concentration from water evaporation is desir-
able to better validate the HH model as the mechanism
of stripe formation. The so-called “coffee ring” effect
achieves this, in which a sessile droplet of a particle sus-
pension has an evaporation rate dependent upon the ra-
dial distance to the center of the droplet, with the highest
evaporation rate at the droplet’s contact line (Fig. 31(a),
top inset). This evaporation gradient drives particles to-
wards the droplet’s outermost rim, subsequently generat-
ing a radial concentration gradient of particles. A sessile
droplet of the lyotropic, chromonic dye, Sunset Yellow,
undergoing the coffee ring effect exhibits a concentra-
tion gradient of the mesogen, resulting in the coexistence
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of phases within the droplet [Fig. 31(a), bottom]. The
columnar phase near the contact line has radially-aligned
stripes. Davidson et al. measured the light adsorption
due to linear dichroism, revealing that the average di-
rector orientation is parallel to the contact line, drawn
in Fig. 31(b), right (Davidson et al., 2017). Domain
walls of the columnar phase are also visible in Fig. 31(b),
left, indicating the presence of undulations that bend the
columns during the evaporation process.

The evaporation of water can be slowed by replac-
ing the surrounding air with oil. This is accomplished
by introducing a non-ionic triblock polymer surfactant
with hydrophilic polyethylene oxide in the ends and a
hydrophobic polypropylene oxide in the center, such as
Pluronic 31R1. The surfactant aids the wetting of the
aqueous Sunset Yellow droplet on glass within hexade-
cane. By slowing the water evaporation rate, a smooth
nematic phase of the columns can be obtained, shown
in Fig. 31(c). Further evaporation then generates a uni-
form, herringbone texture in the droplet [Fig. 31(d)]. As
the solution is progressively concentrated, the existing
columns are extended, creating a differential strain in
the mesophase that results in undulations and buckling
of the columns, illustrated at the bottom of Fig. 31(d).
The fracturing of columns is likely a consequence of bend
deformations being more energetically costly than discon-
tinuities, suggesting stronger inter-columnar association
at high dye concentrations.

The herringbone texture can also be found in phases
of more complex molecules, like biological polymers,
including DNA. The polarized optical micrographs of
condensed xanthan, poly(γ-benzyl-l-glutamate) (PBLG),
and DNA have been investigated by Livolant and Bouli-
gand, where the transition from undulations to a herring-
bone pattern could be observed, shown for PBLG in
Fig. 32 (Livolant and Bouligand, 1986). The formation of
secondary domains of periodicity within the herring-bone
pattern as described by Livolant and Bouligand is evoca-
tive of the formation of secondary domains within smec-
tic shells, detailed in Sec. VI.A. Condensed DNA also
exhibits the herring bone texture (Livolant et al., 1989).
Livolant et al. confirmed with electron microscopy, and
x-ray diffraction that highly concentrated, 50-nm DNA
molecules have columnar longitudinal order and hexago-
nal lateral order, and can also form undulating patterns
(Livolant and Leforestier, 1996). Recent studies of the
evaporation of DNA suspensions, exemplified by (Sma-
lyukh et al., 2006) and (Cha and Yoon, 2017), further
produced DNA textures that should also be describable
with the HH model. The HH instability is prevalent even
in aqueous liquid crystals.

FIG. 32 (a) Textures of the hexagonal columnar phase of
PBLG are shown in polarizing optical micrographs at 120×
magnification. From (i) to (iii), the texture evolves from un-
dulations to a herring-bone pattern. In (ii), regions of max-
imum curvature of the PGLA become walls of discontinuity,
and new undulations appear within elongated domains. (b)
Illustration of the textural transformation from an undulating
pattern (i) to a herring-bone pattern (iv). Molecular orienta-
tions are represented by thin, continuous lines, walls of bend
deformations (L) are indicated by dashed lines, and walls of
discontinuity (W) are drawn as thick lines. Bend walls, L1,
transform into domain walls, W1, as the molecular concen-
tration increases. The process is repeated to form secondary
domains, where bend walls L2 transform into secondary dis-
continuities, W2. Adapted from (Livolant and Bouligand,
1986).

E. Biological materials

Undulation instabilities can also be seen in biologi-
cal systems at intermediate length scales, such as within
systems of particle-like fibrils, such as chitin, found in
the exoskeletons of beetles and crustaceans, and cellu-
lose, found within plants. Both chitin and cellulose,
as with the majority of biological materials, have chiral
building blocks. When concentrated beyond a thresh-
old value, these biopolymers can form particles that self-
assemble into colloidal, cholesteric liquid crystals (Bouli-
gand, 1972b; Rey et al., 2014). The cholesteric pseu-
dolayer reorientation and formation of focal conic do-
mains at a curved interface is seen on the surface of
jeweled beetle shells due to the cholesteric ordering of
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the constituent chitin, providing a mechanism for their
structural coloring and optical response (Rey et al., 2014;
Srinivasarao, 2009). Cellulose nanocrystals, derivable via
acid hydrolysis from bacteria, cotton, wood, tunicate,
and more, can also be concentrated to form a cholesteric
phase (Lagerwall et al., 2014). Colloidal suspensions of
cellulose nanocrystals can be spread and evaporated to
form a solid, dry film with photonic properties, form-
ing a polydomain, cholesteric structure with a pitch in
the visible wavelength range. Parabolic focal conic do-
mains have been observed in cellulose nanocrystal films,
reminiscent of those seen in smectics under mechanical
strain (Section III.B (Parker et al., 2018; Roman and
Gray, 2005)). Large magnetic fields can be used during
evaporation to form a single domain, aligning the pitch
along the direction of the magnetic field, as shown in
Fig. 33 (Frka-Petesic et al., 2017). When Frka-Petesic
et al. applied a horizontal magnetic field during drying,
aligning the cholesteric helix perpendicular to the plane
of evaporation, they found a zig-zag pattern in the film
[Fig. 33(b)]. Although mechanical stress in the system
is applied parallel to the layers in this case, the zig-zag
pattern can also be thought of as a result of an HH-
type mechanism. Evaporation during the processing of
cellulose nanocrystal films could further introduce hy-
drodynamic stresses that can undulate and strain the
cholesteric pseudolayers (Chan et al., 2019; Chu et al.,
2018), similar to the lyotropic systems of the previous
section. Cellulose nanocrystals can additionally be evap-
orated within spherical confinement, resulting in HH-like
buckling (Parker et al., 2016, 2022).

FIG. 33 Scanning electron micrographs of cross sections from
evaporated cellulose nanocrystal films. (a) Applying a ver-
tical magnetic field (indicated by H) upon drying yields a
single-domain, homogeneous cellulose nanocrystal film, with
the pitch axis parallel to the magnetic field direction. (b) Ap-
plying a magnetic field to align the pitch axis horizontally gen-
erates a zig-zag pattern after evaporation, indicating buckling
of the cholesteric pseudolayers. Adapted from (Frka-Petesic
et al., 2017).

Generally, biological systems are not only often chi-
ral, but also active and thereby out-of-equilibrium (Be-
liaev et al., 2021; Bouligand, 1972b; Mitov, 2017; Rey,

FIG. 34 Transmission electron micrograph of the elongating
zone of mung bean seedlings (Vigna radiata). The cholesteric
pseudolayers of the cell wall, visible through the Bouligand
arches of the cross section, undulate near the interface where
growth of the cell wall takes place (bottom). From (Roland
et al., 1992).

2010; Roland et al., 1992; Srinivasarao, 2009). Undula-
tions seen in the development of the primary cell walls
of plants is a striking example of a dynamic HH mecha-
nism, shown in Fig. 34. Activity, including forces gener-
ated during growth processes, introduces hydrodynamic
stresses that strain the chiral ordering of the system
(Fig. 35(a)). Whitfield et al. investigated cholesterics
from the framework of active liquid crystals, integrating
force-dipole stresses into a passive, chiral nematic formu-
lation (Whitfield et al., 2017). In their work, Whitfield et
al. found that extensile stresses can trigger HH layer un-
dulations in cholesterics. The steady state director fields
and their corresponding velocity fields for varying exten-
sile activity levels are plotted in Fig. 35(b). Both direc-
tor fields exhibit pairs of λ± pitch defects, reminiscent
of defects in cholesterics shells. Pairs of λ± defects often
result from the HH instability in cholesterics, as detailed
in Sec. V. Kole, et al. advanced this work by show-
ing how active stresses in cholesterics couple uniquely
to the chirality of the material, generating elastic forces
tangent to the layers (Kole et al., 2021). This “odder
than odd” elasticity from chiral activity leads to HH-like
undulations that produce a two-dimensional array of hy-
drodynamic vortices. Whether passive or active, the HH
mechanism is a viable mechanism of pattern formation
in biological materials.
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FIG. 35 (a) Sketch of the HH mechanism in extensile, active
cholesterics. Black lines show the projection of the direc-
tor field onto the plane, while red lines represent the splayed
pitch axis. Blue arrows show the active flow direction, which
increases the distortion and drives the undulation instabil-
ity. (b) Simulation results for an extensile, active cholesteric
confined in a quasi-two-dimensional geometry with flat walls.
Homogeneous planar anchoring is set for both the top and
bottom surfaces. The rightmost column plots projections of
the director field onto the plane, and the leftmost column
plots the corresponding velocity fields. ζ is proportional to
the concentration of active particles, and is positive for ex-
tensile materials and negative in contractile ones. For both
ζ = 0.001 and ζ = 0.0025, the profiles are steady states of the
system. Adapted from (Whitfield et al., 2017).

F. Magnetic systems

Thin magnetic films present an interesting two-
dimensional version of the HH instability. Such films
can be fabricated from epitaxial garnet or a thin cobalt
slice (Demand et al., 2002). In certain cases, these films
have magnetic domains in the form of stripes or hexag-
onal arrays of bubbles with a characteristic size λ, anal-
ogous to the smectic layer spacing or the spacing be-
tween cylinders in a hexagonal phase of a block copoly-
mer. These domains form when long-range dipolar mag-
netic interactions, which favor antiparallel alignment of
magnetic spins, compete with the usual, short-range fer-
romagnetic interaction that tends to align neighboring
spins. This is a typical scenario of short-range, attrac-
tive and long-range repulsive interactions necessary to

form systems that exhibit modulated phases. The spa-
tial modulations may then take the form of stripes, with
properties analogous to smectic liquid crystals or block
copolymers. As we have previously summarized, such
modulated phases exist in a wide range of systems in-
cluding phase-segregating lipids, block copolymers, and
ferrofluids (Andelman and Rosensweig, 2009; Seul and
Andelman, 1995).

a) ferromagnetic films b) simulations

FIG. 36 (a) Micrographs of undulating magnetic domains un-
der the influenced of a cycled magnetic field [top two panels
from (Demand et al., 2002)] and a temperature change [bot-
tom panel from (Seul and Wolfe, 1992)]. Changing the field
or the temperature effectively dilates the magnetic stripe do-
mains, inducing an HH-like instability. (b) Simulations of thin
ferromagnetic films [left three panels from (Asciutto et al.,
2005)] and two-dimensional block copolymers with an analo-
gous free energy [right three panels from (Kodama and Doi,
1996)] .

To understand the instability in a ferromagnetic film,
consider a coarse-grained magnetization field M(x) de-
scribing the magnetization in the thin film at some spa-
tial coordinate x = (x, y). The free energy for M(x) will
will have the general form

fM =

∫
d2x

[
D

2
|∇M |2 +

r

2
M2 +

u

4
M4

+ µ

∫
d2x′M(x)g(x− x′)M(x′)

] (27)

where g(x − x′) is a Green’s function for the dipolar
interactions, and D, r, u, and µ are phenomenological
constants related to the material properties. We expect
generally that its Fourier transform is g(q) ≈ −g1|q|,
which gives us the necessary instability for the forma-
tion of a modulated phase with characteristic wavelength
t = 2π/q∗ ≈ 16π3D/(g1µ) (Andelman and Rosensweig,
2009). In general, there are two types of patterns: an ar-
ray of circular domains and uniform stripes. In the case
of the stripe ground state, the free energy in Eq. (27) can
be shown to be equivalent to the smectic free energy in
two dimensions (Asciutto et al., 2005; Sornette, 1987).
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There is then an analogue of the HH mechanism when a
magnetic field is applied, since a magnetic field has the
tendency to change the characteristic size t of the do-
mains. Cycling this field has the same dilational effect
as a mechanical strain in a smectic system, reviewed in
Sec. III.B. Thus, the HH instability can be realized also
in thin magnetic films. An example of the domain shapes
one finds under such magnetic field cyclings are shown in
Fig. 36.

IX. CONCLUSION

With this review, we shine a spotlight on the appli-
cability of the HH mechanism to a broad range of ma-
terials with periodic ground states. By surveying phe-
nomena in cholesteric and smectic liquid crystals, we il-
lustrate geometrical frustration in lamellar systems as a
result of sources ranging from applied fields to boundary
conditions. The frustration is then relieved by the HH
mechanism, where undulations produce periodic struc-
tures with wavelengths orthogonal to and larger than
that of the ground state.

By considering examples of cholesteric and smectic
shells, where the liquid crystal is confined between two
concentric and spherical, fluid interfaces, we highlight
the role of topological constraints, anchoring conditions,
boundary deformability, and curvature. These factors
can both trigger the HH mechanism and shape the re-
sulting patterns. While topological frustration necessi-
tates the existence of discontinuities from the global cur-
vature, the HH mechanism only cares about how the sys-
tem looks locally. Topological constraints can dictate
that a frustration exists, but the exact reaction to the
frustration is a question of energetics and local geomet-
ric incompatibilities. The HH mechanism is then, in its
nature, a response to local geometrical frustration.

The generality of the HH mechanism is evident from
undulation instabilities appearing in periodic systems be-
yond the classic thermotropic, lamellar phases. These in-
clude twist-bend nematics, lyotropic liquid crystals, and
polymers, as well as biological and magnetic materials.
After accounting for fluid boundaries, the HH mechanism
can also describe phenomena in living matter, where fluid
interfaces are pervasive and activity can strain lamellar
structures.

We anticipate the HH mechanism to become increas-
ingly valuable for understanding the organization of lay-
ered materials. The phases formed by bent-core rods are
an enduring area of investigation, newly invigorated by
the experimental realizations of the splay-bend nematic
(Chiappini and Dijkstra, 2021; Fernández-Rico et al.,
2020; Meyer et al., 2020). Future studies on the struc-
tures formed by these spatially modulated phases will
almost certainly rely upon the HH model, as exemplified
by the striations of twist-bend nematics. Moreover, as

the field of active liquid crystals progresses, experimen-
tal realizations of active cholesterics and active smectics
will emerge. The latest theoretical frameworks already
invoke the HH mechanism to characterize lamellar dis-
tortions from active stresses (Kole et al., 2021; Whit-
field et al., 2017). Furthermore, cholesteric liquid crys-
tals remain widely employed in optical and elastomeric
materials. With undulations being common in the dy-
namics of cholesterics, the HH mechanism has the poten-
tial to be leveraged for tunable properties in advanced
technologies. Indeed, recent work exploited the field-
induced undulations of cholesterics to develop dynamic
and switchable diffraction gratings and surface coatings
(Ryabchun and Bobrovsky, 2018; Ryabchun et al., 2015,
2021, 2019). The HH mechanism is a generic but often
overlooked method of pattern formation that has been
and will continue to be integral to the structuring of pe-
riodic systems.
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Appendix A: Spherical smectic shells, further details

In this appendix, we discuss a few additional points
and provide further details on the geometrical and en-
ergetic properties of the smectic textures considered in
Sec. VI.D.

1. Construction of the layers

In this section, we derive the parametrization of a
smectic texture that is fully perpendicular to the in-
ner and outer surfaces of the smectic shell in the plane
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FIG. 37 Left: Cross section of a smectic shell in the plane
ϕ = 0. We consider layers (in blue) that are perpendicular to
the inner and outer spheres (respectively located at r = R and
r = R+h). The apparent thickness of the layers in this plane,
w, linearly increases with the radius r. Right: Because the
actual thickness of the layers wêθ.n is uniform, this constrains
the form of the director to Eq. (A1).

ϕ = 0. In this plane, the geometry of the smectic layers
have cross-sections that are shown as blue regions/lines in
Fig. 37. As illustrated in this sketch, the uniform thick-
ness of the layers constrains the form of the orthoradial
director n0 defined at the points P(r, θ) of the region V
of the shell (R ≤ r ≤ R+ h, 0 ≤ θ ≤ π and ϕ = 0) (with
the same notations as in Fig. 21):

n0(r, θ) =
R cosβ

r
êθ +

√
1− R2 cos2 β

r2
êϕ. (A1)

The director n0 at ϕ = 0 defines also the field n in
a neighborhood since the normals of smectic layers are
straight lines. This constructs a 2-parameter family Lr,θ
of lines issued from the points P(r, θ) and of equations
in Cartesian coordinates:

Xr,θ(k) = r sin θ + k
R cosβ

r
cos θ

Yr,θ(k) = k

√
1− R2 cos2 β

r2
(A2)

Zr,θ(k) = r cos θ − kR cosβ

r
sin θ

(k ∈ R) that can be used to parameterize the region
around ϕ = 0.

The straight lines of the family Lr,θ are the normals of
a 1-parameter family Sθ0 of parallel surfaces that can be
written as:

Xθ0(r, θ) = r sin θ +
R2 cos2 β

r
(θ0 − θ) cos θ

Yθ0(r, θ) = R cosβ(θ0 − θ)
√

1− R2 cos2 β

r2
(A3)

Zθ0(r, θ) = r cos θ − R2 cos2 β

r
(θ0 − θ) sin θ

Each surface is indexed by θ0, which is also the zenithal
angle at which each surface intersects V (blue lines in
Fig. 37). It is straightforward to check that the normals
of these surfaces are indeed given by the director field
n and that the equations can be obtained by consider-
ing the surfaces as level sets of Ψ = θR cosβ + k in the
parametrization of Eq. (A2).

2. Extension of the smectic texture along the azimuthal
direction

When two straight lines of Lr,θ intersect, the director
is not defined (i.e., defects are present). When β = 0,
defects are already present at V, since the lines issued
from the points P(R, θ) are all contained in V (which is
not compatible with the definition of n0 when r > R).
On the other hand, when β 6= 0, this is not the case, and a
smectic region around ϕ = 0 is well-defined and devoid of
defects. How far can this defect-less region extend? For
this, we consider a point M of the shell of coordinates
X,Y, Z and of radial distance H =

√
X2 + Y 2 + Z2 with

R ≤ H ≤ R+h, and we look for the lines of Lr,θ to which
it belongs. Eq. (A2) gives:

r2 + k2 = X2 + Y 2 + Z2

k = Y/

√
1− R2 cos2 β

r2
(A4)

Z = r cos θ − kR cosβ

r
sin θ

This yields the quadratic equation (in r2):

r4 − (X2 + Z2 + cos2 βR2)r2 + cos2 βR2H2 = 0, (A5)

which gives two distinct solutions r±, when the discrim-
inant ∆ = (X2 +Z2 + cos2 βR2)2− 4 cos2 βR2H2 is pos-
itive. However, it is only when both solutions are in
[R,R+h] that two actual lines issued from the two points
P(r+, θ+) and P(r−, θ−) intersect at M.

For the sake of simplicity and without losing general-
ity, we will consider from now on points located at Z = 0,
where X = H cosϕ and Y = H sinϕ. When ϕ is small,
only the largest value, r+, is in [R,R + h], which de-
fines the director at M. For example, for ϕ = 0, we find
∆ = (H2−cos2 βR2)2, the trivial value r+ = H, and the
other value r− = R cosβ, which is strictly less than R.
On the other hand, these solutions no longer hold when
ϕ is large, above some critical value: two lines emanat-
ing from different points of V can intersect at M. The
smallest value of ϕ, i.e. ϕc, where this situation occurs
corresponds to the limiting case of a double root (∆ = 0)
where r+ = r− = R. Eq. (A4) then yields:
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H

R
=

1

cosβ

sinϕc = sin2 β. (A6)

The smectic texture originating from Eq. (A1) there-
fore shows some prohibitive defects beyond ϕc in thick
shells, and ϕc is an upper bound value for the parameter
χ (which defines the size of the crescent domains). The
presence of Πχ walls is energetically costly, but such a
texture greatly decreases the tilt angle ωe of the smectic
layers at the outer sphere of the shell (see Fig. 38).
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FIG. 38 (Color online) Computation of the tilt angle ωe(θ, ϕ)
of the layers at the external sphere of a shell (inner radius R =
100µm, thickness h = 5µm, β = 20 degrees) in the vicinity of
ϕ = 0. The tilt angle ω0 of the rotationally invariant texture
is also given for comparison. See the main text for additional
context.

Finally, it should be noted that if the straight lines of
Lr,θ issued from n0 are sufficient to compute ωe every-
where, they span only the upper part of the shell when
departing from ϕ = 0 (since H2 = r2 +k2 [Eq. (A4)] and
r ≥ R). However, the director in the lower region of the
shell is also imposed by n0(r = R, θ), when maintaining
the condition that the smectic layers must be perpendic-
ular to the inner spherical shell surface. Geodesics on
a sphere indeed play the same role for the inner surface
as straight lines in Euclidean space. The director then
has to lie on the great circles issued from n0(R, θ) (see
Fig. 39). Thus completed, the director field n(r, θ, ϕ)
(and the corresponding smectic layers) can be computed
everywhere in the shell for a given pair of values (β, χ).
The tilt angles of the layers, ωe(θ, ϕ) and ωχ(r, θ), are
respectively obtained from:

sinωe(θ, ϕ) = |n(r = R+ h, θ, ϕ).êr|
sinωχ(r, θ) = |n(r, θ, ϕ = χ).êϕ| (A7)

and the total energy FT (β, χ) is obtained by integrating
fe = Kω3

e/3λ on the outer sphere and fχ = 2Kω3
χ/3λ

at the Πχ walls. Fig. 40 shows that the minimized value
of this energy is much smaller than the energy Fe of the
rotationally invariant shell (Eq. (24)). The corresponding
(β, χ) parameters are given in Fig. 22(d).

FIG. 39 Smectic layers perpendicular to the inner sphere de-
fine 2D smectic bands on this surface. The director has to
follow the geodesics of the sphere (i.e. great circles).
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FIG. 40 Comparison of the energy Fe of the rotationally in-
variant texture (see Eq. (24)) with the minimization of the
energy FT for a shell of inner radius R = 100 µm and increas-
ing thickness h.
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Cazabat (2008), Langmuir 24 (8), 3998.



40

Delaye, M., R. Ribotta, and G. Durand (1973), Physics Let-
ters A 44 (2), 139.

Delrieu, J. M. (1974), The Journal of Chemical Physics 60 (3),
1081.

Demand, M., S. Padovani, M. Hehn, K. Ounadjela, and
J. Bucher (2002), Journal of Magnetism and Magnetic Ma-
terials 247 (2), 147.

Diat, O., D. Roux, and F. Nallet (1993), Journal de Physique
II 3 (9), 1427.

DiDonna, B. A., and R. D. Kamien (2003), Physical Review
E 68 (4), 041703.

Doane, J. W. (1990), Liquid Crystals: Applications and Uses
1, 361.

Doane, J. W. (1991), MRS Bulletin 16 (1), 22.
Dogishi, Y., Y. Sakai, W. Y. Sohn, and K. Katayama (2018),

Soft Matter 14 (40), 8085.
Drzaic, P. S., and T. J. Scheffer (1997), Journal of the Society

for Information Display , Vol. 5 (World Scientific).
Durey, G., Y. Ishii, and T. Lopez-Leon (2020a), Langmuir

36 (32), 9368.
Durey, G., H. R. O. Sohn, P. J. Ackerman, E. Brasselet,

I. I. Smalyukh, and T. Lopez-Leon (2020b), Soft Matter
16 (11), 2669.

Faetti, S., and V. Palleschi (1984), Physical Review A 30 (6),
3241.

Fernandez-Nieves, A., V. Vitelli, A. S. Utada, D. R. Link,
M. Márquez, D. R. Nelson, and D. A. Weitz (2007), Phys-
ical Review Letters 99 (15), 157801.

Fernández-Rico, C., M. Chiappini, T. Yanagishima,
H. de Sousa, D. G. A. L. Aarts, M. Dijkstra, and R. P. A.
Dullens (2020), Science 369 (6506), 950.

Fournier, J.-B., and G. Durand (1991), Journal de Physique
II 1 (7), 845.

Frank, F. C. (1958), Discussions of the Faraday Society 25 (0),
19.

Frank, F. C., and J. S. Kasper (1958), Acta Crystallographica
11 (3), 184.

Fredrickson, G. H., and E. Helfand (1987), The Journal of
Chemical Physics 87 (1), 697.

Friedel, G. (1922), Annales de Physique 9 (18), 273.
Friedel, G., and F. Grandjean (1910), Bulletin de la Société
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Meister, R., M.-A. Hallé, H. Dumoulin, and P. Pieranski
(1996b), Physical Review E 54 (4), 3771.

Mermin, N. D. (1979), Reviews of Modern Physics 51 (3),
591.

Meyer, C., C. Blanc, G. R. Luckhurst, P. Davidson, and
I. Dozov (2020), Science Advances 6 (36), eabb8212.

Meyer, R. B. (1973), The Philosophical Magazine: A Journal
of Theoretical Experimental and Applied Physics 27 (2),
405.

Meyer, R. B., L. Liebert, L. Strzelecki, and P. Keller (1975),
Journal de Physique Lettres 36 (3), 69.

Meyer, R. B., and P. S. Pershan (1973), Solid State Commu-
nications 13 (7), 989.

Mitov, M. (2017), Soft Matter 13 (23), 4176.
Moradi, S., A. Nowroozi, and M. Shahlaei (2019), RSC Ad-

vances 9 (14), 7687.
Mosseri, R. (2008), Comptes Rendus Chimie 11 (3), 192.
Napoli, G., and A. Nobili (2009), Physical Review E 80 (3),

031710.
Noh, J., K. Reguengo De Sousa, and J. P. F. Lagerwall

(2016), Soft Matter 12 (2), 367.
Noh, J., Y. Wang, H.-L. Liang, V. S. R. Jampani, A. Ma-

jumdar, and J. P. F. Lagerwall (2020), Physical Review
Research 2 (3), 033160.

Onuki, A., and J.-i. Fukuda (1995), Macromolecules 28 (26),
8788.

Orizaga, S., and K. Glasner (2016), Physical Review E 93 (5),
052504.

Oswald, P., and S. Ben-Abraham (1982), Journal de Physique
43 (8), 1193.
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