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Here, we investigate the fractal-lattice Hub-
bard model using various numerical methods:
exact diagonalization, the self-consistent di-
agonalization of a (mean-field) Hartree-Fock
Hamiltonian and state-of-the-art Auxiliary-
Field Quantum Monte Carlo. We focus on the
Sierpinski triangle with Hausdorff dimension
1.58 and consider several generations. In the
tight-binding limit, we find compact localised
states, which are also explained in terms of
symmetry and linked to the formation of a fer-
rimagnetic phase at weak interaction. Simula-
tions at half-filling revealed the persistence of
this type of magnetic order for every value of
interaction strength and a Mott transition for
U/t ∼ 4.5. In addition, we found a remark-
able dependence on the Hausdorff dimension
regarding i) the number of compact localised
states in different generations, ii) the scaling
of the total many-body ground-state energy
in the tight-binding limit, and iii) the density
of the states at the corners of the lattice for
specific values of electronic filling. Moreover,
in the presence of an intrinsic spin-orbit cou-
pling, the zero-energy compact localized states
become entangled and give rise to inner and
outer corner modes.

1 Introduction
The one-band Hubbard model [1] is one of the sim-
plest and most fundamental models for describing the
effect of electron correlation in solids. In its fermionic
version, it physically resembles electrons hopping in
a lattice configuration, with hopping parameter t and
on-site interaction parameter U . It has been solved
analytically in one-dimension [2] using an extension of
the Bethe ansatz technique [3, 4]. However, despite its
deceptively simple form, analytical solutions in higher
dimensions are yet to be found. In this case, quantum
simulations [5, 6, 7], machine learning [8], and numer-
ical techniques such as Density Matrix Renormaliza-
tion Group (DMRG) [9, 10, 11, 12], Linked cluster
expansion [13], Variational Monte Carlo [14, 15, 16],
Quantum Monte Carlo (QMC) [17, 18], among oth-

ers [19] must be implemented.
The relevance of the model and its versatility are

demonstrated by its numerical applicability to a wide
range of two-dimensional lattice structures, leading
to the exploration of numerous phases of matter. For
instance, the Hubbard model is able to describe spin
and density waves [20] and, in frustrated geometries,
spin liquids [21, 9, 15, 11, 16, 22]. In addition, the
model is related to unconventional superconductivity
[23, 12, 18].

Despite the progress made in more than 60 years
of its discovery, the study of the Hubbard Model in
a non-integer dimension still remains an open prob-
lem. Fractals offer a way to explore lattice configu-
rations with non-integer dimensions. These geomet-
rical structures are characterized by their intricate
and self-replicating patterns, obtained through iter-
ative processes, in which a basic shape is repeatedly
transformed or replicated.

Recently, fractal geometries have been successfully
realized in experimental settings, offering empirical
validation of theoretical concepts. A fractal lattice
with electrons has been engineered and characterized
[24]. Quantum transport in fractal photonic lattices
[25] revealed anomalous behaviour, deviating from the
expected patterns observed in infinite regular lattices.
In addition, higher-order topological insulators have
been theoretically [26, 27] and experimentally [28] ob-
served in acoustic experiments on a Sierpinski carpet,
in which the Hausdorff dimension is dH ∼ 1.89. Fi-
nally, topological corner modes were shown to emerge
not only in the above mentioned metamaterials, but
also in real materials such as thin layers of bismuth
deposited on InSb substrates [29].

Here, we investigate the Hubbard model in a fractal
lattice. We focus on the Sierpinski triangle, which has
a Hausdorff dimension of dH = log(3)/ log(2) ∼ 1.58.
This lattice geometry is non periodic, which chal-
lenges conventional approaches, such as band theory,
and requires the exploration of alternative methods to
analyze the system. Moreover, the fractal lattice that
we adopt contains sites with different connectivity
and is bipartite, uniquely influencing the particle be-
haviour. We first study the model in the limit of zero
interaction, since we expect the geometry of the lat-
tice to influence mainly the kinetic term. Afterwards,
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we introduce interaction and employ three distinct nu-
merical methods to find the ground-state solution: ex-
act diagonalization, mean-field Hartree-Fock approxi-
mation, and Constrained-Path Auxiliary-Field Quan-
tum Monte Carlo (CP-AFQMC). Among these meth-
ods, we predominantly implement CP-AFQMC due
to the exact nature of QMC methods. For fermionic
ground-states, a CP approximation is often required
to deal with the infamous sign problem [30, 31].

The study of the system without interaction allowed
to understand the consequence of the fractal geome-
try at a tight-binding (TB) level. In particular, we
find the presence of so-called compact localized states
(CLS), that is, states which strictly vanish on a large
number of sites due to destructive interference [32].
We notice that the number of these states scales as
the Hausdorff dimension when the generation of the
fractal lattice increases. This scaling property is also
shared by the total many-body ground-state energy.
Moreover, we observe that the average density at the
corners of the lattice corresponds to dH for a specific
value of electronic filling. In the presence of intrinsic
spin-orbit coupling, the degenerate CLS at zero en-
ergy become entangled and lead to the formation of
robust corner modes. From the implementation of the
Hubbard model on the lattice we identify both a Mott
transition and a ferrimagnetic phase. The latter, for
weak interaction, can be linked to the observations
made in the TB limit.

This paper is structured as follows: in Section 2,
we introduce both the fractal lattice and the Hub-
bard Hamiltonian; we list their properties relevant to
this work and the methods that we used to solve the
problem. Section 3.1 is dedicated to the results found
with the TB approach at U = 0. Understanding these
results requires a symmetry-based analysis, explained
in Section 3.2, which reveals interesting results related
to the fractality of the lattice. In Section 3.3, we in-
vestigate the effect of an intrinsic spin-orbit coupling
on the degenerate CLS. Finally, the study of the quan-
tum phases of the system obtained with CP-AFQMC
is presented in Section 4. Our conclusions are pre-
sented in Section 5.

2 The Model
Let us start by constructing the fractal lattice from
the Sierpinski triangle. Fig. 1 shows the first three
generations of this geometrical structure. Here, we
focus on the second generation. One possible way
to construct the fractal lattice is by placing lattice
sites in the centre and in the corners of the remaining
triangles, as shown in Fig. 2. Moreover, these sites are
linked in such a way that all the links between sites
have the same length. We colour the sites according to
their connectivity. Sites at the bulk of the triangles
are coloured black [see Fig. 2(b)] and the boundary
sites are white. Thus, black sites have connectivity 3,

(a) (b) (c)

FIG. 1: First three generations of the Sierpinski triangle. (a)
Generation zero, (b) first generation, and (c) second gener-
ation.

while white sites have connectivity 2, except for the
sites at the corners of the triangle, which have only
one neighbour.

We study the Hubbard model with Hamiltonian

H = −t
∑

⟨ij⟩∈Λ

∑
σ=↑,↓

(
c†

i,σcj,σ + h.c.
)

+ U
∑

i

ni,↑ni,↓.

(1)
Here, i, j are site indices and σ is a spin index, which
refers to the up or down projection of the electron’s
spin along a fixed axis. The operator ni,σ = c†

i,σci,σ

is the number operator and one of the sums runs over
nearest-neighbouring sites ⟨ij⟩ belonging to the set Λ
containing the sites indices. The first term on the
RHS describes hopping of electrons on neighbouring
sites, with hopping amplitude t. For simplicity, we set
t = 1 as the energy unit. The second term accounts
for Coulomb interactions between electrons with op-
posite spin on the same lattice site, described by the
Hubbard parameter U . We set open boundary condi-
tions.

Due to the bipartiteness of the lattice, Fig. 2(b), the
model is particle-hole symmetric at half-filling [1]. In
addition, the Hamiltonian has a global SU(2) invari-
ance [1], which reflects the spin-rotational symmetry.

We are interested in the ground-state properties of
the system. However, a naive exact diagonalization
of the many-body Hamiltonian would require the
diagonalization of a matrix of size 4M × 4M , with
M the number of sites. This is computationally
demanding, and we could not go beyond the first
generation. In the following sections, we apply
various methods to overcome this difficulty.

(a) (b) Sub-lattice 
Sub-lattice 

FIG. 2: (a) Second generation of the fractal lattice, (b) divi-
sion of the lattice into two sublattices.
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FIG. 3: (a) First generation of the fractal lattice. (b) Its
corresponding many-body ground-state energy for different
values of Nσ. The x axis in (b) indicates the number of
electrons of one kind σ. The total number of electrons in
the system is 2Nσ.

3 Tight-Binding Approach
In order to study the many-body ground-state prop-
erties, we follow an approach that, in the frame-
work of second quantization, makes use of the TB
limit. Therefore, we start by investigating the Hub-
bard model in the limit when the interaction param-
eter U = 0. The resulting Hamiltonian represents
electrons hopping freely around the lattice, without
any energy cost for double occupation of lattice sites.

Given N particles that populate the system, one
builds the possible single-particle orbitals as superpo-
sitions of single-site wavefunctions. These orbitals, in
turn, are used as basis of the N -particle Fock space,
where we are able to construct anti-symmetrized
many-body wavefunctions making use of Slater de-
terminants. We follow closely the formalism detailed
in Ref. [33].

We also study the Hamiltonian at the single-particle
level, since the many-body behaviour is strictly re-
lated. This means that we perform a spectral analysis
of the single-particle orbitals that we use to construct
the Slater determinant. Notice that computing these
orbitals simply consists in diagonalizing the Hamil-
tonian HT B in the single-particle basis, on which it
reduces to the size M × M .

3.1 Tight-binding ground-state properties
In this section, we present results of TB implemen-
tations on the fractal lattice. In Fig. 3, we show the
first generation of the lattice and the behaviour of the
ground-state many-body energy as a function of elec-
tronic filling N = 2Nσ, where Nσ = N↑ = N↓ is the
number of electrons with spin σ =↑, ↓.

The symmetry in the energy distribution reflects
the fact that at zero interaction, the system is particle-
hole symmetric around half-filling. This means that
the system is equivalent upon exchange of particles
with holes and vice versa. This symmetry is also evi-
dent in the configurations displaying the average den-
sity per site on the lattice

⟨ni⟩ = ⟨ni,↑⟩ + ⟨ni,↓⟩

1

2

3

4

5

6

7

8

9 N =1
ET=-4.47

(a) N =3
ET=-10.1

(b)

N =8
ET=-4.47

(c) N =6
ET=-10.1

(d)
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FIG. 4: Average density configuration of the TB ground-state
on the first generation of the fractal lattice with filling (a)
Nσ = 1, (b) Nσ = 3, (c) Nσ = 8 and (d) Nσ = 6. Notice
the different scale in the colour bar for each individual picture.

shown in Fig. 4. Comparing the configurations with
Nσ = 1 [Fig. 4(a)] and Nσ = 8 [Fig. 4(c)], we con-
clude that electrons are placed in an empty lattice in
the same way that holes are placed in a fully-filled
lattice. Therefore, configuration with Nσ = 8 and
Nσ = 1 are the inverse of each other since there are
9 sites and N = 8 = 9 − 1. Notice that, below half-
filling, the sites with higher connectivity, i.e. the three
sites with three neighbours at the centre of the trian-
gles, have a higher density. We can understand this
behaviour by taking into account the fact that hop-
ping is energetically favourable, so in the ground-state
it is preferable to store electrons in sites from which
they have more probability to hop around. Along
this logic, the sites with connectivity 2 are less popu-
lated, followed by the sites at the corners, which are
connected to the lattice just through one link. If we
increase the number of electrons and place Nσ = 3
electrons as in Fig. 4(b), the Pauli exclusion princi-
ple starts to play a role, meaning that two electrons
with same spin cannot occupy the same lattice site.
The electrons then must occupy sites which are ki-
netically less favourable, if the most favourable ones
are already occupied. When we exceed half-filling, i.e.
the case where the total number of electrons coincides
with the number of sites, the pattern is inverted: the
three corners are then more populated, followed by
the sites with connectivity 2 and finally the sites with
connectivity 3, as shown in Fig. 4(d). It seems en-
ergetically more favourable to store electrons in the
corners and let the ones in the bulk hop. Configu-
rations above half filling follow this pattern, see for
example Fig. 4(c).

3.2 Compact Localized States and Scaling
Properties
In order to understand more in detail the behaviour
of the system, we must determine the eigenvalues En

and eigenvectors χn of the single-particle Hamilto-
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FIG. 5: Spectrum of the single-particle TB Hamiltonian for
the first generation of the fractal lattice. The spectrum shows
different energy levels: one three-fold degenerate level at zero
energy, two two-fold degenerate levels at En = ±

√
2 and two

non-degenerate levels.

nian. In the TB limit, spin-up and spin-down sectors
are decoupled, and we can thus treat them indepen-
dently.

3.2.1 First generation

The first generation of the fractal lattice has 9 sites
and the Hamiltonian is therefore a 9 × 9 matrix. The
energy spectrum is symmetric with respect to E = 0,
see Fig. 5. This is a direct consequence of the bipar-
titeness (chiral symmetry) of the system. This bipar-
tite character is maintained for higher generations of
the fractal, and consequently their energy spectra are
symmetric around E = 0 as well.

Let us now consider the eigenvectors χ4, χ5, and χ6
belonging to the three-fold degenerate level E = 0.
Figure 6 shows their amplitude on the sites of the lat-
tice. An interesting behaviour becomes evident: the
amplitudes on sites that belong to the sublattice B
are zero. This is a consequence of the fact that the
amplitudes of their neighbouring sites sum up to zero
and lead to destructive interference [32]. These states
are examples of so-called CLS, since they are perfectly
localized on a specific set of sites in the lattice, such
that their amplitude on the rest of the lattice is ex-
actly zero.

Before continuing, let us remark two interesting

FIG. 6: Amplitude scaled to unity of the three basis eigen-
vectors in the zero-energy level of the TB Hamiltonian, in
(a) χ4, in (b) χ5 and in (c) χ6. Dark-green and pink dots
on the lattice represent, respectively, negative and positive
amplitude of the wavefunction on the sites. On sites with
white dots, the amplitude is zero.

FIG. 7: Wavefunction that exemplifies how states around
half-filling can have a larger contribution of the average den-
sity to the corners. It is obtained by combining the states
belonging to the basis of the zero-energy degenerate level
χ4 + χ5 + χ6.

points about such states. Firstly, CLS are com-
pletely robust against any perturbations—no mat-
ter how strong—that only affect the sites on which
they vanish [34]. This makes these states a candidate
for the storage of information in the form of qubits
[35, 34]. Secondly, in periodic systems, CLS usually
lead to the emergence of one or more perfectly flat
bands, which recently became a topic of intense re-
search interest; see Refs. [32] and [36] for two reviews
on flat-band systems.

The existence of the three zero-energy CLS, χ4, χ5
and χ6, can also be deduced as follows: For a bipar-
tite system with NA (NB) sites in the A (B) sub-
lattice, it is a classical result that there must be at
least ∆N = |NA − NB| zero-energy eigenstates which
have vanishing amplitudes on the minority sublattice
[37, 38]. In our case, we have NA = 6, NB = 3, yield-
ing ∆N = 3, which is exactly the number of zero-
energy CLS that we found.

We are now able to better understand the behaviour
of zero-energy states: the three CLS χ4, χ5 and χ6 dis-
cussed above form a basis in the degenerate subspace,
meaning that a general eigenstate with eigenvalue zero
is found by taking linear combinations of χ4, χ5, and
χ6. Any pair of these three states share one corner.
For instance, eigenvectors χ4 and χ5 share the top
corner; a linear superposition χ4 + χ5 will thus have
enhanced amplitude at this shared corner. Equipped
with these insights, we can therefore understand why
states around half-filling contribute to the density in
the corners. As an example to make this point clearer,
we show the density configuration χ4 + χ5 + χ6 in
Fig. 7.

Importantly, the existence of CLS and the subse-
quent density-enhancement at the corners of the Sier-
pinsky triangle is not limited to a simple TB picture.
Indeed, as we show in Section 3.3, it persists even
when considering intrinsic spin-orbit coupling. More-
over, the scaling of the number of CLS—as investi-
gated further below—shows the same behaviour in
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both cases, that is, with and without intrinsic spin-
orbit coupling.

Having dealt with the CLS, let us now turn our at-
tention to the other eigenstates, in particular, to the
two-fold degenerate ones. Their degeneracy is a conse-
quence of the C3v point-symmetry group [39], which
has order 6 and contains the identity, two rotations
C3, C2

3 and three reflections. This group has an irre-
ducible representation of dimension 2, which explains
two-fold degeneracies [40]. As a side note, these levels
do not posses the property of CLS states. There is not
a definite group of lattice sites where the amplitude is
zero for every eigenvector of the degenerate level, as
it was the case for the zero-energy states.

It is now possible to look at the density configu-
rations in the first generation of the fractal lattice,
Fig. 4, from a different perspective. Configurations
below the degenerate level around half-filling populate
the sites belonging to sub-lattice B with an average
density ⟨ni⟩ = 1, see Fig. 4 (b). This is in agreement
with the fact that, due to particle-hole symmetry,
the average density per site at half-filling is ⟨ni⟩ = 1
and the zero-energy CLS only populate sublattice A.
Starting from the configuration with Nσ = 3 and rais-
ing the number of electrons until Nσ = 6 means in-
cluding zero-energy CLS in the many-body wavefunc-
tion. The total many-body energy does not increase
because the CLS added have zero energy, but sites
belonging to sublattice A, in particular the corners,
become more populated.

In the following, we analyze the emergence of CLS
in higher generations of the fractal. We shall see that
there appear more CLS, both at zero and finite energy.

3.2.2 Second generation

The energy spectrum of the Hubbard Hamiltonian on
the second-generation of the fractal lattice is shown in
Fig. 8. Once again, due the fractal’s bipartiteness, the
energy spectrum is symmetric with respect to E = 0.
Now, there are NA = 15 and NB = 9 sites in the two

0 5 10 15 20 25
Eigenvector ( n)

2

1

0

1

2

E

CLS type-1
CLS type-2

FIG. 8: Spectrum of the single-particle TB Hamiltonian for
the second generation of the fractal lattice. The spectrum
shows different energy levels: a six-fold degenerate level (CLS
type-1) at zero energy, two states (CLS type-2) at energy ±1
and non-CLS eigenstates, the latter represented by grey dots.

FIG. 9: Prototype basis states in the zero-energy degenerate
space of the second generation of the fractal lattice.

respective sublattices, which results in |NA −NB| = 6
eigenstates with zero energy.

Interestingly, these six zero-energy CLS can be gen-
erated from just two prototypical states, show in
Fig. 9. To obtain six states from these two, each of
them must be rotated by 120◦ and 240◦. The result-
ing set of six states are linearly independent, and thus
span the entire six-dimensional degenerate subspace
of eigenvalue zero.

Apart from these six zero-energy states, the second
generation now features a new type of CLS at the
non-degenerate energy levels ±1. These states are
depicted in Fig. 10. We note that these two states are
tightly related to each other: One can be constructed
from the other, simply by flipping the sign on all sites
of the sublattice B. This is again a direct consequence
of the fractal’s bipartiteness.

As we shall see, in the third generation, CLS appear
at even more energies than just 0 and ±1. To ease
the discussion, we will enumerate the CLS according
to the absolute value of their energies. We denote the
zero-energy CLS as type-1, and the ones at E = ±1
as type-2.

3.2.3 Third generation

The energy spectrum for the third generation TB
model is shown in Fig. 11. Apart from the type-1 and
type-2 CLS that we encountered in the second gen-
eration, there are now five additional types of CLS,
namely, type-3 to type-7. Examples of some CLS are

FIG. 10: Eigenstates corresponding to the eigenvalues of the
two-fold unitary degenerate level CLS type-2. (a) One of the
eigenvectors with energy E = −1. (b) One of the eigenvec-
tors with energy E = 1. They are the second type of CLS
found by spectral analysis.
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FIG. 11: Spectrum of the single-particle TB Hamiltonian for
the third generation of the fractal lattice. The spectrum
shows seven different types of CLS: a 15-fold degenerate
type-1 CLS at zero energy, a 4-fold degenerate type-2 CLS
at E = ±1, a 2-fold degenerate type-3 CLS at E = ±

√
2, a

type-4 CLS at E = ±1.543, a 3-fold degenerate type-5 CLS
at E = ±

√
3, a type-6 CLS at energy E = ±2.149 and a

type-7 CLS with energy E = ±
√

5.

depicted in Fig. 12. Again, the fractal’s bipartiteness
means that each of the depicted states has a partner
whose amplitudes on each site of the B-sublattice is
flipped, and which has the same energy, but with an
inverted sign.

Let us now discuss some aspects of the CLS in more
detail. The (non-depicted) type-1 CLS are simple:
they vanish on the entire sublattice B. We note that
there are NA = 42 and NB = 27 sites in the two
sublattices, resulting in 42 − 27 = 15 type-1 (zero-
energy) CLS. The CLS of type-2, 5, and 6 [Fig. 12(a),
(c) and (d) respectively] have a very peculiar property:
they vanish on all three other corners of the fractal.
On the other hand, the CLS of type-3 [depicted in
Fig. 12(b)] and type-7 (not depicted) do not have this
property. CLS type-7 exhibit destructive interference
on the same set of sites as CLS type-3 and were not
included in the graphical representation of Fig. 12 to
avoid redundancy. The same reasoning applies to CLS
type-4 and we only show CLS type-6 in the figure.

3.2.4 Higher generations

The number of CLS grows considerably at larger gen-
erations. For the type-1 CLS—which is caused by the
fractal’s bipartiteness—, for instance, we can see that
for the n-th generation, the number of sites in the two
sublattices is given by NA(n) = 6·3n−1−

∑n−1
i=1 3i and

NB(n) = 3n. This results in

∆N(n) = 6 · 3n−1 −
n∑

i=1
3i (2)

zero-energy CLS, as predicted by Lieb’s theorem. For
instance, in the 8th generation, there are N = 16404
sites in total, with an imbalance in the two sublattices
given by NA = 9843 and NB = 6561. The number of

FIG. 12: Four out of the seven types of CLS on the third
generation of the fractal lattice. (a) One of the type-2 CLS
with energy E = −1, (b) one of the type-3 CLS with energy
E = −

√
2 (c) one of the type-5 CLS with energy E = −

√
3,

(d) one of the type-6 CLS with energy E = −2.149. The
dark-green (pink) dots indicate sites with negative (positive)
parity, where the size of the dots represents the value of the
amplitude: the larger the dot, the higher the amplitude.

zero-energy CLS is thus ∆N = 3282. The plot of den-
sity of states (DOS), in Fig. 13, provides a clear visual-
ization of the zero modes present in our fractal lattice.
An analysis of the DOS in the tight-binding regime on
the Sierpinski lattice was done in Ref. [24] to show
the self-similarity at different scales. For large n, the
first term in Eq. (2) becomes dominant, from which
we conclude that the ratio α = ∆N(n + 1)/∆N(n)
thus equals 3. Since the sides of the fractal are du-
plicated whenever going from one generation to the
next, the dimension is defined as

d = log α

log 2

and we thus observe that the dimensionality we assign
to number of zero-energy CLS tends to the dimension
of the fractal, dH = log 3/ log 2.

By explicitly diagonalizing the system for the first

2 1 0 1 2
Energy

0

500

1000

1500

2000

2500

3000

DO
S

FIG. 13: Hisotgram of the density of states in the 8th gener-
ation of the fractal lattice. The energy interval is discretized
with an energy step of ∆E = 5 · 10−2.
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FIG. 14: Scaling of the number Ng of CLS of different types
when increasing the generation g of the Sierpinski triangle,
from first generation g1 to generation g8.

eight generations, we also studied how the number of
the type-2 to type-7 CLS changes when considering
higher generations of the lattice. The results are pre-
sented in Fig. 14. The number of CLS of types 1, 2, 4, 5
and 6 tends to scale as the Hausdorff dimension when
the generation number increases.

We notice that CLS of type-4, 5 and 6 share the
same scaling, even if they belong to different energy
levels, see Fig. 11. Regarding CLS of type-3 and type-
7, we found that the number of states in the corre-
sponding levels ±

√
2 and ±

√
5 does not increase but

remains the same for odd generations, and is zero for
even generations.

Motivated by these scaling behaviours, we also
studied how the many-body ground-state energy ET

around half-filling (i.e. the value of energy corre-
sponding to the degenerate level in Fig. 3(b) changes
when increasing the generation. As shown in Fig. 15,
these values also scale as the Hausdorff dimension.
Therefore, they can be derived by recursive compu-
tations upon increasing the generation, without the
need of diagonalizing the Hamiltonian. This also
holds for the number of CLS in some energy levels,
and constitutes a great advantage because the com-

g2/g1 g3/g2 g4/g3 g5/g4 g6/g5 g7/g6
1.50

1.52

1.54

1.56

1.58

1.60

lo
g(

E T
,g

i+
1/E

T,
g i
)/l

og
(2

)

ET, 1/2
d = Hausdorff dimension

FIG. 15: Scaling of the ground-state many-body energy at
half-filling ET,1/2 when increasing the generation g of the
Sierpinski triangle, from first generation g1 to generation g8.

putational cost increases rapidly as we increase the
generation.

As a last addition to the analysis of the zero-energy
level, we investigated the average density on the cor-
ners in the last configuration of the zero-energy level
of the many-body spectrum. This means, for exam-
ple, filling Nσ = 6 for the first generation, Nσ = 15
for the second, and so on. We noticed that its value
is ⟨n⟩ = 1.5909 for every generation that we imple-
mented, very close to the Hausdorff dimension.

3.3 Compact localized states when considering
intrinsic spin-orbit coupling
So far, we have seen that CLS naturally appear in
the Sierpinsky triangle when treated within a sim-
ple tight-binding formalism. To emphasize the impor-
tance and universality of these states, we will demon-
strate in the following that they are still present in the
model even when taking intrinsic spin-orbit coupling
(ISOC) into account.

To introduce ISOC into the model, we start from
the TB Hamiltonian of the Sierpinsky triangle and
add the term

HSO = ib
∑

⟨⟨i,j⟩⟩

vi,jc†
i cj (3)

to the Hamiltonian. Here, the sum goes over pairs
of sites that fulfil both of the following conditions:
(i) they both are in the majority sublattice, and (ii)
in the original Hamiltonian without ISOC, they are
two sites apart from each other, i.e. the next-nearest
neighbor (NNN). The coefficient vi,j = +1 when the
two-hop path from site i to site j is in the clockwise di-
rection, and vi,j = −1 when it is in anti-clockwise di-
rection. The Hamiltonian includes intrinsic spin-orbit
coupling (SOC), Rashba SOC, and a staggered mass
in a honeycomb tight-binding lattice [41]. Since our
focus is on generating topological features, we consid-
ered only the intrinsic SOC term in the Hamiltonian
because this is the term that leads to the quantum
spin Hall effect. The staggered mass opens a trivial
gap and the Rashba SOC tends to close the topolog-
ical gap. It is important to note that, because spin is
a conserved quantum number, it can be omitted from
the Hamiltonian during calculations. At the conclu-
sion of the calculations, the spin can be reintroduced,
with the understanding that all results are valid for
the opposite spin as well, but with an inverted sign
for edge propagation.

Effectively, Eq. (3) adds complex-valued coupling
(with amplitude b) between NNN sites—similar to
Ref. [42]—, but only if the coupling does not cross
the “empty regions” of the Sierpinski triangle. In
Fig. 16(a), the Hamiltonian is shown in pictorial form,
with complex couplings denoted by dashed, arrowed
lines.
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FIG. 16: Graphical representation of both the Hamiltonian
and specific eigenstates for the first and second genera-
tion Sierpinsky triangle with intrinsic spin-orbit coupling of
strength b. Each circle represents a physical site, with lines
denoting coupling between these sites; solid grey lines denote
the normal coupling (with strength t), while the dashed lines
denote the intrinsic spin-orbit coupling (which is complex and
thus directional) of strength ib. The size and color of the cir-
cles encode the amplitude of the specific eigenstate shown.
(a) The only zero-energy eigenstate for the first generation
of the Sierpinsky triangle with intrinsic spin-orbit coupling
of strength b. (b) and (c) the two degenerate zero-energy
eigenstates for the second generation. Superposing these, as
shown in (d) and (e), gives a state with high enhancement
at certain sites.

Let us now analyse the situation in detail. In con-
trast to the case without ISOC, the first few genera-
tions (we have checked until the fifth) only show one
type of CLS, which lies at zero energy. Moreover, in
contrast to the case without ISOC, the CLS is non-
degenerate in the first generation; the state is depicted
in Fig. 16(a). Remarkably, it is exactly the state from
Fig. 7, so that the amplitudes are enhanced at the
three outer corners of the fractal. The ISOC entan-
gles the three degenerate eigenstates into a sum of the
them.

In the second generation, the CLS become two-fold
degenerate. The first of the corresponding eigenstates
is shown in Fig. 16(b). We note that it is similar to the

one from Fig. 16(a), and indeed can be obtained from
the latter by simply copying it three times. In the
following, we will call this eigenstate the ubiquitious
state. It sill vanishes on a large number of sites, which
are marked in Fig. 16(b) in black. Again, as with any
CLS, the cause is destructive interference; see inset of
Fig. 16(b). The second eigenstate with zero energy is
what we call a closed-loop state. It loops around the
central gap (white space) of the fractal and vanishes
outside of it. We further note that the amplitudes of
this closed-loop state depend on the coupling t and
the strength b of the intrinsic spin-orbit coupling.

Similar to Fig. 7(d), we can superpose the two de-
generate zero-energy states to obtain a state which
has a larger enhancement on some sites. This is
demonstrated in Fig. 16 (d) and (e). In higher gener-
ations, the overall picture does not change much. For
instance, in the third generation, there are five zero
energy eigenstates: One ubiquitous (Fig. 17(a)), one
large closed-loop state for the central gap (Fig. 17(b))
and three smaller closed-loop states for the smaller
gaps (Fig. 17 (c), (d), and (e)). Once again, one may
superpose these states to obtain states with enhanced
amplitudes on certain sites (corners, for instance).

We have checked the number N of zero-energy CLS
until the fifth generation. For each generation, this
number is equal to one third of the number of zero-
energy states without ISOC. Thus, the scaling of the
number of such states is the same, with or without
ISOC.

4 The Hubbard Model
We now introduce interaction to the model in the frac-
tal lattice and present both the numerical methods
used and the results of our implementations.

The full Hamiltonian in Eq. (1) contains a two-
body term, which prevents us from diagonalizing
the system at a single-particle level, as done for
the TB model. In the next subsections, we present
three distinct methods that we use to investigate this
Hamiltonian numerically.

4.1 Exact Diagonalization
The first method consists in naively diagonalizing the
Hamiltonian in a many-body basis of the Fock space
and identifying the ground-state energy as the lowest
energy eigenvalue and the ground-state wavefunction
as its corresponding eigenvector. To diagonalize the
Hamiltonian, we first need to choose a basis and our
convention for the basis choice is, in the Fock space,
strings with 2 × M entries that can take values of ei-
ther 0 or 1 and that identify the positions of the elec-
trons on the lattice, 1 means that there is an electron,
0 that there is none [43].
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FIG. 17: Graphical representation of both the Hamiltonian and specific eigenstates for the third generation Sierpinsky triangle
with intrinsic spin-orbit coupling of strength b. Each circle represents a physical site, with lines denoting coupling between
these sites; solid grey lines denote the normal coupling (with strength t), while the dashed lines denote the intrinsic spin-orbit
coupling (which is complex and thus directional) of strength ib. The size and color of the circles encode the amplitude of the
specific eigenstate shown. (a) to (e) show the five zero-energy eigenstates of the third-generation Sierpinsky triangle (see text
for details).
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We also need to define an order: the first half of
the entries represents spin up particles populating the
numbered lattice sites, while the second represents
spin down particles with the same lattice site ordering.
The number of such basis states is 4M . Since this
number grows exponentially with the number of sites,
exact diagonalization is a computationally demanding
method to solve the Hamiltonian and it will only be
used to solve small-size systems with a small number
of electrons.

4.2 Mean-Field Approximation
One way of circumventing the two-body issue is to
perform a mean-field Hartree-Fock approximation.
This consists in rewriting the interaction term as [44]

ni,↑ni,↓ ≃ ⟨ni,↑⟩ni,↓ + ⟨ni,↓⟩ni,↑ − ⟨c†
i,↑ci↓⟩c†

i,↓ci↑

− ⟨c†
i,↓ci↑⟩c†

i,↑ci↓ + ⟨ni↑ni↓⟩ + ⟨c†
i,↑ci↓⟩⟨c†

i,↓ci↑⟩, (4)

which allows us to express the Hubbard Hamiltonian
in terms of one-body operators and proceed by con-
structing the many-body ground state in the same
way as we did in the TB limit. The difference is that
the mean-field term is not known, since the averages
present in Eq. (4) require the knowledge of the so-
lution, which is, in turn, what we want to compute.
The way we proceeded is by applying a self-consistent
iterative scheme. Starting from a randomly gen-
erated Hamiltonian, we use the diagonalization ap-
proach introduced in the previous section to compute
the many-body ground-state energy, average density
per site, and wavefunction. The latter is then used to
build a mean-field Hamiltonian HMF , from which we
again compute the above mentioned quantities. This
scheme is iterated until the solutions converge. We
show later that this approximation is valid for very
small values of the interaction parameter U .

4.3 CP-AFQMC
The method that we largely implemented to study the
Hubbard Hamiltonian is CP-AFQMC [33, 45, 46, 47].
The starting point is a mean-field ansatz, found
by following the procedure outlined in Section 4.2.
The imaginary-time evolution of this ansatz tends
to the ground-state of the Hubbard Hamiltonian
as the imaginary time becomes large. Implement-
ing imaginary-time evolution requires a Hubbard-
Stratonovich transformation, which introduces exter-
nal auxiliary fields at each lattice site. This enables
to go from an interacting system to a non-interacting
system living in a space of fluctuating external fields.
The wavefunction is written as a linear combination
of many wavefunctions, the walkers. Evolving the full
system in imaginary time means evolving each of the
walkers.

In addition, more techniques are required to render
the method efficient. Importance sampling is used,
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FIG. 18: Comparison of the ground-state many-body ener-
gies as a function of interaction. We consider the first gen-
eration of the fractal lattice with Nσ = 1. These energies
are computed with three different implementation methods:
ED (green line), MF (yellow triangles), and QMC (red dots).
(a) The total energy, (b) the kinetic energy, and (c) the po-
tential energy. The error bars associated to the QMC results
are smaller than the pointer’s size.

and the simulation is guided by the initial ansatz
throughout the evolution in imaginary time. Back
propagation is required to compute observables that
do not commute with the Hamiltonian. A constrained
path approximation makes it possible to deal with the
sign problem that stems from the fermionic nature
of the particles populating the system. For a more
detailed description of the method, we refer to Ap-
pendix A.

Our starting point was the validation of the QMC
method by comparing its results with exact ones, i.e.
with results found by performing exact diagonaliza-
tion (ED). We also compared these two methods with
the mean-field (MF) approach to understand to which
extent this approximation is appropriate. Since the
simulation time required by ED scales exponentially
with the system size and the electron number, we con-
sidered a small system (the first generation of the frac-
tal lattice), with a couple of electrons (Nσ = 1). The
quantities computed were the total, kinetic, and po-
tential energy of the many-body ground-state, for val-
ues of U ∈ [0.1, 9]. The potential energy is the contri-
bution to the energy given by the Coulomb interaction
in the Hubbard Hamiltonian in Eq. (1). In Fig. 18,
we present the behaviour of the energies computed us-
ing these three different methods, as the interaction
strength increases. Strictly speaking, the mean-field
(MF) approximation is valid only for U = 0, but it is a
reasonable approximation for very small values of the
interaction U when U → 0. On the other hand, the
QMC approach follows very accurately the exact be-
haviour. For this reason, we focus on the QMC imple-
mentation and use MF only to make it more efficient.
We also notice that the value of the kinetic energy
computed by QMC for an interaction U = 6 devi-
ates from the exact solution and coincides with the
MF solution. This could be a consequence of the fact
that the MF ansatz, used in an importance-sampling
scheme and in the CP approximation, is biasing this
result.

To understand the extent of this influence, we per-
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FIG. 19: Comparison of the ground-state many-body energies
as a function of interaction in the first generation of the
fractal lattice with Nσ = 6. These energies are computed
with three different implementation methods: MF (yellow
triangles), QMC (Ueff = U , red dots) and QMC (Ueff =
0.1, green triangles). The error bars associated to the QMC
results are smaller than the pointer’s size.

formed simulations in the first generation with Nσ =
6. We studied the behaviour of the QMC energies as
the interaction strength is increased, with the simula-
tion being guided by different MF ansätze. In particu-
lar, we performed simulations where the MF ansatz is
generated using Ueff = U , where Ueff is the interaction
strength used in the MF simulation, referred to as ef-
fective potential. This behaviour is indicated by the
inverted triangles in Fig. 19. Then, we performed sim-
ulations with Ueff = 0.1. The simulation that provides
the smallest total energy is the best approximation of
the ground state, due to the variational principle. It
is possible to observe that the latter ansatz gives bet-
ter results for every value of interaction. From this
analysis, we can conclude that a preliminary study
on the influence of the MF ansatz on the QMC sim-
ulation has to be performed before proceeding with
the implementation. In fact, since the path of the
walkers is influenced by the MF trial wavefunction, a
bad ansatz affects negatively the paths, making them
deviate from the exact solution. Moreover, to han-
dle the sign problem, we introduce a constrained-path
approximation that renders systematic errors. How-
ever, those errors are small since the results coincides
very closely with exact diagonalization, as shown in
Fig. 18.

4.4 Interaction and density distribution
We now consider the configuration where Nσ = 6,
which corresponds to the last energy state in the de-
generate energy-level found when U = 0, see Fig. 3(b).
In the TB studies, we understood that this state is a
consequence of the CLS, with destructive interference
happening at the sites in the centre of the triangles.
We also observed that the density at the corners has a

FIG. 20: Average density per site ⟨ni⟩ as a function of inter-
action strength U in the three different groups of states, on
the first generation of the fractal lattice with Nσ = 6.

value close to the Hausdorff dimension. Studying this
configuration allows us to tackle the consequences of
interaction in this type of states.

We can divide the lattice into three groups of sites:
sites 1, 6, 9 called corners, sites 2, 5, 7 called center
and sites 3, 4, 8 called connections, see Fig. 3(a) for the
site indexing. We expect the density to be the same
in each of these groups, since there is no reason for an
imbalance. Figure 20 shows how the average density
per site ⟨ni⟩ changes in these groups of sites when in-
creasing the interaction strength. We observe that for
small interactions, both corners and connection sites
are more populated than the center sites. As the in-
teraction increases, their density decreases, while it
grows in the sites at the center. The electrons start
spreading towards the center of the lattice, and they
keep spreading until the density is approximately ho-
mogeneous on every site, at a value of approximately
⟨ni⟩ ∼ 1.35 and U ∼ 8. Thereafter, the density in
the center sites continues to increase, while decreas-
ing slowly on the rest of the lattice sites, meaning
that electrons start to accumulate in the center sites.
For very strong interaction values, it becomes more
favourable to have electrons in sites with more con-
nectivity, where hopping is more probable.

Relating this study to the TB considerations and
the CLS type-1 discussed in Section 3.2, we expect
that those types of states with destructive interference
on center sites get destroyed as soon as the interaction
is turned on, since the density on those sites increases.

4.5 Quantum phases in the second generation
of the fractal lattice
The quantum phases of the Hubbard Model have been
intensively studied on various lattices, in particular
for the case of half-filling. We consider here the second
generation of the fractal lattice, Fig. 2, which has 24
sites, at half-filling, Nσ = 12.

Let us start by studying the behaviour of the mag-
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FIG. 21: Local magnetization and average density at half-
filling on the second generation with interaction parameter
U = 0.1. (a) Local magnetization per site, it shows a ferri-
magnetic state; red (blue) arrows pointing up (down) indicate
positive (negative) local magnetization. The length of the ar-
rows represents the intensity of the local magnetization. (b)
Average density per site of spin-up electrons n↑. (c) Average
density per site of spin-down electrons n↓. The magnitude
of the dots is representative of the intensity of the density.

netisation. We define the local magnetization mi and
the total magnetization mα per sublattice as

mi = ⟨ni,↑⟩ − ⟨ni,↓⟩,

mα = 1
Nα

∑
i∈Λα

mi,

where the index α refers to one particular sublattice,
α = A, B, and Λα refers to the set of site indices
belonging to the α sublattice. Fig. 21(a) shows the
magnitude of the local magnetization for weak inter-
action on the lattice structure. We see that the mag-
netization on different sublattices has opposite sign,
and the magnitude in one is larger than the magni-
tude in the other, thus characterizing a ferrimagnetic
phase. A mean-field study of the Hubbard model in
fractal-honeycomb lattices also finds spontaneous spin
polarization [48], which further corroborates our ob-
servation of a ferrimagnetic state.

The local magnetization is related to the projec-
tion of the spin along a certain axis. Since the sum
of local magnetizations on the lattice is clearly not
zero, we find that the system equilibrates to a spin
imbalanced configuration. In particular, we find that
NA = 15 and NB = 9. Without loss of generality,
we investigate the case with N↑ = NA and N↓ = NB.
The opposite case is obtained by inverting the pos-
itive direction along the axis where the spin is pro-
jected. Figs. 21(b) and (c) show the distribution of
the 15 spin-up and the 9 spin-down electrons on the
lattice, in the weak interacting regime. We can in-
terpret Fig. 21(b) by considering that the 9 spin-up
and spin-down electrons fill the single-particle energy
levels with negative energy, see Fig. 8. The remain-
ing 6 spin-up electrons are placed in the degenerate
zero-energy level. In this level, the CLS have destruc-
tive interference on the sites in the centre (B sublat-
tice); sites on sublattice A get more densely popu-
lated. Therefore, the origin of imbalanced magnetic
properties at half-filling and weak interaction can be
reconnected to the zero-energy CLS that we found at
a TB level, which also vanishes at the B sublattice.

FIG. 22: Average of the local magnetization on the two sub-
lattices for different values of interaction parameter U .

Now, we want to investigate the behaviour of
the system when increasing the interaction strength.
First, we notice that the imbalance between spin-up
and spin-down electrons remains when increasing the
interaction strength. Regarding the local magnetiza-
tion, in Fig. 22 we show the total magnetization in the
two sublattices as a function of interaction strength.
We observe that the sum of the magnetization in the
two sublattices almost does not change. This quantity
represents the total magnetization along a projection
axis, and since the ratio of number of spin-up and
spin-down electrons remains unchanged, we expect a
constant behaviour. However, we need to take into
account the fact that the number of spin-up and spin-
down electrons is an output of the QMC simulation
and, thus, subject to subtle fluctuations. For a regu-
lar periodic lattice, the theory predicts antiferromag-
netic behaviour in the strong coupling regime, where
the average local magnetization per site in both sub-
lattices is mα. The reason why we are not able to see
this behaviour is due to the imbalance in the number
of electrons that populated the system which, in turn,
is a consequence of the geometry of the lattice.

Another quantity that can be studied to determine
the phases of the system is the doublon density, de-
fined as

D = 1
N

∑
i

⟨ni↑ni↓⟩

where the sum runs over the lattice sites. While be-
ing easy to compute, the double occupancy has the
advantage of being related to the metallic behaviour
of the system. Moreover, studies on periodic lattices
suggest that the behaviour of D as a function of in-
teraction should differentiate metallic and insulating
phases [18, 49]. In particular, Brinkman and Rice
obtained, through a variational calculation, that the
doublon density behaves linearly in the metallic phase
[50]. Even though this result was derived in the con-
text of conventional band theory, we also observe in
Fig. 23 a linear behaviour of D until a critical value of
approximately Uc ∼ 4.5. Curiously, the value of the
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FIG. 23: Doublon density as a function of the interaction
parameter U . The behaviour is linear until a critical value of
UC ∼ 4.5.

critical interaction is the same as the one describing a
Mott transition from a paramagnetic conducting state
at small values of U , to an antiferromagnetic (AFM)
insulator at U > 4.5 in the 2D honeycomb lattice [51].
After this value of interaction strength, the behaviour
deviates from the linear one.

To further investigate the magnetic nature of the
system, we consider the magnetic correlation function

cm(i, j) = ⟨mimj⟩, (5)

which quantifies the correlation between the local
magnetization of a pair of electrons, one placed at
site i and one at site j.

From the magnetic correlation, one can compute
the magnetic structure factor, defined as

S(k) = 1
N2

∑
i,j

eik·rij cm(i, j),

where rij = ri − rj . The symbol k indicates the mo-
menta in the reciprocal space. It is possible to define
a similar quantity, where instead of considering mag-
netic correlations, one considers density correlations.
The computation of magnetic and density structure
factors is a common method used to investigate both
the metallic and spin phases of the system. The mag-
netic structure factor is used to detect magnetic order
since it shows peaks at the K points of the Brillouin
zone [18]. This method can be used here because it
does not require knowledge of allowed momenta in the
reciprocal space, which is not well defined for fractals.
In Fig. 24 (a), we show the magnetic structure factor
in the strong interaction regime, where one observes
the formation of peaks, which are a signature of mag-
netic order. We then computed the magnetic struc-
ture factor for various values of interaction and found
a similar structure for each value. This seems to sug-
gest that the system has spin order for any value of
interaction strength. Before continuing, let us men-
tion that the six-fold rotational symmetry visible in

FIG. 24: (a) Magnetic structure factor in the k = (kx, ky)
space for U = 6. (b) Radial staggered magnetization (orange
stars), radial magnetic correlation (blue triangles) and value
of total staggered magnetization (orange horizontal line) for
U = 6. The horizontal light-blue line highlights the position
of the origin along the y axis. The radial distance r is nor-
malized by a, the distance between two neighbouring sites in
the lattice.

Fig. 24 (a) can be explained using the symmetries of
the setup; see Appendix B.

To validate the presence of magnetic order, we look
at the radial behaviour of the magnetic correlation
defined in Eq. (5). In particular, we define the angle-
averaged radial magnetic correlation,

cm(r) = 1
nr

∑
{i,j}∈nr

cm(i, j),

where nr is the number of pairs {i, j} that have the
same distance r. This quantity averages the magntic
correlation functions of pairs of electrons located at
sites r far from each other. The set of possible dis-
tances r is discrete, and it is important to notice that,
for a given distance, all the pairs connect sites belong-
ing either to the same sublattice or to different sublat-
tices. In Fig. 24(a), we show the dependence of this
correlation on the radial distance r. The behaviour
shows positive and negative correlations, which in-
deed can indicate antiferromagnetic or ferrimagnetic
order. One of the properties of anti and ferrimag-
netism is spin orientations that alternate in the lat-
tice. This means that electrons on sites belonging to
the same sublattice should have spins oriented to the
same direction (the correlation is positive) while elec-
trons on sites belonging to different sublattices should
have spins pointing in opposite direction (the corre-
lation is negative). To verify this behaviour, we mul-
tiply the spin radial correlation by a factor (−1)α,
where α is even (odd) if sites i, j belong to the same
(different) sublattice. The quantity obtained will be
referred to as radial staggered magnetization,

msg(r) = 1
nr

∑
{i,j}∈nr

(−1)αcm(i, j).

The result is shown in Fig. 24(b). We can conclude
that the property of opposite spins in different sub-
lattices is satisfied, as expected from the analysis of
the local magnetization for the different lattice sites.
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In order to study the magnetic order at different val-
ues of interaction, we investigate the total staggered
magnetization,

Msg = 1
Nr

∑
ir

msg(r),

where the sum is over the number ir of possible dis-
tances Nr. This quantity represents the average stag-
gered magnetization over different values of radial dis-
tances. Its value for U = 6 is plotted in Fig. 24(b)
as a reference to the eye. Its behaviour as a func-
tion of interaction is shown in Fig. 25, where we see
that the value increases with the interaction before
the critical value around Uc ∼ 4.5. After it seems to
oscillate without an overall growth or reduction for
larger U . The fact that it always assumes a vanishing
value for every value of interaction proves the exis-
tence and resilience of magnetic order. In Fig. 25, we
also show the staggered magnetization obtained with
QMC calculations in a recent work on a honeycomb
lattice [52], the regular version of our fractal lattice.
In the regular case, the phase before the transition
is not magnetic, as the total staggered magnetiza-
tion is zero. Finally, the yellow triangles in Fig. 25
show the total staggered magnetization computed us-
ing the MF approach under the same conditions. The
comparison with MF results at half-filling underlines
the necessity of powerful methods such as QMC. In
fact, QMC simulations equilibrate to a steady state
with an imbalanced number of spin-up and spin-down
electrons, even when initializing the calculation with
balanced trial wavefunctions. This results in a finite
magnetic order, also at weak interactions. In contrast,
MF calculations at half-filling preserve the number of
spin-up and spin-down electrons balanced, giving a
non-magnetic state at U = 0. As expected, the MF
result shows a spurious transition to a magnetic phase.

Overall, we observe the formation of a ferrimagnetic
order, which can be related, at weak interaction, to
the zero-energy CLS states unveiled at a TB level and,
in general, to the imbalance in the number of spin-up
and spin-down electrons. The latter is a consequence
of the geometry of the lattice. Therefore, we observe
a phase transition from metallic to insulating phase,
suggested by the change in behaviour of the doublon
density and the maximum of the magnetic correlation
function in k space. Since this phase transition is
driven by interaction between electrons, it is a Mott
transition.

5 Conclusion
In this work, we solved the Hubbard Model for
fermions on a fractal lattice, using various methods.

Initially, we examined the non-interacting limit of
the model, employing a TB approach. It success-
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FIG. 25: Total staggered magnetization as a function of the
interaction strength U . For the second generation of the
Sierpinski fractal, the calculations were performed using MF
(yellow triangles) and QMC (orange crosses). For the regular
honeycomb lattice, we extracted the QMC data from Ref.
[52] (gray circles).

fully confirmed the presence of particle-hole symme-
try through the examination of the average density
distribution on the lattice and the symmetry of the
total many-body energy. Additionally, by analyzing
the energy spectrum of the Hamiltonian at the single-
electron level, we identified the emergence of CLS at
various energy levels. In the first generation, we ob-
served the formation of a specific type of CLS, char-
acterized by zero energy and destructive interference
on sites with a connectivity of 3. Moving to the sec-
ond generation, we witnessed the appearance of an
additional type of CLS, manifesting at energy levels
of t and −t, and displaying destructive interference
along the reflection axes. Progressing to the third
generation, we observed the emergence of more di-
verse types of CLS, forming at new energy values and
exhibiting destructive interference on other sublat-
tices. Remarkably, the number of CLS at each energy
level increased in higher generations of the fractal,
scaling with the Hausdorff dimension of the fractal
dH = log 3/ log 2 ≃ 1.58. Moreover, we identified CLS
of type-3 and 7, emerging on energy levels ±

√
2 and

±
√

5, respectively. The number of these two types
of CLS remains the same for odd generations and is
zero for even generations. Finally, we discovered that
the density at the corners, for configurations with a
number of electrons that fills the degenerate level at
zero energy, closely approximates the dimension of the
fractal across all generations of the lattice. This result
resembles the findings of higher-order topological in-
sulators realized using acoustic quantum simulators.
Indeed, the outer corner modes were found to exhibit
the same dimension of the Sierpinksi carpet[28]. Un-
like in their framework, this interesting connection be-
tween outer modes and fractal dimension arises in the
absence of any external magnetic flux. We note that
CLS in Sierpinski fractals have been previously con-
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sidered, both theoretically [53, 54, 55] and experimen-
tally [56, 57]. In addition, superconductivity [58] and
plasmonic properties [59] were investigated in fractal
structures. However, these works use a different ar-
rangement and number of sites, since they do not con-
sider the central site in each small filled triangle [cf.
Fig. 2(a)]. Their results are thus not directly applica-
ble to the setup considered here. While constructing
fractal structures, one may consider sites at the ver-
tices of the fractal, sites at the center of the “bulk"
parts of the fractal, or both. The first is the usual
“fractal lattice" construction and the second leads to
the dual structure, which has the same Hausdorff di-
mension, but a different distribution of voids. A com-
bination of both cases is considered here. Although a
direct comparison with Refs [53, 54, 55, 56, 57] is not
possible, previous studies on fractal lattices showcase
the relevance of fractal geometries, demonstrating,
for example, their ability to host anyonic excitations
[60, 61]. We investigated the model in the presence
of intrinsic spin-orbit coupling. We found that the
zero-energy eigenstates become entangled and lead to
high-intensity corner modes in the inner and outer
triangles.

Subsequently, we numerically implemented the full
model, including the interaction term, using three
distinct numerical simulations. The first approach
involved exact diagonalization, which is an exact
method but limited in computational scalability.
Therefore, we employed it primarily for validating
the results obtained from the other two numerical
methods, specifically for smaller system sizes and
lower electronic fillings. The second approach entailed
employing a mean-field Hartree-Fock approximation,
which offers analytical insights but is observed to be
valid only for relatively weak interaction strengths.
The primary method, extensively employed in this
study, is CP-AFQMC.

When examining the effects of interaction, the ap-
plication of CP-AFQMC enabled a comprehensive ex-
ploration of the density configurations. By concen-
trating on the electronic filling value that displayed
density patterns closely aligned with the dimension of
the fractal at the corners, we observed notable changes
in the density distribution upon introducing interac-
tion. We demonstrated that under strong interaction,
sites with higher connectivity, where destructive in-
terference occurred under weak interaction, became
more populated as a countermeasure against the ef-
fects of interaction. We observe a decrease in the den-
sity at the corners as soon as interaction is introduced,
leading to the conclusion that the CLS of type-1 are
not robust in the presence of interaction.

We further employed CP-AFQMC to investigate
the quantum phases of the system within the sec-
ond generation of the lattice at half filling, considering
non-zero interaction strengths. Initially, we observed
that the simulation reached an equilibrium state char-

acterized by an unequal number of spin-up and spin-
down electrons, corresponding to the sizes of the two
sublattices. Our subsequent focus shifted towards
studying the magnetic order within the system. To
accomplish this, we computed the local magnetization
per site and discovered that neighbouring sites exhib-
ited opposite signs and varying magnitudes. This was
consistently observed across all interaction strengths
and indicated the presence of a ferrimagnetic phase,
see Fig. 21(a). We were able to establish a connec-
tion between the imbalance in local magnetization
and the type-1 CLS under weak interaction. Subse-
quently, we verified the magnetic order by observing
prominent peaks in the magnetic structure factor and
long-range order in the magnetic correlations. Lastly,
we detected a Mott transition by analyzing the be-
haviour of the tail of the magnetic correlations and
the doublon density. This transition occurs at an ap-
proximate value of UC ≃ 4.5, which intriguingly cor-
responds to the critical value detected through QMC
methods for a Mott transition on a honeycomb lattice
[51], the periodic lattice configuration most similar
to our chosen fractal structure. The difference is in
the magnetic order, which we find to be ferrimagnetic
for every value of interaction strength. The latter re-
sult, in turn, agrees with studies of Hubbard model
on non-periodic lattices, such as the two-dimensional
hexagonal golden-mean tiling [62].

Concerning the effect of spatial dimensionality in
the phase diagram of the ground state of the Hub-
bard model at half-filling, important differences are
observed. In one dimension (1D), no Mott transi-
tion at finite interaction is predicted, with the system
being metallic only for U = 0 and an AFM insula-
tor for U > 0 [63]. Moreover, the low-energy excita-
tions of the 1D Hubbard model bear resemblance to
Tomonaga-Luttinger liquid theory [64, 65, 66]. In 2D,
the aforementioned phase diagram changes depending
on the geometry considered. For the honeycomb lat-
tice, which is the most similar to the fractal lattice
considered in this work, a Mott transition is predicted
at finite interaction [52]. Below the critical interaction
UC , the system describes a non-magnetic semimetal,
whereas above UC , the honeycomb-Hubbard model
describes an AFM insulator. Our calculations con-
sider a spatial dimension that lies between 1 and 2,
and new physics was observed. Similar to the 2D
honeycomb model, a Mott transition at UC ≃ 4.5
was observed, but no AFM state was found in the
range of interactions considered. Instead, we observed
that the system is always ferrimagnetic: a ferrimag-
netic metal below UC and a ferrimagnetic insulator
above it. Therefore, our work shows that new physics
emerges at fractal dimensions, which is different from
the lower and upper integer boundaries. It remains
to verify whether this behavior is specific to the Sier-
pinski triangle, with dimension 1.58, or whether it is
generic to other fractal lattices with dimension be-
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tween one and two. We hope that these findings will
stimulate both theoretical and experimental research
in interacting systems at non-integer dimension.
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A CP-AFQMC method
Consider an initial state |Ψ(0)⟩ that is not orthogonal to the ground state |Ψ0⟩ of the Hamiltonian H. Through
imaginary-time evolution, |Ψ(τ)⟩ = exp(−τH)|Ψ(0)⟩ asymptotically converges to |Ψ0⟩ as τ (a real number)
increases. In the Auxiliary Field Quantum Monte Carlo (AFQMC) method, the antisymmetric wave function
is expressed as a linear combination of Slater determinants,

|Ψ(τ)⟩ =
∑

k

ξ(Φk) |Φk(τ)⟩ . (6)

In our simulations, the coefficients ξ(Φk) are not explicitly considered. As imaginary-time evolution proceeds,
Slater determinants are either replicated or eliminated. The number of a given |Φk⟩ in the sum reflects ξ(Φk) [68,
69].

Typically, the process starts at τ = 0 with all Slater determinants equal to a given trial state |ΦT ⟩, which
approximates the ground state and is usually derived from mean-field theories. These determinants are then
updated via the application of the imaginary-time evolution operator in a stochastic process. For large sys-
tems, direct diagonalization of the Fermi-Hubbard Hamiltonian becomes impractical. Consequently, the Trotter
formula [70] is employed to factorize the evolution operator into a product of three terms

e−δτH = e− δτ
2 Ke−δτV e− δτ

2 K + O(δτ2), (7)

where K and V represent the hopping and interaction terms, respectively, in the Fermi-Hubbard Hamiltonian.
By choosing a sufficiently small δτ , the error introduced by neglecting the O(δτ2) terms in Eq. (7) can be
minimized to be less than the statistical uncertainty inherent to Monte Carlo calculations, thereby maintaining
numerical exactness.

The desired limit τ = nδτ ≫ t−1, where t denotes the hopping strength, is achieved after n successive
applications of this small-δτ approximation to |Ψ(0)⟩. A specific iteration on the Slater determinants is described
by

|Φn+1
k ⟩ = e− δτ

2 Ke−δτV e− δτ
2 K |Φn

k ⟩, (8)
where the superscript n indicates the imaginary time τ = nδτ .

The application of one-body operators on |Φn
k ⟩ results in another Slater determinant. Consequently,

exp(−δτK/2) propagates |Φn
k ⟩. However, since V is a sum of two-body operators, the remaining exponen-

tial presents a challenge. To address this, the Hubbard-Stratonovich transformation is employed to convert the
two-body interaction into one-body interactions between electrons and auxiliary fields x. We adopt the spin
discrete decomposition [71]

e−δτni↑ni↓ = e− δτ
2 U(ni↑+ni↓)

∑
x=±1

p(x)eγx(ni↑−ni↓), (9)

where p(x) = 1/2 and γ is defined by the relation cosh(γ) = exp(δτU/2).
For the Fermi-Hubbard Hamiltonian H, this is expressed as

eδτH ≈
∑
x

p(x)e− β
2 KBV (x)e− β

2 K , (10)

where x = (x1, x2, . . . , xM ) represents a configuration of auxiliary fields, with M being the number of lattice
sites, to be sampled within Monte Carlo calculations. Here, p(x) = (1/2)M is a probability distribution function
(pdf), and BV (x) is a product of one-body exponentials

BV (x) =
∏

i

e− δτ
2 U(ni↑+ni↓)+γxi(ni↑−ni↓). (11)

Direct simulation of Eq. (8) is inefficient due to the constant nature of p(x), necessitating an importance
sampling technique [68, 69]. Importance sampling also aids in defining an estimator for system properties and
determining constraints that eliminate the sign problem. The importance function implemented is OT (Φn

k ) =
⟨ΦT |Φn

k ⟩, leading to the modified imaginary-time evolution

|Ψ̃n+1⟩ =
∑
x

p̃(x)e− δτ
2 KBV (x)e− δτ

2 K |Ψ̃n⟩, (12)

with the modified pdf p̃(x) = OT (Φn
j )p(x)/OT (Φn−1

j ).
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Since the pdf p̃(x) is usually not normalized, the normalization factor for each Slater determinant N(Φn
k ) is

defined, transforming the iterative projection equation into

|Φn
k ⟩ = N(Φn

k )
∑
x

p̃(x)
N(Φn

k )e− δτ
2 KBV e− δτ

2 K
∣∣Φn−1

k

〉
. (13)

To manage normalization, weights for each Slater determinant |Ψ̃n⟩ =
∑

k ωn
k |Φn

k ⟩ are introduced, updating
the weights in each iteration as ωn

k = N(Φn
k )ωn−1

k , with ω0
k = 1. In practice, the pdf p̃(x) is sampled by

considering each auxiliary field in the configuration x individually. Detailed implementation of the sampling
and weight update process can be found in Ref. [33].

The equivalence |Φn
k ⟩ = − |Φn

k ⟩ results in a sign problem that impedes numerical convergence. To mitigate
this, auxiliary-field paths are constrained to a region of the configuration space where OT (Φn

k ) > 0, similar to
the fixed-node approximation [72]. Since the method remains numerically exact if the nodal structure of the
trial wave function matches the ground state, this constraint is effective. However, the exact nodal structure of
the ground state is generally unknown, necessitating the use of |ΦT ⟩ as an approximation, introducing a small
systematic error [68, 69, 33, 73].

Ground-state estimates of the total energy are obtained using the mixed estimator

⟨H⟩mix =
∑

k ωn
k En

k∑
j ωn

k

, (14)

with En
k = ⟨ΦT |H|Φn

k ⟩/OT (Φn
k ) and sufficiently large n. This mixed estimator is exact only if the operator in

the numerator of Eq. (14) commutes with the Hamiltonian H.
Estimates of other physical observables require the back-propagation technique [68, 74, 75]. The back-

propagation estimator is derived from

⟨O⟩bp ∝ ⟨ΦT |e−τbpHOe−(τ−τbp)H |Ψ(0)⟩, (15)

which asymptotically reaches the average value of the observable O in the ground state for τ −τbp and τbp ≫ t−1.
The numerical evaluation of Eq. (15) is efficiently performed by storing the auxiliary fields sampled during the
forward propagation exp(−τbpH)|Ψ(0)⟩ and using them for back propagation ⟨ΦT |. For a detailed description
of this estimator, see Ref. [75].

B Explanation of the six-fold symmetry of the structure factor
To understand the six-fold rotational symmetry of the magnetic structure factor

S(k) = 1
N2

∑
i,j

eik·rij cm(i, j) ,

as visible in Fig. 24 (a), let us start by noting that our Hamiltonian enjoys a three-fold rotational symmetry.
Without loss of generality, let us restrict ourselves to an arrangement of four sites; the generalization to an
arbitrary number of sites is then straightforward. The setup is depicted in Fig. 26. To use the symmetry, we
introduce the rotation operator

R(x, ϕ) =
(

cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

)
· x := Mϕ · x , (16)

which rotates the vector x counterclockwise by an angle ϕ around the origin (which is here taken to be the
location of site 4 in Fig. 26).

Explicitly written out, the structure factor of this arrangement reads

S(k) = 2cm(1, 2) (A1,2 + A2,3 + A3,1) + 2c1,4 (A1,4 + A2,4 + A3,4) +
4∑

i=1
cm(i, i) , (17)

with Ai,j = cos(q · ri,j), and where we have used the fact that cm(i, j) = cm(j, i), and additionally that the
setup is three-fold rotationally symmetric. Additionally, due to this symmetry, the following relations (with
α = 2π

3 ) hold
r2 = R(r1, α), r3 = R(r2, α), r1 = R(r3, α) and r4 = R(r4, α). (18)
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FIG. 26: An arrangement of four sites 1, 2, 3, and 4 that is invariant by a rotations of 2π/3 around the central site 4.

We are interested in the rotational symmetries of the structure factor; in particular, we want to show that
S(k) = S(Mα/2k). The crucial point now is to see that the scalar product occurring in cos(k · ri,j) fulfills the
property

(Mα/2 k) · ri,j = −k · (Mα ri,j) , (19)

from which it follows that
cos

(
(Mα/2 k) · ri,j

)
= cos(k · (Mα ri,j))

Then, since Mαri,j = Mαri − Mαrj , we can use Eq. (18) to see that

S(Mα/2k) = 2cm(1, 2) (A2,3 + A3,1 + A1,2) + 2c1,4 (A2,4 + A3,4 + A1,4) +
4∑

i=1
cm(i, i)

= S(k).
(20)

In other words, S(k) is 6-fold rotational symmetric.

Accepted in Quantum 2024-08-20, click title to verify. Published under CC-BY 4.0. 21


