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Computational investigations of biological and soft-matter systems governed by strongly anisotropic
interactions typically require resource-demanding methods such as atomistic simulations. However,
these techniques frequently prove to be prohibitively expensive for accessing the long-time and large-
length scales inherent to such systems. Conversely, coarse-grained models offer a computationally
efficient alternative. Nonetheless, models of this type have seldom been developed to accurately
represent anisotropic or directional interactions. In this work, we introduce a straightforward bottom-
up, data-driven approach for constructing single-site coarse-grained potentials suitable for particles
with arbitrary shapes and highly directional interactions. Our method for constructing these coarse-
grained potentials relies on particle-centered descriptors of local structure that effectively encode
dependencies on rotational degrees of freedom in the interactions. By using these descriptors as
regressors in a linearmodel andemployingasimple feature selection scheme,weconstruct single-site
coarse-grained potentials for particles with anisotropic interactions, including surface-patterned
particles and colloidal superballs in the presence of non-adsorbing polymers.We validate the efficacy
of our models by accurately capturing the intricacies of the potential-energy surfaces from the
underlying fine-grained models. Additionally, we demonstrate that this simple approach can
accurately represent the contact function (shape) of non-spherical particles, which may be leveraged
to construct continuous potentials suitable for large-scale simulations.

In molecular systems, the interactions that determine the equilibrium
structural, thermodynamic and dynamic properties are generally a com-
bination of non-covalent forces, including long-range electrostatic and
short-range dispersion forces, which are typically well described by
spherically-symmetric atom-atom potentials. At the meso- or microscopic
scale, weaker interactions between particles such as colloids, nanoparticles,
and macromolecules, which involve electromagnetic forces and entropic
interactions, become relevant. Moreover, many of these systems are gov-
ernedby effective interactions that areanisotropic innature, i.e. theydepend
onbothdistance andorientation1–4.Non-spherical particle shapes represent
an exemplary source of this type of interaction1,5–7, which in turn may give
rise to novel and fascinating behavior that distinguishes these systems from
those composed of simple spherical particles with centrosymmetric iso-
tropic interactions. For instance, whereas hard spheres can only form iso-
tropic fluid and crystalline solid phases, numerous non-spherical particles
can give rise to so-called mesophases, exhibiting translational and

orientational symmetries that lie between those of isotropic fluids and
crystallinematerials8. In recent decades, significant progress has beenmade
in the fields of chemistry and physics at the nanometer scale, leading to an
astonishing level of maturity in colloid synthesis9–13. Consequently, a wide
array of particles with different shapes, compositions, patterns, and func-
tionalities is now readily available14–24. These systems are particularly
gaining relevance in bottom-up self-assembly approaches for creating
superstructures with tailored properties6.

The emergence of anisotropic interparticle interactions is not exclu-
sively due to the non-spherical shape of particles; rather, they can stem from
variousother sources such as inducedor embeddeddipoles25 and chemically
or physically patterned surfaces. Particles with the latter characteristics
include the so-called Janus colloids and are generally referred to as patchy
particles26,27. Additionally, there is a growing interest in the anisotropic,
effective colloidal interactions arising fromtheorientational elastic energyof
anisotropic host fluids28–31, as well as those exhibited by topological solitons,
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which are often described as quasiparticles32. The latter type of interactions
include the cohesion mediated by out-of-equilibrium dipoles in baby
skyrmions33, and the directional interactions between three-dimensional
knots emerging in helical liquid-crystal fields34.

While significant progresshasbeenmade indeveloping accurateatom-
atom potentials (force-fields) over the last decades, as well as bottom-up
coarse-graining strategies that represent small clusters of heavy atoms in
large molecules like polymers as effective beads interacting via isotropic
potentials or as small ellipsoids35,36, only a few computational approaches
have been developed for modeling whole molecules or larger-sized (col-
loidal) particles as single sites interacting with anisotropic interactions. An
interesting approach, based on anisotropic force-matching, has been
recently introduced by Nguyen and Huang37 for parameterizing coarse-
grained molecular models consisting of anisotropic building blocks.
Developing such approaches is essential to facilitate the study of (chemi-
cally) specific systems while overcoming spatial and temporal constraints.
Nevertheless, due to the inherent difficulties in this task, particularly in
accurately representing the orientational dependence of interparticle
interactions mathematically38, much of the coarse-grained (CG) modeling
of these systems at the single-site level has relied on the use of prototype
anisotropic pair potentials, which implicitly assign a simple geometric shape
to each particle.Notable examples of this class of potentials include theGay-
Berne pair potential39 and its variants40–43, as well as some generalizations of
conventional spherically-symmetric attractive/repulsive potentials44,45.
These potentials have enabled large-scale simulations of liquid crystals of
oblate or prolate mesogens, but they have mainly been restricted to repre-
senting generic systems.When dealing with particles of arbitrary aspherical
shapes, the situation is even less satisfactory, as one is typically forced to
model solely their hard-core character by relying on algorithms based on
collision detection methods8, thereby limiting their applicability when
exploring the role of attractive and repulsive forces in shape-dependent
processes like self-assembly, packing, and transport. Recently, however, Lee
and Arya introduced amodel specifically for the Van derWaals interaction
energy of diverse faceted particles, including nanocubes, triangular prisms,
faceted rods, and square pyramids46.While thismodel represents significant
progress, its applicability to faceted particles with more than six facets or
rounded edges has not yet been tested. Within discrete element models
(DEM), widely used for modeling granular materials47, one can incorporate
cohesive forces, but again, they are confined to describing generic short-
range attractions between bare or uniformly coated nanoparticles or col-
loidal particles of aspherical shape2. Similarly, for generic spherical Janus
and patchy particles, a common approach involves representing them as
hard-core objects with a discontinuous potential that is sensitive to the
orientation of the patches45–47, as in the Kern-Frenkel model48,49, or
embedding additional attractive virtual sites within larger isotropic beads50.

By aiming to capture only essential physical features while minimizing
computational complexity, the aforementioned CG computational approa-
ches have shed light on numerous aspects of many-body systems composed
ofmodel anisotropic particles. However, when the interest is to represent the
intricacies and details of specific systems, one typically has to resort to slightly
more fine-grained (FG) representations. One such approach is based on
surface tessellations, where a large number of small spherical beads–already
coarse-grained objects–are distributed on the surface of each particle. The
high-frequency motion of these constituent beads is then effectively con-
strained by treating the composite as a rigid object, and the interaction
between two large bodies is computed as a pairwise summation over the
interactions between individual beads, one from each body. Naturally, this
enables the simultaneous and explicit description of shape anisotropies and
directional interactions stemming from diverse origins, such as the presence
of heterogeneities on the surface of patchy colloidal particles.However, due to
its inherent computational cost, this FG approach is only rarely adopted48,49.

Following the success of bottom-up coarse-graining strategies
applied in the study of soft-matter systems, there is a desire to devise a
general platform for the development of efficient and accurate single-site
CG potentials capable of capturing key information on anisotropy in

shape and interactions found in the corresponding FG models. As men-
tioned earlier, the core challenge lies in finding a way to represent
orientational dependence in a compact and physically interpretable
manner38. With rapid advancements in machine learning (ML) and data-
driven methods used for representing potential energy surfaces, new
opportunities are emerging to accomplish this task. In the case of atomistic
simulations, these techniques now enable fast simulations at a classical
level with forces and energies that carry the accuracy of electronic struc-
ture calculations50. Furthermore, these approaches have been extended to
construct CG two- and many-body potentials for colloidal particles with
spherical shape and isotropic interactions51–54, as well as for uniaxial
particles with cylindrical symmetry, i.e. rod-like particles55. Very recently,
deep learning has been leveraged to accelerate Molecular Dynamics
simulations of rigid bodies made of smaller composite beads56 and to
coarse-grain small rigid molecules by force and torque matching57. In the
majority of these data-driven approaches, themain idea is to represent the
total CG (potential or free) energyΦ of anN-body system as a sum of per-
particle contributionsΦI. Each individual contribution to the potential is,
in itself, a function of a set of Ns functions centered on the particle, i.e.
ΦI ¼ ΦIðfG1ðIÞ; :::;GNs

ðIÞgÞ. These functions {G} are rotational invar-
iants that describe the local environments of the particles in relation to
their neighbors within a cutoff sphere58. The current limitation lies in the
fact that the available structural descriptors of local particle environments
are primarily designed for either spherically symmetric sites59,60, or for
elongated sites with an infinite-fold rotational symmetry around their
long axes and a head-tail symmetry, meaning that no arrow or direc-
tionality can be assigned to each particle55.

In this work, we introduce a straightforward bottom-up approach that
leverages a suitable set of particle-centered descriptors as regressors in a
simple ML regression scheme. This approach enables us to construct
accurate single-site CG interaction potentials for particles with arbitrary
anisotropic shape and interactions, using FG reference data. We demon-
strate the robustness of our method by constructing CG potentials for
surface-patterned spheroids and for colloidal superballs in the presence of
small depletants. Additionally, we present an application of our method for
constructing continuous pair potentials that accurately represent the shape
of aspherical particles.

Results
Coarse-grained models
We consider the simple case involving a pair of anisotropic (non-linear)
particles I and J, as illustrated in Fig. 1a.Without loss of generality, we assume
the existence of a high-resolution fine-grained (FG) representation for which
we can accurately measure the total potential Φ for a static dimer config-
uration. InaCGdescription,where eachparticle is treatedas a rigidobject, the
state of a dimer configuration is characterized by the separation distanceRIJ=
∣RIJ∣ = ∣RJ − RI∣ from the origin of particle I to the origin of particle J (The
origin of a particle can be conveniently taken as its center ofmass.), and three
angular variables: ΩI = (αI, βI, γI), describing the orientation of particle I
relative to an arbitrary space-fixed axis system (XYZ), ΩJ = (αJ, βJ, γJ),
representing the orientation of particle J, and ΩIJ ≡ (ϕ, θ, 0), defining the
direction of the vectorRIJ. Equivalently, one can describe the orientation of a
particle using the coordinates of a reference orthonormal framemounted on
the particle itself ðx̂iðαi; βi; γiÞ; ŷiðαi; βi; γiÞ; ẑ iðαi; βi; γiÞÞ. Here, α, β and γ
represent the classic Euler angles describing the orientation of a rigid body
with respect to a fixed coordinate system (see Fig. 1b). Clearly, the CG
interaction potential Φ depends on the aforementioned variables, i.e. Φ =
Φ(RIJ,ΩI,ΩJ,ΩIJ)

61. We remind that while the pair potential strictly depends
on 6 degrees of freedom, amounting to 3 Euler angles describing the relative
orientation of particle J in the reference frame of particle I, and 3 Cartesian
coordinates describing its relative position, explicitly representing the
orientation of both particles with respect to the laboratory frame of reference
hasmultiple advantages. It simplifies themathematics61, requires information
directly accessible in simulations38, and provides a naturally invariant
expression with respect to the system symmetries62.
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Buildingon theworkofBlumandTorruella62 andStone38 on the theory
of intermolecular interactions, it is well established that at long rangeΦ can
be expanded as

ΦðRIJ ;ΩI ;ΩJ ;ΩIJ Þ
¼ P

j;lI ;lJ ;kI ;kJ

f
kI ;kJ
j;lI ;lJ

ðRIJÞS
kI ;kJ
j;lI ;lJ

ðΩI ;ΩJ ;ΩIJÞ; ð1Þ

where f
kI ;kJ
j;lI ;lJ

ðRIJ Þ represent the associated expansion coefficients.
The scalar function S

kI ;kJ
j;lI ;lJ

ðΩI ;ΩJ ;ΩIJ Þ, which depends on the orien-
tations and relative orientation of a pair of arbitrarily shaped objects, can be
expanded using a complete set of orthogonal functions known as ‘S
functions’38

S
kI ;kJ
j;lI ;lJ

ðΩI ;ΩJ ;ΩIJ Þ ¼ ilI�lJ�j
X

mI ;mJ ;m

D
lI
mI ;kI

ðΩIÞD
lJ
mJ ;kJ

ðΩJ ÞDj
m;0ðΩIJ Þ

lI lJ j

mI mJ m

 !
;

ð2Þ
with

lI lJ j

mI mJ m

 !
; ð3Þ

a Wigner 3j symbol, Dl
m;kðΩÞ the Wigner D-matrix, lI, lJ and j are non-

negative integers,− lI ≤ kI ≤ lI,− lJ ≤ kJ ≤ lJ, and where the summation runs
frommI =− lI to lI, frommJ =− lJ to lJ, and fromm =− j to j. In Eq. (2), the
prefactor ilI�lJ�j ensures that S0;0j;lI ;lJ is real for all lI, lJ and j. These functions
are scalars that remain invariant under rigid rotations of the entire system. It
also guarantees invariance against permutation of particle indices38, i.e.
S
kI ;kJ
j;lI ;lJ

ðΩI ;ΩJ ;ΩIJ Þ ¼ S
kJ ;kI
j;lJ ;lI

ðΩJ ;ΩI ;ΩJIÞ, where ΩJI = (π + ϕ, π− θ, 0).
The origin andnature of the above expansion are rooted in thequantum

mechanical structure of molecular orbitals as originally developed by
Wigner63,64, to which we refer the interested reader. For practical purposes,

expansions like Eq. (1) for properties of particles with cylindrical symmetry
have usually been truncated at the second rank level65, where the rank of the
expansion is defined as r = j + lI + lJ. The expansion can be extended to
arbitrary shapes, but this, of course, is accompanied by a large number of
coefficients. Here, we will limit ourselves to showing how to rearrange the
above expansion to be efficiently used in combination with a simple feature
selection scheme in order to fit orientation-dependent CG interaction
potentials.

The explicit form of the S functions in Eq. (2), with three Wigner
rotation matrices, might initially seem cumbersome. However, it offers a
crucial advantage by enabling significant simplification of the enumeration
task without the need to manipulate nj symbols and Wigner matrices
algebraically. As noted early on by Stone38, the first step is to realize that S
functions straightforwardly inherit the recursion relation ofWignermatrices

Dl0
m0;k0 ðΩÞDl00

m00;k00 ðΩÞ ¼ Pl0þl00

l¼jl0�l00 j
ð�1Þ�ðm0þm00Þ�ðk0þk00 Þ

ð2l þ 1ÞDl
m0þm00;k0þk00

l0 l00 l

m0 m00 m

� �
l0 l00 l

k0 k00 k

� �
:

ð4Þ

Combined with the fact that S functions form a complete basis set, this
property allows us to express the product of any two functions as a linear
combination

S
k0I ;k

0
J

j0 ;l0I ;l
0
J
ðΩI ;ΩJ ;ΩIJ ÞS

k00I ;k
00
J

j00 ;l00I ;l
00
J
ðΩI ;ΩJ ;ΩIJ Þ ¼

Pl0Iþl00I ;l
0
Jþl00J ;j

0þj00

lI¼jl0I�l00I j;lJ¼jl0J�l00J j;j¼jj0�j00 j
il
0
I�l0J�j0þl00I�l00J�j00þlI�lJ�j

ð�1Þk0Iþk00Iþk0Jþk00J ð2lI þ 1Þð2lJ þ 1Þð2jþ 1ÞSkI ;kJj;lI ;lJ
ðΩI ;ΩJ ;ΩIJ Þ

l0I l00I lI
k0I k00I kI
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l0J l00J lJ
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ð5Þ

Fig. 1 | Variables used to describe pairs of particles with anisotropic shapes and
interactions. a In the `rigid particle' approximation, the state of a pair of particles is
defined in terms ofΩIJ= (θ,ϕ, 0), which characterizes the direction of the vectorRIJ=
RJ−RI from the origin of particle I to the origin of particle J, and the orientationΩi=
(αi, βi, γi) of the body-fixed axes ðx̂iðαi; βi; γiÞ; ŷiðαi; βi; γiÞ; ẑ iðαi; βi; γiÞÞ of particle i=

I, J relative to a space fixed set of axes (XYZ). bGeometrical definition of classic Euler
angles (α, β, γ). c Schematic representation of a pair of spherical colloids with a
patterned surface in the fine-grained (FG) representation. The angular variables
θ1,θ2 2 0; 2π½ � are uniformly sampled to extract the potential energy landscapes
shown as 3D plots in Figs. 2 and 4.
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where the last term within braces represents a 9j symbol. To lighten the
notation we represent a specific set of integer values as α = (j, lI, lJ; kI, kJ) or
α0 ¼ ðj0; l0I ; l0J ; k0I ; k0J Þ, respectively. So that given a set of lowest rank S
functions we define a monomial as

MSðfaαgÞ ¼
Y

α2 lowest rank

SαðΩI ;ΩJ ;ΩIJ Þaα ; ð6Þ

where certain non-negative integer exponents aα are involved. By inverting
the recursive expression of Eq. (5), isolating the highest rank S function on
the left-hand side, and recursively applying the same formula to all S
functions on the right-hand side up to the lowest rank functions, we can
express any S function as a polynomial of the lowest rank S functions

SαðΩI ;ΩJ ;ΩIJ Þ ¼
X
α0

mα0 MSðfaα0 gÞ; ð7Þ

for certain monomials MSðfaα0 gÞ with coefficients mα0 as dictated by the
recursive equation Eq. (5). Nonetheless, as it will become clear below, the
explicit expressions of S functions in terms of polynomials will not be
relevant for the procedure we propose, rather we will only be interested in
generating all possible monomials of lowest rank S functions.

The set of lowest rank functions that allows to recursively generate any
term in the expansion consists of 15 rank 2 even functions and 9 rank 3 odd
functions. This implies that the number of S functions to account for scales
exponentially with the rank r as 24r. Accounting for particle point group
symmetries can, in principle, reduce the number of terms in the expansion
of Eq. (7). However, there is no general rule to achieve this reduction, and
each term must be considered separately at every rank in the expansion, as
originally shown by Steele, Blum and Torruella62,66. It can be constructively
shownwith a counterexample67 that Eq. (5) doesnotnecessarily preserve the
symmetries of a selected group of the lowest rank functions. The only
exceptions are cylindrically symmetric and mirror symmetric particles, as
discussed below. For cylindrically symmetric particles, the interparticle
potential depends only on the three second-rank S functions with kI = kJ= 0

S0;00;1;1 ¼ 1ffiffi
3

p ẑJ � R̂IJ ;

S0;01;0;1 ¼ � 1ffiffi
3

p ẑI � R̂IJ ;

S0;01;1;0 ¼ � 1ffiffi
3

p ẑI � ẑJ ;
ð8Þ

where the Wigner 3j symbols selection rule k0I þ k00I þ kI ¼ 0 of Eq. (5)
ensures that the recursion relation is closed with respect to cylindrical
symmetry. This is physically justified, as the remaining 12 second-rank S-
functions

S0;10;1;1 þ S0;�1
0;1;1 ¼ 2ffiffi

6
p ŷJ � R̂IJ ;

S0;10;1;1 � S0;�1
0;1;1 ¼ 2ffiffi

6
p x̂J � R̂IJ ;

S0;11;0;1 þ S0;�1
1;0;1 ¼ 2ffiffi

6
p ŷI � R̂IJ ;

S0;11;0;1 � S0;�1
1;0;1 ¼ 2ffiffi

6
p x̂I � R̂IJ ;

S0;11;1;0 þ S0;�1
1;1;0 ¼ 2ffiffi

6
p ŷI � ẑJ ;

S0;11;1;0 � S0;�1
1;1;0 ¼ 2ffiffi

6
p x̂I � ẑJ ;

S1;01;1;0 þ S�1;0
1;1;0 ¼ 2ffiffi

6
p ẑI � ŷJ ;

S1;01;1;0 � S�1;0
1;1;0 ¼ 2ffiffi

6
p ẑI � x̂J ;

S1;11;1;0 þ S�1;�1
1;1;0 ¼ 1ffiffi

6
p ðx̂I � ŷJ þ x̂J � ŷIÞ;

S1;11;1;0 � S�1;�1
1;1;0 ¼ 1ffiffi

6
p ðx̂I � x̂J þ ŷI � ŷJ Þ;

S1;�1
1;1;0 þ S�1;1

1;1;0 ¼ 1ffiffi
6

p ðx̂I � ŷJ � x̂J � ŷIÞ;
S�1;1
1;1;0 � S1;�1

1;1;0 ¼ 1ffiffi
6

p ðx̂I � x̂J � ŷI � ŷJ Þ:

ð9Þ

explicitly depend on either of the other axes and are sufficient when the
potential (or any scalar property of interest) is mirror symmetric. This is
understood because, as scalar products, they are inherently inversion
symmetric bydefinition.The closureof the recursion relationwith respect to
the entire set of second-rank S-functions requires l0 þ l00I þ lI to be even. In
cases where space inversion symmetry is broken, we must also consider the
rank 3 S-functions, which include the following 9 odd functions

S0;01;1;1 ¼ 1ffiffi
6

p ẑI � ðẑJ × R̂IJ Þ;
S1;01;1;1 � S�1;0

1;1;1 ¼ 1
2
ffiffi
3

p x̂I � ðẑJ × R̂IJ Þ;
S1;01;1;1 þ S�1;0

1;1;1 ¼ 1
2
ffiffi
3

p ŷI � ðẑJ × R̂IJ Þ;
S0;11;1;1 � S0;�1

1;1;1 ¼ 1
2
ffiffi
3

p ẑI � ðx̂J × R̂IJ Þ;
S0;11;1;1 þ S0;�1

1;1;1 ¼ 1
2
ffiffi
3

p ẑI � ðŷJ × R̂IJ Þ;
S1;11;1;1 þ S�1;�1

1;1;1 ¼ 1
2
ffiffi
3

p ðx̂I � ðŷJ × R̂IJ Þ þ ŷI � ðx̂J × R̂IJ ÞÞ;
S1;11;1;1 � S�1;�1

1;1;1 ¼ 1
2
ffiffi
3

p ðx̂I � ðx̂J × R̂IJÞ þ ŷI � ðŷJ × R̂IJ ÞÞ;
S1;�1
1;1;1 þ S�1;1

1;1;1 ¼ 1
2
ffiffi
3

p ðx̂I � ðŷJ × R̂IJ Þ � ŷI � ðx̂J × R̂IJÞÞ;
S1�1
1;1;1 � S�1;1

1;1;1 ¼ 1
2
ffiffi
3

p ðx̂I � ðx̂J × R̂IJ Þ � ŷI � ðŷJ × R̂IJÞÞ:

ð10Þ

The cross products in these expressions explicitly demonstrate the broken
chiral symmetry.

Introducing Eq. (7) into Eq. (1), grouping the double sum and
adsorbing themonomial coefficientsmα in the coefficients of Eq. (1) leads to

ΦðRIJ ;ΩI ;ΩJ ;ΩIJ Þ ¼ P
α fαðRIJÞ

P
α mαMSðfaαgÞ

� �

¼ P
α
~fαðRIJ ÞMSðfaαgÞ;

ð11Þ

which is the expression that we will use in practice by using either of the
three sets of functions specified above.

Yet, our aim is to construct accurate single-site CG interaction
potentials for particles with arbitrary anisotropic shape and interactions
using a ML approach. Given a large dataset of sample configurations and
associated values of the total potential Φ̂measured at some FG level, a CG
potentialΦ at the single-site level can be constructed in terms of descriptors
{G}. Following the work of Behler and Parrinello59 and for the sake of
generality, we adopt the assumption that Φ results from the individual
particle contributions, Φ = ΦI + ΦJ, which in the case of an isolated pair,
are identical. While non-linear regression schemes are increasingly being
used to learn from a reference database, here, we conveniently assume a
simple linear relationship between the target function (individual
particle contribution to the total energy) and its local environment:
ΦI ¼

PNs
k¼1 ωkGkðIÞ, withωk representing theweight or linear coefficient of

the k-th descriptor. From Eq. (11), we clearly observe that suitable particle-
centered descriptors {G} for a machine-learning approach to characterize
the angular dependence of the CG interaction potential Φ are polynomials
of S functions. Using these polynomials offers several benefits. Once the
initial set of S-functions isfixed, they are computationally straightforward to
enumerate.Moreover, they are easy touse inMonteCarlo (MC) simulations
and are simple to differentiate68,69. The forces and torques expressed in terms
of these polynomials, which are scalar and cross products of Cartesian
vectors, remain as such, which, in combinationwith the chain rule, provides
a significant advantage for efficient evaluation within Molecular Dynamics
simulations. While we describe the radial dependence in terms of functions
of the separation distance between the centers of two particles, Λ(RIJ), (for
example, a Gaussian function), and a cutoff function fc(RIJ) that gradually
approaches zero, both in value and in slope, as it reaches the cutoff distance
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Rc. The descriptor centered on particle I is then defined as

GkðIÞ ¼ ΛðRIJ Þf cðRIJ ÞMSðfaαgÞ; ð12Þ

where k = α, aα represents a specific integer value set. Here, we consider a
cutoff function of the form

f lðRIJ Þ ¼
tanh3ð1� RIJ=RcÞ for RIJ ≤Rc

0 for RIJ >Rc:

(
ð13Þ

Wewish to make the following remarks. Firstly, we note that removing the
angular term MS({aα}) in Eq. (12), and choosing specific Λ(RIJ)-functions
lead to the well-known radial Behler and Parrinello Symmetry Functions
(for a particle and a single neighbor)58,59.

Secondly, although initially developed within the context of inter-
molecular potentials38, the scalar S functions have been employed across
various frameworks for constructing potential models for non-spherical
particles65,70. Truncated expansions in rotational invariants akin to S func-
tions have also been used to capture the orientational dependence in pair
interactions of charged Janus spheres48, highlighting their versatility in
representing intricate functions within the (ΩI,ΩJ,ΩIJ) space. Despite a few
isolated attempts, a general systematic approach for constructing interaction
potentials for particles with anisotropic interactions in a bottom-up fashion
is currently lacking.

In our bottom-up coarse-graining approach, the inital step involves
generating a sizable yetmanageable pool ofN candidate descriptors {G}.
This is accomplished by computing various functions with different

parameter sets for each sample within the reference training dataset.
Each sample corresponds to a dimer configuration along with the
associated potential values measured at a FG resolution (Φ̂). Subse-
quently, employing the feature selection scheme described in ref. 51, we
identify an optimal subset comprising Ns <N functions that offer the
most effective representation of the target function when combined
linearly (see Methods for an extended description). Throughout the
remainder of this article, we demonstrate the efficacy of this straight-
forward approach in constructing accurate CGmodels for particles with
highly anisotropic interactions.

Potential energy surfaces
Surface-patterned particles. We start by examining the anisotropic
interaction energy between heterogeneously charged spherical particles.
In particular, we focus on the so-called inverse patchy colloids (IPCs),
and on charged Janus colloids (JCs). Previous studies have developed
single-site CG models based on Debye–Hückel theory for spherical
IPCs71, while for JCs, CG models based on expansions on rotational
invariants have been proposed48. In our approach, we start with a rigid-
body FG representation where the surface of a hard sphere with size σ is
uniformly decorated with sites carrying either positive or negative charge
density. These arrangements reflect the characteristic patterns of the
corresponding particles (see Fig. 2). Consequently, a single particle at the
FG level effectively comprises n = 626 sites with positions rn = {r1, . . . , rn},
where ri∈R3 with i= 1,⋯, n. In contrast, the CG representationwe aim to
derive only includes the center of mass position of the particleR∈ R3 and
its associated orientation.We implicitly assume a decoupling of the hard-
core and anisotropic interaction terms, allowing us to express the total

Fig. 2 | Potential energy landscapes of surface-
patterned spherical particles and parity plots
comparing FG and CG models. Orientational
dependence of the pair interaction energy between
charged Janus colloids (JCs) (a) and inverse patchy
colloids (IPCs) (b) with q(si∈I) = q(sj∈J) = q = 20σ−2

and κσ = 10 asmeasured in the FGmodels. The two-
body potential is plotted as a function of the rotation
angles θ1 and θ2 (see Fig. 1), with the separation
distance between particles fixed at RIJ/σ = 1.015.
Parity plots comparing the energies in training and
test configurations (see text for details) as obtained
using the FG models (Ground truth) with those
predicted by theML-CGmodels (Prediction) for JCs
(c) and IPCs (d).
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pair potential for particles I and J as follows

ΦtotalðRIJ ;ΩI ;ΩJ ;ΩIJ Þ ¼ ΦhcðRIJ Þ þΦðRIJ ;ΩI ;ΩJ ;ΩIJ Þ: ð14Þ

Since Φhc(RIJ) represents a simple hard-sphere potential, our focus is solely
on crafting a CG representation of the anisotropic term Φ(RIJ, ΩI, ΩJ, ΩIJ),
which contains information about the orientation-dependent screened
electrostatic interactions. Given their architecture, both IPCs and JCs can be
treated as uniaxial objects with orientation vectors ẑ (in the patch-to-patch
direction, see Fig. 1c). IPCs exhibit an additional symmetry of ẑ ¼ �ẑ. To
evaluate the interaction energy in the FGmodels, we follow the approach of
ref. 48, where each pair of surface points on different particles interacts via a
screened electrostatic potential

ϕqðrijÞ ¼
qi2Iqj2J
4πεrij

expð�κrijÞ; ð15Þ

where ε is the dielectric constant, κσ = 10 represents the screening (Debye)
length for the interactionbetween charges qi∈I andqj∈J located at si∈I and sj∈J
on the surfaces of the twoparticles, respectively, with a separation of rij= ∣RIJ

+ si∈I− sj∈J∣. By representing the point charges by local densities q(si∈I) and
q(sj∈J), respectively, one can compute the total interaction energy for a given
configuration ðẑI ; ẑJ ;RIJ Þ by integrating over both particle surfaces, SI;J

ΦðẑI ; ẑJ ;RIJ Þ ¼
R
SI

R
SJ

qðsi2I Þqðsj2J Þ
4πεrij

expð�κrijÞdsi2Idsj2J : ð16Þ

As shown in Fig. 2a, b, the pair interaction exhibits a strong dependence on
the relative orientation and largely differs for the two types of particles. In
these potential energy landscapesΦ, particles aremaintained at a separation
distance of RIJ/σ = 1.015. The first particle I is kept fixed with an orientation
ẑI ¼ ð0; 0; 1Þ, while the second particle is rotated by angles θ1 and θ2 about
the two orthogonal axes perpendicular to ẑI , as pictorially illustrated in
Fig. 1c.

For both IPCs and JCs, we generate reference datasets comprising a
large number of dimer configurations, spanning the entire space of trans-
lational and rotational degrees of freedom, along with their corresponding
energies evaluated via Eq. (16) (see Methods for details). Subsequently, we
employ linear regression using the particle-centered descriptors given in Eq.
(12). Due to the symmetry of the particles, we use only monomials of the
three first-rank S functions, commonly employed for linear particles. These
include

ffiffiffi
3

p
S0;01;1;0 ¼ ẑI � R̂IJ ,

ffiffiffi
3

p
S0;00;1;1 ¼ ẑJ � R̂IJ and � ffiffiffi

3
p

S0;01;1;0 ¼ ẑI � ẑJ .
Furthermore, we use a cutoff value ofRc/σ= 2.0 and for the radial part of the
candidate descriptors, we use an exponential function
ΛðRIJ Þ ¼ expð�μRIJ Þ, where μ is a hyper-parameter optimized through a

grid search. This choice is primarilymade for convenience, as in this specific
case, we anticipate that the radial dependence of the interaction should
correspond with that of a screened electrostatic interaction. Indeed, in the
optimal solution we find μ = 10σ−1. However, we emphasize that greater
flexibility can be achievedusing other functions (e.g. Gaussian distributions,
as in the standard symmetry functions by Behler and Parrinello59).

We note that even with a small number of descriptors,Ns = 106 and
64 for JCs and IPCs, respectively, the CG models accurately capture the
underlying energies measured in the FGmodels, as demonstrated by the
parity plots reported in Fig. 2c, d, accompagnied by small Root Mean
Square Error (RMSE) values. In these plots, the ‘Ground truth’ values
correspond to the energies measured in all the FG samples (training +
test sets), while the ‘Predicted’ values are obtained by evaluating the CG
model constructed using simple linear regression and feature selection
schemes. To better appreciate the accuracy of the CG models, we illus-
trate the orientational and translational dependence of the pair inter-
action of IPCs in Fig. 3a, c. Additionally, we perform replica exchange
Monte Carlo (MC) simulations on small systems of IPCs using the total
potential (Eq. (14)), which includes the anisotropic ML potential con-
tributionΦ. We find that the low-energy self-assembled clusters ofN = 4
andN= 5particles closelymatch those obtained by simulations of the FG
model. In particular, we find not only a clear structural resemblance (see
Fig. 3b and SI for a quantitative comparison) but also very similar
average energies per particle, with absolute differences of about 2–5%.

Furthermore, we explore systems characterized by anisotropic inter-
actions stemming from a combination of non-spherical shape and a het-
erogeneous distribution of sites on the particle surface. In particular, we
investigate prolate uniaxial ellipsoidal particles with axes σ∣∣ = 2σ⊥ and
surfaces patterned similarly to the JCs and IPCs cases. These particles are
referred to as ellipsoidal Janus colloids (EJCs) and ellipsoidal inverse patchy
colloids (EIPCs). The architecture and shape of the particles can be
appreciated from Fig. 4a, b, where examples of orientation-dependent
potential energy landscapes are also presented, clearly differing from those
of their spherical counterparts. These landscapes are measured similarly to
the spherical colloids, but the distance is now fixed at RIJ/σ⊥ = 2.015. For
these cases, ML-CG potentials are constructed based on the three first-rank
S functions, a cutoff value of Rc/σ⊥ = 4.0 and a radial term ΛðRIJ Þ ¼
expð�μRIJ Þ (with μ ¼ 10σ�1

? ), by performing linear regression. The
resulting models accurately capture the orientational and translational
dependence of the interaction measured in the FG models. Parity plots
demonstrating the nice agreement between both levels of representations
are shown in Fig. 4c, d.

Depletion potential for colloidal superballs. We now consider the
effective depletion pair interaction between non-spherical colloids

Fig. 3 | Validation of the CG model for the ani-
sotropic interactions of spherical IPCs. Interaction
energy between two inverse patchy colloids (IPCs)
with q(si∈I) = q(sj∈J) = q = 20σ−2 and κσ = 10. a The
two-body potential Φ/(kBT) as a function of the
rotation angle θ2 with the left particle fixed and its
orientation vector aligned either in the x direction
(green) or in the z direction (blue). The separation
distance between particles is set at RIJ/σ = 1.015.
b Typical low-energy configurations of clusters ofN
= 4 and N = 5 IPCs as obtained from Monte Carlo
simulations of the FG and ML-CG models. c The
two-body potential Φ/(kBT) as a function of the
separation distance RIJ between the two particles.
Filled symbols correspond to the values obtained in
the FG model, while lines represent the values pre-
dicted by the CG potential.
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immersed in a suspension of small depletants.More specifically, the FG
system consists of spherical depletants of diameter σd and anisotropic
hard colloidal superballs with a surface defined by the equality ∣x∣M +
∣y∣M + ∣z∣M = (σ/2)M, where σ represents the superball diameter (at it
narrowest point) and M controls the particle shape (see Fig. 5a). Pre-
vious attempts at developing analytical CG two-body depletion
potentials for non-spherical particles have been made72,73, albeit only
approximations to the true interaction potential have been achieved.
Recently, we demonstrated that an ML-based model can effectively
represent such a CG potential for uniaxial spherocylinders, even

accurately capturing many-body effects55. Here, we demonstrate how
the present approach can be used to construct depletion potentials for
anisotropic superballs, whose orientation in space is described by the
three orthonormal orientation vectors (x̂; ŷ; ẑ). Similar to the standard
Asakura-Oosawa (AO) pair potential for spherical particles, the
effective two-body (colloids only) depletion interaction is proportional
to the orientation-dependent overlap volume of two depletion zones
(gray shaded layers enclosing the colloids in Fig. 5a), denoted as
V ð2Þ

f ¼ V ð2Þ
f ðRIJ ;ΩI ;ΩJ ;ΩIJ Þ, with the interaction scale or strength

determined by the depletant fugacity zd
74,75. Hence, the range of this

Fig. 4 | Potential energy landscapes of surface-patterned ellipsoidal particles and
parity plots comparing FG and CG models. Orientational dependence of the pair
interaction energy Φ/(kBT) between ellipsoidal Janus colloids (EJCs) (a) and ellip-
soidal inverse patchy colloids (EIPCs) (b) with q(si∈I) = q(sj∈J) = q = 20σ−2 and κσ =
10. The FG two-body potential is plotted as a function of the rotation angles θ1 and θ2

(see Fig. 1), with the separation distance between particles fixed at RIJ/σ⊥ = 2.015.
Parity plots comparing the energies of training and test configurations (see text for
details) obtained using the FG models with those predicted by the ML-CG models
for EJCs (c) and EIPCs (d).
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attractive CG potential Φ � �zdV
ð2Þ
f ðRIJ ;ΩI ;ΩJ ;ΩIJ Þ is controlled by

the ratio of depletant and colloid diameters Q = σd/σ.
We select a FG model consisting of colloidal superballs withM = 3.5,

resembling rounded cubes (see Fig. 5a), in the presence of depletants of size
σd = 0.3σ. To efficiently gather information on the pair interaction at the FG
level and given the potential’s form, we simply focus on sampling
V ð2Þ

f ðRIJ ;ΩI ;ΩJ ;ΩIJ Þ. We generate a large number of configurations of
superball pairs with different relative orientations and separation distances,
computing the overlap volume between their depletion layers through MC
integration (see Methods for details). An example landscape of
V ð2Þ

f ðRIJ ;ΩI ;ΩJ ;ΩIJ Þ as a function of angular variables is shown in Fig. 5b.
In this example, one particle remains fixed while the other is rotated about
two orthogonal axes (see inset of Fig. 5b). To construct the ML-CG
potential, we employ thefirst 15 S functions (non-chiral) and an exponential
function for the radial dependence, akin to the case of surface patterned
particles (setting Rc/σ = 1.5 and with μ = 4σ−1). As discussed previously, the
number of descriptors to consider scales rapidly with the rank r.Within our
implemented feature selection scheme, handling vast numbers of descrip-
tors becomes computationally expensive. Thus, for these anisotropic par-
ticles, we limit the rank up to r = 3. Alternatively, we choose angular terms
comprising individual ‘S’ functions raised to integer exponents. Interest-
ingly, we find that with either approach, a relatively small number of
descriptors suffices to accurately represent V ð2Þ

f ðRIJ ;ΩI ;ΩJ ;ΩIJÞ. Particu-
larly within the latter method, a model with Ns = 30 yields a RMSE =
0.0023σ3. The quality of the model is clearly evident from the parity plot in
Fig. 5c.

Earlier experiments and grand-canonical MC simulations involving
the full binarymixture have demonstrated that for relatively large size ratios
Q, sufficiently high values ofM, and high depletant fugacity zd, superballs in
amonolayer spontaneously self-assemble into aunique structure termed the

Λ1 lattice
15. This decanted lattice structure is characterized by interparticle

bond angles distinct from60∘or 90∘ andhadpreviously beenpredicted as the
densest packing of superdisks76. For the parameters of our model, the
rounded cubes should assemble into this Λ1 lattice, provided that the pair
interaction mediated by zd is strong enough to overcome thermal fluctua-
tions. To investigate this, we perform MC simulations of N = 110 hard
rounded cubes interacting through the ML-CGΦ(RIJ,ΩI,ΩJ,ΩIJ) potential
in the canonical ensemble. In our quasi-2D MC simulations, the rounded
cubes are allowed to move and rotate in a plane. Wemaintain a low colloid
number density ρ2D ≡ Nσ2/A = 0.05, where A is the area of the simula-
tion box.

Systems characterized by strong and short-ranged interactions can
pose challenges for spontaneous self-assembly, often requiring significantly
long time scales to reach equilibrium. Because of the computational effi-
ciency of our models, we explore a range of depletant reservoir packing
fractions ηrd � πσ3dzd=6 to determine the optimal assembly conditions.
Starting from either isotropic configurations or perfect square lattices, we
observe rapid nucleation and growth of a Λ1 cluster. A representative
configuration from a simulation illustrating an assembledΛ1 lattice at ηrd ¼
5:6 is shown in Fig. 5d. The resulting structure exhibits an average inter-
particle bond angle of ~53∘, closely matching the values reported in ref. 15.
This provides compelling evidence of the accuracy of the effective potential
in capturing the depletion interaction between superballs.

Anisotropic particle shape
In the previous section, we decomposed the effective interactions into
hard-core and anisotropic short-range interaction terms. Our primary
focus has been on representing the latter contributions, which reflect
attractive or repulsive interactions that are effective from the point of
contact between pairs of particles up to a specific separation distance.

Fig. 5 | CG model for the depletion interaction of
colloidal superballs. a Schematic representation of
a colloidal superball with a diameter σ (blue
superball) and a depletant of size σd (gray sphere,
roughly representing a non-adsorbing polymer
chain). The corresponding colloidal superball, along
with its depletion zone (gray shaded superball), and
orthonormal orientation vectors are shown.
b Example of the overlap volume of two depletion
zones as a function of two angular variables, as
depicted in the sketch. c A comparison between the
overlap volume sampled through MC integration
(Ground truth) and the volume predicted by theML
model (Prediction). d A self-assembled Λ1 cluster
obtained from MC simulations of N = 110 hard
colloidal superballs interacting via the ML-CG
Φ(RIJ, ΩI, ΩJ, ΩIJ) potential. The parameters con-
sidered here are: M = 3.5, Q = 0.3 and ηrd ¼ 5:6.
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This strategy proves particularly advantageous when the core con-
tribution to the interactions can be accurately modeled via simple
potentials or fast numerical algorithms. In numerous colloidal systems,
especially those involving non-spherical particles, the dominant exclu-
ded volume or hard-core interactions themselves can significantly
impact the equilibrium properties. Typical examples include hard col-
loidal rod-like particles, where it is well-established that the degree of
anisotropy or elongation determines the stability of ‘mesophases’
characterized by competing orientational and translational symmetries,
even in the absence of attractive forces77. As mentioned earlier, when
dealing with anisotropic hard-core particles, it is common practice to
employ numerical algorithms that approximate the minimum distance
between two non-spherical objects to determine if overlaps occur for a
given configuration. An alternative, albeit less frequently employed
approach, involves determining the contact distance σs = σs(ΩI, ΩJ, ΩIJ)
for a pair of particles. For a given dimer configuration characterized by
ΩI, ΩJ and ΩIJ, such a quantity can be interpreted as the minimum
distance between the centers of two particles where no overlap occurs. In
other words, it represents the distance between particle centers at the
point of contact between their surfaces. The contact distance for a pair of
uniaxial spherocylinders is pictorially represented in Fig. 6. If this con-
tact distance is known, it is theoretically feasible to construct aCG single-
site, purely-repulsive continuous interaction potential40,65,70,78.

Since the contact distance for a pair of non-spherical particles I and
J depends solely on the orientations ΩI, ΩJ and ΩIJ, we can employ a
special case of our method. In this situation, we set the radial terms
Λ(RIJ) and fc(RIJ) in Eq. (12) to unity and utilize an expansion
σsðΩI ;ΩJ ;ΩIJ Þ ¼ ΦI ¼

PNs
k ωkGkðIÞ, where the coefficients are deter-

mined by matching the model to numerically determined data.
For simplicity, we focus on representing the contact distance of hard

spherocylinders (HSCs) with a length-to-diameter ratio of L/σ = 4. We
systematically generate configurations spanning the entire (ΩI, ΩJ, ΩIJ)
space for pairs ofHSCs, and numerically compute the corresponding σs.We
employ the Vega-Lago algorithm79 to accurately determine the contact
distance for each configuration. These numerically determined values
constitute our dataset, whichwewill refer to as the FG values. Subsequently,
we apply the fitting procedure to this dataset as described above.

We find that a model with as few as Ns = 64 descriptors provides an
accurate representation of the contact function, resulting in an RMSE =
0.0129σ, which is less than 1% of the range of values observed in the
numerically determined data. In Fig. 7a, we present a parity plot illustrating
the agreement between numerically determined and predicted values of σs
for this system. Furthermore, as shown in the toppanelof Fig. 7b, apart from
someminor surface ‘imperfections’ (e.g. small oscillations towards theHSC
center and apparently sharper tips), the contour of the particle encoded in σs
closely matches that of a true HSCwith L/σ = 4. Leveraging the constructed
contact function, we proceed to define an arbitrary prototype continuous
and purely-repulsive potential for HSCs in the following form

Φ ¼ ϵ
σ

RIJ � σsðΩI ;ΩJ ;ΩIJÞ þ σ

� �λr

; ð17Þ

where RIJ represents the separation distance between the centers of the
particles, ϵ denotes the energy scale of the interaction, and λr serves as an
exponent controlling the steepness of the potential. To mimic a hard-core-
like interaction betweenHSCs, we set λr= 50. The pair potential is displayed
in the lower panel of Fig. 7b as a function of the distance between HSCs for
three different relative orientations. The continuous potential curves for
these base configurations effectively represent the anisotropy and
dimensions of the reference HSCs with L/σ = 4.

To assess the performance of this model potential, we perform NPT-
MC simulations ofN = 896 particles to map out the bulk phase behavior of
the system at kBT/ϵ = 1.0. For comparison, we also investigate a system of
true HSCs with L/σ = 4.We use P*≡ Pσ3/(kBT) as the reduced pressure and
ρ*≡ ρσ3 as the reduced density. However, we note that in theCGmodel, the
effective hard-core diameter may differ. Although we observe numerical
differences in the equation of state (EOS) curves (see SI) due to the inherent
softness of the CG potential, we confirm that the latter model exhibits the
same phases as the system of HSCs. More specifically, we observe that both
models give rise to the formation of isotropic (I) phases at low density (or
pressure); approximately for ρ*<0.128 in theHSC (FG) systemand for ρ*<
0.119 in the CG model. A slight increase in density (or equivalently, in
pressure) leads to a transition to a smectic (SM) phase with broken uni-
dimensional translational symmetry. In the FG model, the first instance of
an SM phase occurs at ρ* ≈ 0.143, while in the CGmodel, we find it at ρ* ≈
0.141. For larger densities–ρ* > 0.163 in theCGmodel and ρ* > 0.159 in the
FGmodel–a solid phase appears. The softness of the CG potential becomes
evident in the ability of particles to be packedmore tightly, thereby allowing
access to higher density values than those achievable in the FG system.
However, it is important to note that these densities should be considered
approximate, as theywere simply obtained from the respective EOS derived
from simulations on small system sizes, where we used an arbitrary step in
pressure of ΔP* = 0.198. This may explain why we do not observe a clear
uniaxial nematic state between the I and SM phases, which has been
reported to be stable in the HSC systemwith L/σ = 4 within a rather narrow
density regime77.

Finally, to assess the robustness of our approach, we also apply it to
hard superballs (HSBs) with varying exponent M determining the round-
ness of the particles and to hard pears of revolution (HPs). The adoptedHSB
andHPmodels, along with their corresponding results, are discussed in the
SI. Overall, we find that the method remains valid at the expenses of
requiring larger numbers of descriptors. In the SI, we also discuss how a
non-linear regression scheme may be alternatively used.

Discussion
In summary, we have introduced particle-centered descriptors that effec-
tively map static configurations of particles with arbitrary shapes and ani-
sotropic interactions into a suitable representation, facilitating the
construction of aMLmodel for regressing structure-property relationships.
This approach is versatile and offers a solution to the challenging problemof
developing accurate single-site CG potentials for particles with anisotropic
shapes and interactions in a bottom-up fashion. In this work, we focused on

Fig. 6 | Schematic representation of the contact distance between two hard
spherocylinders. The contact distance σs for a specific configuration of two spher-
ocylinders with length L and diameter σ, is determined by the orientations of particle
I and J (ΩI andΩJ, respectively), along with the orientation of the vector connecting
the centroids of these particles (R̂IJ or ΩIJ).
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applying our data-driven method to precisely represent CG two-body
interactions between surface-patterned spheroids and between anisotropic
colloidal superballs in the presence of small depletants, as well as encoding
informationon the contact distance betweenaspherical particles (also a two-
body function). Hence, the proposed representation naturally relies on so-
called S functions that depend on the rotational degrees of freedom of up to
twoparticles. If there is aneed for functions involving three ormoreparticles
(similar to the angular symmetry functions of Behler and Parrinello59), our
approach can be readily extended, as there are viable approaches for com-
bining three or more sets of spherical tensor quantities61.

In our selected examples, the use of simple exponentially decaying
distance functions Λ(RIJ) sufficed to accurately represent the separation
dependence of their anisotropic pair interaction. This interaction was
generally decoupled from the hard-core term (see Eq. (14)) as FGmodels of
colloidal particles involved already some level of coarse-graining. As dis-
cussed in the SI, our application of themethod to represent the orientation-
dependent potential of mean force between ligand-stabilized nanocubes
demonstrates that the approach remains effective for coarse-graining
(quasi) atomistic models. However, in such cases theΛ(RIJ) functions could
be replaced by the more general radial functions such as the Behler and
Parrinello symmetry functions59 to capture more intricate radial distance
dependencies, which could result in larger numbers of descriptors, both in
the initial pool of candidates and in thefinalmodel.Wenote that a potential
drawback of the present method may precisely lie in the management of
large numbers of candidate descriptors {G}; particularly in the case of non-
linear particles. One possible solution to mitigate this limitation could be
leveraging group-theoretical arguments to reduce the number of indepen-
dent parameters within the models and determining which parameters are
non-zero in specific point groups80. However, it is important to highlight
that the feature selection algorithm employed in our study effectively
identifies the pertinent non-vanishing regressors that collectively best cor-
relate with the target function.

Finally, as demonstrated throughout the article, the number of
descriptors in ourCGmodels remain relatively low,making their evaluation
in MC simulations feasible. The computational cost of the developed CG
potentials will not only scale with the number of descriptors, it will also
depend on parameters like the cut-off radius as well as on the shape of the
Λ(RIJ) functions.Ultimately, aswe show in the SI, the speedupachievedwith
the data-driven single-site potentials, relative to the parental FGmodel, will
be determinedby the complexity of the functions describing the interactions
between sites in the FGmodel andhowa single body is represented at such a
resolution level (e.g., the number of sites tessellating its surface). It is
important tomention thatwhilemodel potentials like the one defined in Eq.
(17) could serve various purposes, their computational costmay still remain
relatively high due to the evaluation of the contact function. Nevertheless,
considering that the function σs(ΩI, ΩJ, ΩIJ) effectively represents the

contour surface of the particles, it would be interesting to investigate whe-
ther such models could be conveniently exploited in reverse-engineering
schemes,where particle shape can be optimized to obtain a target assembled
structure. We anticipate that our straightforward yet accurate coarse-
graining framework will facilitate the characterization, comprehension, and
prediction of the structure and phase behavior of relevant anisotropic col-
loidal and molecular systems through direct simulations.

Methods
Construction of coarse-grained models
Single-site CG models for the interaction potential or contact function are
constructed as linear combinations of an optimal number of particle-
centered descriptors. In order to identify the optimal subset of descriptors,
we implement the feature selection scheme of ref. 51, which we briefly
summarize below.

For a given dataset, consisting of a collection of two-particle config-
urations and the corresponding values of the to-be-predicted quantities (e.g.
energy or shape function), a training/validation split of thewhole data isfirst
adopted (typically 80/20). The first step of the method involves the creation
of a large butmanageable pool ofN candidate descriptorsGk¼1;:::;N . This is
accomplished by computing various functions with different parameter sets
for each sample within the reference training dataset. Then, an optimal
subset comprisingNs <N functions is selected from the pool in a step-wise
fashion. The first function that is selected corresponds to the one with the
largest correlationwith the target function as quantified by the square of the
Pearson correlation coefficient, defined as

ck ¼
P

j

PN
I GkðIÞjj �

PN
I GkðIÞ

� �
Φjj �Φ
� �

σSD
PN

I GkðIÞ
	 


σSDðΦÞ ; ð18Þ

where
PN

I GkðIÞjj represents the sum of the k-th function over the N
particles in configuration j andΦ∣j denotes the target variable evaluated for
this configuration. Note that in the case of energy representation,N = 2 and
Φ∣j =ΦI∣j+ΦJ∣j, while in the case of a contact function,N = 1 andΦ∣j =ΦI∣j.
In Eq. (18),

PN
i GkðIÞ and Φ correspond to arithmetic means over all the

configurations in the data set, and σSDð
PN

I GkðIÞÞ and σSD(Φ) to their
standard deviations. The next function is then selected based on the highest
increase in the linear correlation between the currently selected set and the
target data as determined by the coefficient of multiple correlation

R2 ¼ cTR�1c; ð19Þ

where cT = (c1, c2, ⋯) is the vector whose i-th component is given by the
Pearson correlation coefficient, ci, between the i-th function and the target

Fig. 7 | CG model for the contact function of
spherocylinders and prototype continuous
potential. a Comparison between the numerically-
determined contact function σs of hard spher-
ocylinders with a length-to-diameter ratio L/σ = 4
(Ground truth) and the corresponding prediction by
the ML-CG model (Prediction). b Top: Contour of
the particle shape described by σs for actual hard
spherocylinders (blue circles) and the model con-
structed using ML (empty pentagons). Bottom:
Prototype pair potential for these anisotropic par-
ticles (as defined in Eq. (17)) as a function of their
separation distance RIJ for three distinct relative
orientations as shown in the accompanying
sketches.
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data, and R is the correlation matrix of the current set of functions with
elementsRij representing the Pearson correlation function between the i-th
and j-th functions. In the case of only one SF, R2 reduces to c2i . We note that
R2 can also be computed as the fraction of variance that is explained by a
linear fit of the target function in terms of the functions in the set. The latter
way of computing R2 turns out to be slightly more expensive, but has the
advantage of being numerically more stable51. Maximizing the increase in
the linear correlation with the target variable guarantees that only functions
that add relevant information are selected51. This process is repeated in an
iterative fashion and new functions are selected until the correlation stops
increasing appreciably. This, indicates that the remaining descriptors in the
pool donot add relevant information to themodel. In turn, this constitutes a
simple rule to optimize the number of selected functions as their inclusion
would simply imply an unnecessary numerical overhead. In Supplementary
Fig. 1, we show, as an example, the evolution ofR2 and the rootmean square
error over training and test sets in the process of constructing a CG model
for the interaction of inverse patchy colloids.

Fine-grained data
Surface-patterned particles. The potential energy landscapes of spherical
and ellipsoidal charged Janus and Inverse Patchy particles were sampled by
evaluating the integrals of the site-site potentials over the particles’ surfaces
(Eq. (16)). The diverse configurations spanning the (RIJ, ΩI, ΩJ, ΩIJ) space
were generated by placing the particles at differentmutual distances and then
rotating the particles about two space-fixed axes by equally spaced angles in
the range 0 to 2π. The separation distanceswere sampled uniformly fromRIJ/
σ = 1.04050 to RIJ/σ = 2.0 in the case of spherical particles, and from RIJ/σ⊥ =
1.010 toRIJ/σ⊥ = 4.0 in the case of ellipsoidal particles. For the latter, a simple
collision detection algorithm is employed to discard configurations with
overlapping particles. In building the CG models, we generated a total of
4,296,875 and 4,303,750 samples of spherical Janus and IPC particles,
respectively, while 3,750,676 and 3,776,912 configurationswere generated for
Janus and IPC ellipsoids, respectively. For each case, 105 randomly selected
configurations are considered for training and testing.

Overlap volume of depletion layers of colloidal superballs. The FG
model of colloidal superballs consists of a hard particle surface defined by the
equality ∣x∣M+ ∣y∣M+ ∣z∣M= (σ/2)M, where σ represents the superball diameter
and M controls the particle shape. The superball is enclosed by a shell of
thickness equal to the size of spherical depletants of diameter σd; formally the
Minkowski sum of a superball and a sphere and that we approximate to a
superball with a different exponentM0 and diameter σ 0. We select a model
consisting of colloidal superballs withM = 3.5 and σ = 1, in the presence of
depletants of size σd = 0.3σ, that are well captured by a more rounded
superball withM0 ¼ 2:5 and σ 0 ¼ σ þ σd . In order to construct a database
suitable for fitting with the feature selection algorithm and efficiently gather
information on the pair interaction at the FG level, we simply focus on
sampling V ð2Þ

f ¼ V ð2Þ
f ðRIJ ;ΩI ;ΩJ ;ΩIJ Þ, i.e. the volume of the overlapping

depletion zones, for particle configurationswith overlapping shells only. First
we fix the first particle in the center and generate the orientationsΩI= (θI, ϕI)
andΩJ= (θJ,ϕJ) on a regular gridwith 8 equally spaced orientations from0 to
2π. Next, we take 50 equally spaced positions for the second superball within
the overlapping region only. This is done by a preliminary sampling to find
the boundaries of the overlapping volume. Per each pair of particles the
overlapping volume is computed by performing a MC integration of the
volume using 107 samples, where the boundaries of theMC region are taken
as the smallest rectangular prism encapsulating the volume itself.

Contact function of hard spherocylinders. In order to numerically
evaluate the contact distance between twoHSCs,wefirst place themat the
origin of the fixed coordinate axes frame (XYZ). Then, particles I and J are
rotated about X and Y axes; subsequently, by keeping particle I fixed,
particle J is first shifted in the Z direction by a fixed amount (still over-
lapping with particle I), and finally iteratively displaced in theX direction
with a fine step until the minimum distance dm

79 between the two

cylinders’ central axes equals D, which corresponds to having the rods
with their surfaces ‘touching’. From a total of 431,316 samples, 105 ran-
domly selected were used as the reference FG data to build the model. As
usual, we perform a 20/80 split of the data into test/training sets.

Monte Carlo simulations
WeperformMCsimulations of systems containingN=4 and5 particles at
low temperature to determine the equilibrium clusters and to compare the
FG and CG models of spherical surface patterned particles. Due to the
rugged potential energy landscapes, we use a parallel tempering method,
also known as Replica Exchange Monte Carlo (REMC), which has pre-
viously been used to simulate Janus spheres48. For an efficient sampling,
we perform each simulation using a total of 8 replicas at temperatures
Ti ¼ T0 expðαT iÞ, with a reference (target) temperature of kBT0=ϵmax ¼
0:01 and maximum temperature of 0.1, where ϵmax represents the
(absolute) maximum value of the two-body interaction energy between
surface-patterned particles. In the MC simulations of individual replicas,
rotation and translation moves are attempted with equal probability on a
randomly selected particle. Prior to the replica exchange moves, the
maximum displacements are adjusted to ensure an acceptance rate of
approximately 30%. During the parallel tempering runs, a MC cycle
(corresponding toN trial moves) is performed on each replica in parallel,
followed by an attempted exchange of two adjacent replicas. The exchange
moves are attempted by alternating between pairs of replicas on each
cycle. More precisely, during odd MC cycles, exchange moves are
attempted only between replicas 1–2, 3–4, 5–6 and 7–8, while during even
MC cycles, such moves are attempted between replicas 2–3, 4–5 and 6–7.
Simulationswere typically performed for 1.5 × 106 steps. Examples of low-
energy clusters comprisingN=4 and5particles of spherical charged Janus
particles and IPCs as obtained from REMC simulations using the FG and
CG models are shown in Fig. 3b and in Supplementary Fig. 3.

In the case of colloidal rounded cubes interacting via an effective two-
body depletion potential, we performed canonical MC simulations of N =
110 particles interacting through theML-CGΦ(RIJ,ΩI,ΩJ,ΩIJ) potential on
top of their hard-core interaction. To model the hard core character of the
particles, we use the Gilbert–Johnson–Keerthi (GJK)81 collision-detection
algorithm, as in ref. 82. In the quasi-2D simulations, equally-probable
rotation and translation moves on randomly selected particles were per-
formed only in two dimensions, say the XY-plane, and the maximum dis-
placements were tuned to achieve a 30% acceptance rate. Simulations
starting from either low-density states or square lattices, were fun for a total
of 107 MC steps.

Data availability
The authors declare that the data supporting the findings of this study are
available within supplementary information files. Other datasets are avail-
able from the corresponding author upon reasonable request.

Code availability
Example codes supporting the findings of this study are available within the
supplementary information files. Other programs and scripts are available
from the corresponding author upon reasonable request.
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