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The simplicity of hard spheres as a model system is deceptive. Although the particles interact solely
through volume exclusion, that nevertheless suffices for a wealth of static and dynamical phenomena
to emerge, making the model an important target for achieving a comprehensive understanding of
matter. In addition, while real colloidal suspensions are typically governed by complex interactions,
Pusey and Van Megen [Nature 320, 340 (1986)] demonstrated that suitably tuned suspensions result
in hard-sphere-like behavior, thus bringing a valuable experimental complement to the renowned
theoretical model. Colloidal hard spheres are thus both a material in their own right and a platform
upon which phenomena exhibited by simple materials can be explored in great detail. The various
purposes enable a particular synergy between experiment, theory, and computer simulation. The
extensive body of work on colloidal hard spheres, which ranges from their equilibrium properties,
such as phase behavior, interfaces, and confinement, to some of the nonequilibrium phenomena they
exhibit, such as sedimentation, glass formation, and nucleation, is reviewed here.
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I. INTRODUCTION

Polymers, liquid crystals, surfactants, and colloidal dis-
persions are key material pillars of soft matter. While
physicists have long focused on the study of the first three,
colloids did not receive comparable attention until relatively
recently. Only thanks to significant advancements in the
synthesis of colloidal particles in the second half of the
20th century, motivated by both industrial interest (Vanderhoff
et al., 1956; Vincent, 2012; Tadros, 2018) and scientific
curiosity (Fijnaut et al., 1978), did the field come to light. The
potential of hard-sphere-like colloidal dispersions as physical
models of “simple liquids” exhibiting a fluid-crystal phase
transition (Poon, Pusey, and Lekkerkerker, 1996; Frenkel,
2002; Evans, Frenkel, and Dijkstra, 2019) was subsequently
developed by Hachisu and Kobayashi (1974), Kose and
Hachisu (1974), and Vrij et al. (1978). Hard-sphere particles,
which are impenetrable at distances less than their diameter σ
and otherwise do not interact (see Fig. 1), had long been the
object of theoretical enquiry but had until then largely
remained but an experimental fantasy; see Sec. II.
During the 1960s, 1970s, and 1980s, advancements in

colloid synthesis in industry (Walbridge and Waters, 1966;
Barrett, 1973) and by pioneering colloid scientist Ron Ottewill
(Cairns et al., 1976; Antl et al., 1986), combined with the

FIG. 1. Hard-sphere pair interaction potential uhsðrÞ as a
function of the center-to-center distance r between particles of
diameter σ.
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application of light scattering by soft-matter physicists Peter
Pusey and Bill van Megen, led to the development of a well-
controlled colloidal model system (Fig. 2) (van Megen et al.,
1985, 1987; Pusey and van Megen, 1986). Pusey and van
Megen then not only convincingly demonstrated hard-sphere
freezing (Fig. 3), thus experimentally validating theoretical
(Kirkwood and Monroe, 1940) and computer simulation
(Alder and Wainwright, 1957; Wood and Jacobson, 1957)
predictions from generations prior, but also (and perhaps more
importantly) elegantly demonstrated the epistemic potential of
colloidal suspensions.
Underlying the newfound physical interest is the fact that

colloidal particles, like atoms and molecules, exhibit thermal
motion that allows them to explore configurational space and
self-assemble into different phases, such as colloidal crystals,
liquids, and gases (Fig. 3). Of the plethora of possible
colloidal systems, hard spheres have naturally emerged as
the benchmark. Despite the challenge of synthesizing per-
fectly hard colloids, micron-sized hard spheres have four key
strengths: (i) they have a single control parameter, the volume
fraction ϕ; (ii) they are classical in nature, thus enabling
accurate comparison with a broad array of theoretical pre-
dictions and large-scale computer simulation; (iii) they diffuse
their own radius on the order of seconds, thus making their

dynamics readily accessible in experiments; and (iv) their size
makes them amenable to optical techniques such as light
scattering and confocal microscopy, thus enabling accurate
measurements of spatial and dynamical correlations and even
particle positions, without the need for large facilities such as
synchotrons. Colloidal hard spheres are therefore prized
model systems. Quantitative tests and validations with theory
nevertheless remain challenging. In this review, we specifi-
cally take a critical look at what has been achieved and what
challenges remain to be faced in using colloids to verify
theory. We also emphasize the experimental observations that
have yet to be given an accurate theoretical description.
To manage the scope of this review, we largely restrain our

consideration to experiments with colloids. Only where
exceptionally relevant do we mention work with nanoparticles
[see Boles, Engel, and Talapin (2016) for a dedicated review]
or with granular matter [for which reviews were given by
Forterre and Pouliquen (2008), Liu and Nagel (2010),
Torquato and Stillinger (2010), van Hecke (2010), Bi et al.
(2015), Charbonneau et al. (2017), and Arceri, Corwin, and
O’Hern (2023)]. Where possible, we have referenced relevant
review papers from these other fields, but we request grace
from the reader regarding important material that we may have
missed. We nevertheless hope that our review conveys the

FIG. 2. The colloidal hard spheres observed by Pusey and van Megen are depicted (a) immediately, (b) one, and (c) four days after
mixing. After four days, the system is presumed to have completed its phase separation. Volume fraction increases from left to right, with
effective values (determined by reference to the phase behavior) ϕ ¼ 0.491, 0.517, 0.525, 0.542, 0.568, 0.593, 0.611, 0.637, and 0.654
for samples 2–10, respectively. The samples range from a fluid phase to a fluid coexisting with an iridescent crystal; at slightly larger
volume fractions the entire sample is crystalline, while at yet higher volume fractions glassy amorphous states are encountered. These
states initially “coexist” with the crystal until the entire sample may ultimately crystallize. From Pusey et al., 2009.
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contention that similar behavior can be observed in very
different systems, and that the transfer of ideas between these
fields can be a fruitful source of future research objectives.
Even after taking these thematic restrictions into account,

the Table of Contents hints at the wide reach of the remaining
scope. Because at first glance going through this entire review
may seem daunting, we note that Secs. II–VI deal with the
historical perspective and methodology, with the results from
hard-sphere colloids appearing in Sec. VII onward. We also
single out a few highlights.
• Phase behavior: colloidal experiments confirm the en-
tropy-driven fluid-crystal transition in hard-sphere sys-
tems; see Sec. VII.

• Fluid structure: experimental measures validate pair
structure estimates and track the development of even
higher-order structures; see Sec. VII.

• Interfaces: the interfacial free energy underlies the
barrier to nucleation, and grain boundaries in hard-
sphere systems form a fundamental model for a key
failure mechanism in crystalline materials; see Sec. VIII.

• Binary mixtures: colloidal suspensions have fueled
the exploration of the rich phase behavior of multi-
component systems; see Sec. IX.

• Confinement: the stabilization of a wealth of different
structural arrangements of hard spheres has been achieved
in both experiments and simulations; see Sec. X.

• Far-from-equilibrium behavior: hard spheres have been
instrumental in disentangling hydrodynamic interactions
from distortions of the local structure to, inter alia, shed
light on the phenomenon of shear thickening; see Sec. XI.

• Glass transition: colloidal hard spheres have markedly
advanced the understanding of glasses thanks to their
simplicity and the possibility of imaging them in real
space, thus providing access to a host of properties that
are difficult to access in molecular systems; see Sec. XII.

• Nucleation: the ability to directly image hard spheres
enabled the first direct observation of a critical nucleus,
which has made it possible to test more stringently the
approximations that underlie classical nucleation theory;
see Sec. XIII.

We trust that this tantalizing selection will motivate at least a
few of the more hesitant readers to continue through. In
experiment, colloidal hard spheres are studied in three dimen-
sions and quasi two dimensions. The majority of the work
described in this review pertains to three dimensions, so where
appropriate (quasi) two dimensions is explicitly mentioned.
Before embarking on the bulk of this review, a few essential

quantities must be defined. We have already encountered the
first one: the hard-sphere diameter σ; see Fig. 1. Although in
theory it is a well-defined quantity, in practice it may refer to
the effective diameter, the hydrodynamic diameter, or the
mean diameter in a suspension of slightly size polydisperse
colloidal particles; see Sec. III.D. The second quantity
was also previously alluded to: the number density of N
colloids within a volume V, i.e., ρ ¼ N=V. More often, we
will employ the dimensionless volume (or packing) fraction
ϕ ¼ Nv1=V ¼ πσ3ρ=6, with v1 ¼ πσ3=6 the volume of a
single three-dimensional (3D) sphere. The conjugate variable
to density is the pressure P, our third quantity. It is often
beneficial to consider the dimensionless reduced pressure
Z ¼ βP=ρ (also known as the compressibility factor), which
combines pressure with density and the inverse temperature
β ¼ ðkBTÞ−1, where kB is Boltzmann’s constant and T is the
temperature. Note that in the case of colloidal hard spheres,
the relevant quantity is the osmotic pressure. The final quantity
is the Brownian time taken by an isolated sphere to diffuse by
its own radius

τB ¼ ðσ=2Þ2
D0

¼ 3πησ3

4kBT
; ð1Þ

where D0 is the bare diffusion coefficient and η is the solvent
viscosity.
As Fig. 1 makes clear, the potential energy in a hard-

sphere system is zero. This means that only entropy
contributes to the phase behavior. Furthermore, provided
that the temperature is nonzero, i.e., the system is thermal,
temperature plays no role in the behavior of the system
beyond scaling the timescale, as shown in Eq. (1). Note that
it is this independence of temperature that leads to density
(or volume fraction or pressure) being the sole control
parameter for hard spheres.

II. HISTORICAL BACKGROUND

Given the extended and intricate history of hard spheres
before they became an object of experimental study, a longue
durée overview of the topic is in order. This section summa-
rizes the distinct histories of hard spheres as a model of matter
and as colloidal particles that mimic that model.

FIG. 3. Equation of state and phase diagram of hard spheres.
The pressure βPσ3 as a function of volume fraction ϕ [the solid
blue (dark gray) line] is approximately given by the Carnahan-
Starling expression (Carnahan and Starling, 1969) for the fluid
and by that of Hall (1972) for the crystal. The metastable
extension of the fluid branch [the dashed blue (dark gray) line]
is where slow dynamics and the hard-sphere supercooled liquids
and glass transition can be found; see Sec. XII. Indicated on the x
axis are the fluid and crystal phases, along with freezing volume
fraction ϕf ¼ 0.492, melting volume fraction ϕm ¼ 0.543, and
phase coexistence at pressure βPσ3 ¼ 11.6; see Sec. VII.A. Also
indicated are random close packing ϕrcp ≈ 0.64 and crystal close

packing ϕcp ¼ π=3
ffiffiffi
2

p ¼ 0.740…. Approximate state points of
the confocal microscopy images are denoted by gray arrows.
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A. History of hard-sphere models

Describing atoms as hard elastic spheres (akin to billiard
balls) finds its origin in the early days of the kinetic theory
of gases (Brush, 2003). The laws of impact derived in the
17th century underlie the first such theory, which was formu-
lated by Bernoulli in the early 18th century. That approach,
however, was deemed disputable at the time and did not have
much immediate scientific impact. Further formalization by
Maxwell in the mid-1800s, which built explicitly on “systems
of particles acting on each other only by impact,” was more
kindly received and substantially further developed (Brush,
2003). In the words of science historian Stephen Brush, this
exercise in mechanics “not only helped establish the theory, but
laid the foundations for modern statistical mechanics.”
It is therefore unsurprising that van der Waals’s attempt at a

microscopic model of condensation, a couple of decades later,
used a model effectively consisting of hard spheres with weak,
fairly short-range attractive forces (Nairn and Kilpatrick, 1972;
Brush, 1976).1 Interestingly, van der Waals’s description gave
the correct second virial coefficient B2 for the reference model
(Brush, 1976). Virial coefficients, which characterize how the
equation of state for the pressure P as a function of density ρ
deviates from the ideal gas reference, i.e.,

Z ¼ βP
ρ

¼ 1þ
X
i

Biþ1ρ
i; ð2Þ

quickly became an important tool to characterize models of
intermolecular interactions. (An example is shown in Fig. 3.
See Secs. VI.A and VII.C for further discussion.) For hard
spheres, B3 and B4 were hence determined by Boltzmann
before the end of the 19th century (Nairn and Kilpatrick, 1972).
Beyond that point, however, the algebra is intractable. It
therefore took more than 50 years and the advent of electronic
computers for estimates of higher-order coefficients to be
obtained. The numerical determination of B5 by Rosenbluth
and Rosenbluth (1954) renewed the quest for accurate esti-
mates, which currently extend up to B12 (Clisby and McCoy,
2006; Wheatley, 2013).
Hard spheres also formed the basis for studying liquid

structure. Early experiments with lead shot in the 1920s
(Smith, Foote, and Busang, 1929) and with hard gelatin balls
in the 1930s (Morrell and Hildebrand, 1936) were followed
after the war by Bernal’s extensive work with ball bearings
(Bernal and Mason, 1960; Finney, 2013) and by more
controlled theoretical descriptions, as further discussed in
Sec. XII.H. Hard spheres also contributed to establishing the
scaled particle theory of liquids (Reiss, Frisch, and Lebowitz,
1959) and were considered by Wertheim (1963) as a solution
of the Percus-Yevick approximation to the Ornstein-Zernike
equation that formally describes the liquid structure. Hard
spheres were subsequently a natural object for other integral
equation approaches (Rowlinson, 2005; Hansen and
McDonald, 2013); see also Sec. VI.A.

A parallel research effort into hard spheres stemmed
from Kirkwood’s speculation (Kirkwood, 1939), which he
quickly substantiated with his postdoctoral research associate
Elizabeth Monroe (Kirkwood and Monroe, 1940, 1941;
Kirkwood, 1951), that a hard-sphere fluid becomes unstable
to crystallization at high density (Hoddeson et al., 1992;
Charbonneau, 2025); see Fig. 3. The somewhat surprising
proposal that the ordered phase could be entropically more
favorable than the dense (and disordered) liquid was inde-
pendently formulated by Fisher (1955) a decade later and
validated by early simulations using molecular dynamics by
Alder and Wainwright (1957) and Monte Carlo sampling by
Wood and Jacobson (1957).2 The physicality of such a
phenomenon, however, was not immediately obvious. The
debate notably included a couple of even-split votes about the
question at conferences (Uhlenbeck et al., 1963). The result
nevertheless seeded a plethora of computational advances, as
recently reviewed by Battimelli, Ciccotti, and Greco (2020).
The study of the crystal state of hard spheres also has a long

history. (That of disordered jammed packings of hard spheres
is somewhat more recent; see Sec. XII.H.) The Kepler
conjecture for their densest packing (their infinite-pressure
state with a packing fraction ϕcp ¼ π=3

ffiffiffi
2

p
) dates back to the

17th century and was rigorously proven by Hales only this
century (Aste and Weaire, 2008; Hales et al., 2017). Finite-
pressure descriptions of hard-sphere crystals are less ancient
but have reasonably rich antecedents as well. Their familiar
description in terms of free volume, known as cell theory
(Sec. VI.B), takes root in various attempts to characterize the
liquid state in the 1930s (Rowlinson, 2005). The free-volume
description became a useful reference for hard-sphere crystals
only in the 1950s (Wood, 1952; Salsburg and Wood, 1962)
and persists to this day in the pedagogical literature (Barrat
and Hansen, 2003; Kamien, 2007). However, because the
associated corrections are less well controlled and are com-
putationally harder to evaluate than for the virial series [see
Charbonneau, Morse et al. (2021) and references therein], cell
theory has not been as quantitatively influential.

B. The foretelling: How PMMA colloids came to be

Despite the extended theoretical importance of hard
spheres, the system long remained but a distant abstraction
as far as experiments were concerned. It is only through a
gradual increase in the control over colloidal experiments that
the state of affairs has changed. In this section, we focus on the
developments that have led to the sterically stabilized poly-
methyl methacrylate (PMMA) system. Although other sys-
tems have been used such as sterically stabilized silica,
aqueous electrostatically stabilized systems such as polysty-
rene and silica, and what are now termed microgels (for
example, synthesized from polystyrene) (Russel, Saville, and
Schowalter, 1989; Hunter, 2001; Royall, Poon, and Weeks,

1We now know the van der Waals equation of state to be exact only
for a one-dimensional system with infinitely long-range and weak
attraction (Kac, Uhlenbeck, and Hemmer, 1963; Hansen and
McDonald, 2013; Niss, 2018).

2It is important to note that the contributions of coders for many of
these works were not acknowledged through authorship (Battimelli,
Ciccotti, and Greco, 2020). The author lists of these works therefore
do not fully reflect the array of intellectual contributions that went
into their realization.
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2013) (see Sec. III.B), PMMA-based colloids have predomi-
nated since their introduction. During the first 10–15 years of
its use3 and as the field burgeoned, any particle softness has
been attributed to the steric stabilization layer, which is much
shorter than the particle diameter. Because PMMA particles
have a bulk modulus that is orders of magnitude larger, the
tiny stabilization layer only slightly perturbs the system away
from true hard-sphere behavior; see Sec. III.C.
The origins of modern colloid science may be traced back

to the latter part of the 19th century with the emergence of
physical chemistry as a distinct discipline (Vincent, 2012,
2018) and early discoveries such as the first synthetic
suspension of optically active gold nanoparticles by
Faraday (1859) and the use of colloidal sedimentation profiles
to determine Boltzmann’s constant by Perrin (1913). A major
challenge to the use and application of colloidal suspensions is
that they typically aggregate irreversibly when concentrated.
Understanding of this phenomenon took a great leap forward
with the independent development during World War II [by
Derjaguin and Landau (1941) in the Soviet Union and by
Verwey and Overbeek (1948) in the Netherlands] of the
Derjaguin-Landau-Verwey-Overbeek (DLVO) theory for the
interactions between charged colloids. The DLVO theory
notably provided a first-principles explanation for the long-
noted salting out phenomenon for aqueous suspensions of
both colloids and proteins, in which salt addition leads to
aggregation and precipitation.
Colloid synthesis further progressed in the postwar years

(Vanderhoff et al., 1956; Ihler, 1979), not least because certain
industrial products, especially paint and coatings, called for
novel stabilization schemes (Barrett, 1973). It had long been
known that adding colloidal spheres to a solution increases
viscosity (Batchelor, 1967), hence when in the 1960s control
was sought over the rheology of paint and coatings, adding
colloids seemed like a natural solution. However, these largely
oil-based products [this being long before legislation pro-
moted the use of water-based coatings, which release fewer
volatile organic compounds as they dry (Derksen, Cuperus,
and Kloster, 1995)] called for stabilizing colloids in nonaque-
ous solvents. In these systems, electrostatic charging was
assumed to be negligible and therefore incapable of stabilizing
colloidal dispersions. [It was not until the turn of the third
millennium that electrostatic charging in nonaqueous solvents
would be investigated thoroughly; see Sec. III.C (Yethiraj and
van Blaaderen, 2003; Roberts et al., 2007; Royall, Poon, and
Weeks, 2013; Royall et al., 2021).] Another method for
stabilization was therefore sought out.
Inspiration came from prior advances in polymer physics,

notably those of Flory (de Gennes, 1979). The loss of
configurational entropy for polymers grafted to surfaces
was proposed as a colloidal stabilization mechanism. Early
work included the stabilization of carbon black through
physisorption of aromatic hydrocarbons (van der Waarden,
1950; Overbeek, 1966). In the 1960s, steric stabilization was
first combined with a relatively monodisperse nonaqueous
colloidal system at Imperial Chemical Industries (ICI), a

major paint and coating manufacturer of the time, by coating
PMMA particles with polyhydroxysteric acid (PHSA)
(Walbridge and Waters, 1966; Barrett, 1973). In the UK,
leading academic research in colloids was then taking place
at Cambridge University, University College London, and
the University of Bristol (Vincent, 2012). In Bristol, in
particular, Ottewill had strong links with ICI from where
sterically stabilized PMMA was initially obtained. Once
synthesized at Bristol (Cairns et al., 1976), these particles
played a central role in the hard-sphere story. They not only
closely approximated the model of interest but also were
amenable to solvents that match their refractive index and
mass density. As we later see, the former is essential for light
scattering (Sec. IV.A), and both are necessary for confocal
microscopy (Sec. IV.B).
In 1974, Ottewill met Pusey, who was then based at

Malvern, close to Bristol, and the two became interested in
exploring light scattering as a means of studying strongly
interacting colloidal systems (Pusey, Vaughan, and Williams,
1974; Brown et al., 1975) and of studying the PMMA system
(Brown et al., 1975). With the arrival in Bristol of van Megen
from the Royal Melbourne Institute of Technology and
through a series of extended back-and-forth visits, Ottewill’s
ability to synthesize the hard-sphere-like PMMA and Pusey’s
interest in these systems naturally led to the series of seminal
papers that gave rise to Fig. 2; see van Megen et al. (1985,
1987) and Pusey and van Megen (1986, 1987).

III. REALIZING HARD-SPHERE SYSTEMS

In this section, we discuss the main experimental methods
that have been brought to bear on the study of colloidal
hard spheres. For a more general treatment of colloidal
synthesis, see the reviews by Ihler (1979), Russel, Saville,
and Schowalter (1989), and Hunter (2001). We emphasize that
in experiments truly hard spheres do not exist (Poon, Weeks,
and Royall, 2012; Royall, Poon, and Weeks, 2013). To show
how far real experimental systems deviate from hard spheres,
we discuss different mappings to hard spheres in Sec. III.D.

A. Experimental methods to prepare hard-sphere-like systems

Experimental techniques for colloidal hard spheres fall into
three main categories: synthesis, characterization, and obser-
vation. Spanning the chemical synthesis, design, and con-
struction of suitable apparatuses (in particular, light-scattering
setups and microscopes), as well as data analysis, experiments
on hard-sphere-like systems are truly multidisciplinary. It is
common for particular individuals to focus on one or two of
these. Concerning synthesis, we note that there is no com-
mercial supplier for the canonical sterically stabilized PMMA
suspensions4 discussed in Sec. II.B. [A short review of
PMMA synthesis was given by Dullens (2006).] Here we
focus mainly on the characterization and observation of
colloidal hard-sphere suspensions.

3Specifically, before the density matching of larger PMMAparticles
for confocal microscopy around the millenium; see Sec. III.C.

4Even worse, the PHSA synthesis is challenging to reproduce,
leading to polydisperse, or colloidally unstable, PMMA particles. At
present the global stocks of PHSA are less than 10 kg.
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In addition to identifying the “hardness” of individual
particles (see Sec. III.C), determining the polydispersity of
the overall suspension is also key. This property is typically
expressed5 as the standard deviation of the particle diameter
normalized by the mean diameter expressed as a percentage s.
For PMMA synthesis, a “good” level of polydispersity is
considered to be s≲ 5%, such that the system crystallizes as
readily as in the monodisperse case. (See Sec. VII.B for a
detailed discussion of the impact of polydispersity on the
phase behavior.) Colloids produced from other materials, such
as polystyrene, can exhibit significantly lower polydispersity
down to s ≈ 1% (Vanderhoff et al., 1956; Russel, Saville, and
Schowalter, 1989).
We emphasize that polydispersity distributions in exper-

imental systems cannot be prescribed. While in numerical
simulations one may easily change from Gaussian, to top hat
or log-normal distributions, in experiments the distribution is
at the mercy of the particular synthesis. Even bimodal
distributions can arise following secondary nucleation reac-
tions that give rise to a second wave of colloids (Kawaguchi
and Ito, 2005).

B. Synthesizing hard-sphere-like colloidal particles

The method adopted for PMMA synthesis was dispersion
polymerization (Barrett, 1973; Kawaguchi and Ito, 2005). In
this approach, the methyl-methacrylate monomers and meth-
acrylic acid are dispersed in a suitable solvent (typically an
alkane). Under the action of an initiator, polymerization
begins at a somewhat elevated temperature (around 80 °C)
and in principle proceeds until the monomer is exhausted.
Relatively early in the polymerization process, the initially
transparent solution acquires a bluish tint due to the growing
polymers falling out of solution and condensing into
colloids that scatter predominately blue light. As the
particles grow, the suspension turns white as the colloids
begin to scatter light of all wavelengths. PHSA is added to
the synthesis and is typically physisorbed to provide steric
stabilization. In this way, the sterically stabilized PMMA
system was born (Walbridge and Waters, 1966; Barrett,
1973; Cairns et al., 1976; Antl et al., 1986). The monomer
concentration controls the particle size, thus enabling
binary systems with a given size ratio to be synthesized
or a system whose size optimized density matching (easier
with small particles) against higher-quality imaging (better
with large particles) (Bosma et al., 2002; Poon, Weeks, and
Royall, 2012).
Synthetic improvements include (i) partial control over the

particle size by the monomer concentration (Bosma et al.,
2002; Poon, Weeks, and Royall, 2012), (ii) locking the
stabilizer such that it is covalently bonded to the PMMA
polymer backbone, and (iii) cross-linking the PMMA chain.
The last characteristic prevents particles from swelling and
dissolving in a good solvent. Using such cross-linked

particles as a core is important for confocal microscopy
because it enables a PMMA shell to be grown around the
particle6 (Dullens et al., 2003; Dullens, 2006): if the initial
step (the core) is labeled with a fluorescent dye and the shell
is unlabeled, then tracking particle locations with confocal
microscopy is much easier, thanks to the clean separation
between different fluorescent cores (van Blaaderen, Imhof
et al., 1992; Ivlev et al., 2012); see Sec. IV.B.
While many key early hard-sphere experiments were

carried out with sterically stabilized PMMA, and indeed most
of the work that we consider used PMMA colloids, it is far
from the only material of interest. Silica may also be stabilized
in a nonaqueous solvent (van Helden and Vrij, 1980).
Aqueous systems of polystyrene and silica colloids form
reasonable approximations to hard spheres, as do microgel
particles (Royall, Poon, and Weeks, 2013) and emulsion
droplets (Dong et al., 2022). Because the diameter of microgel
particles can be tuned in situ, the effective volume fraction can
be changed at will, and therefore a single sample can access
multiple state points (Yunker et al., 2014).
Two promising systems have been developed more

recently. One involves the use of an aqueous copolymer of
fluorinated methacrylate and methacrylate with a tunable
density and refractive index, as demonstrated by Kodger,
Guerra, and Sprakel (2015). The other involves the use of
3-(trimethoxysilyl)propyl methacrylate particles (Liu et al.,
2016, 2019; van der Wel et al., 2017). Impressive results also
have been obtained with nanoparticles, whose small size
enables faster diffusion than for the larger colloids and their
self-assembly into larger structures (Boles, Engel, and
Talapin, 2016); see Sec. IV.C. Early work in the same size
range used microemulsions, which are thermodynamically
stable droplets of nanometer dimensions (despite their name).

C. Interactions in real hard-sphere-like systems

Central to identifying the state point of a hard-sphere-like
system is determining the effective volume fraction ϕeff , as
reviewed by Poon, Weeks, and Royall (2012) and Royall,
Poon, and Weeks (2013). The notion of an effective hard-
sphere diameter is more fully discussed in Sec. III.D, but we
here introduce interactions commonly used in experiments
to mimic hard spheres. We consider two particle diameters
σ ¼ 200 and 2000 nm, which roughly reflects the range of
colloid sizes used in the work discussed here. We note the
impact of the colloid size upon the system dynamics
(Sec. IV.C) and their applicability for particular experimental
techniques (Sec. IV).
While we have discussed the origins of some hard-sphere

experimental systems, we should assess how close to hard
spheres these truly are (Poon, Weeks, and Royall, 2012;
Royall, Poon, and Weeks, 2013). Here we provide a summary
for the purposes of this review. Practical hard-sphere-like
systems fall into three broad categories, as illustrated in Fig. 4.
Colloidal stabilization can be achieved either via (a) steric

5An unbiased way to characterize the distribution remains to be
identified. Even the laborious method of sizing every particle by
electron microscopy likely samples from a biased set of particles due
to inhomogeneities during evaporation in preparing the sample.

6The particles used by Kose and Hachisu (1974) had little in
common with modern PMMA particles other than their chemical
nature. In particular, they were not sterically stabilized.
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stabilization or (b) charge stabilization. Because (c) microgel
particles consist of densely cross-linked polymers in a
swelling solvent, they do not explicitly need stabilization
(Lyon and Fernandez-Nieves, 2012; Schneider et al., 2017).
The hardness of microgel colloids depends on the quality of
the solvent and the degree of cross-linking and can be density
dependent (Royall, Poon, and Weeks, 2013). Emulsion
droplets are an intermediate case. They use a molecularly
thin layer of surfactant for stabilization. Although these
particles are liquid, even a microscopic (≲1 nm2) change
in surface area leads to an interfacial free-energy cost of the
order of kBT. The softness of mesoscopic-scale droplets is
therefore limited (Morse and Witten, 1993; Lacasse, Grest,
and Levin, 1996; Dong et al., 2022). However, in practice
excess surfactant in solution can act to significantly reduce the
free-energy cost of increasing surface area, and therefore
emulsion droplets can often be easy to deform.
Softness due to stabilization. A sterically stabilized particle

is shown schematically in Fig. 4(a). Royall, Poon, and Weeks
(2013) previously reviewed ways to obtain an effective hard-
sphere diameter for these particles by mapping various hard-
sphere properties; see Sec. III.D. A mapping is also possible
via direct measurements of colloidal interactions. This pro-
cedure has been applied to polyhydroxystearic acid-stabilized
PMMA particles, whose interactions were measured with the
surface force apparatus and were found to be well described
by an inverse power-law potential with energy scale7 ϵipl
(Bryant et al., 2002),

usðrÞ ≈ ϵipl

�
σ

r

�
n
; ð3Þ

where σ denotes the particle diameter and r indicates the
interparticle distance. The relative range of us depends on
the particle size. For example, n ¼ 170 was determined for
particles with a diameter of σ ¼ 200 nm. Likewise, the
strength of the interactions also depends on the particle size,
with usðσÞ ¼ 146 kBT reported for σ ¼ 200 nm, as indicated

by the pink line in Fig. 5(a). For larger particles
(σ ¼ 2000 nm), n ¼ 1800 and usðσÞ ≈ 1800kBT were deter-
mined [Fig. 5(b), pink line] (Bryant et al., 2002). The results
of Bryant et al. (2002) quantified what is physically obvious,
namely, that for a fixed length of stabilizing hairs larger
particles are relatively harder. Similar conclusions were
obtained in the rheological study of Mewis et al. (1989),
who varied the thickness of the stabilizing layer.
Electrostatics. It is now generally accepted that immer-

sion of a colloid in a liquid gives rise to some degree of
charging (Yethiraj and van Blaaderen, 2003; Leunissen,
2006; Roberts et al., 2007; Royall, Poon, and Weeks, 2013).
This charge is a potential source of softness that should
always be considered in experiments. In determining the
degree of softness due to electrostatic interactions, the
linearized Poisson-Boltzmann theory is incorporated into
the DLVO theory (Verwey and Overbeek, 1948) to describe
the interactions between charged colloids. The original
DLVO potential consists of van der Waals (vdW) and
electrostatic components. The vdW contribution often
becomes small due to refractive index matching between
colloids and solvent, as in the case of light scattering or 3D
microscopy. In the case of quasi-2D systems or techniques
that do not require index matching, such as rheology,
electrostatic stabilization ensures that particles do not come
sufficiently close together for vdW interactions to become
important. Therefore, we henceforth neglect vdW inter-
actions except where explicitly stated.
We are often interested in systems in which sterically

stabilized particles become charged. In this case, we can
consider an interparticle potential consisting of a steric repul-
sion usðrÞ and an electrostatic interaction, which in linearized
Poisson-Boltzmann theory has a Yukawa form uYukðrÞ,

uðrÞ ¼ usðrÞ þ uvdWðrÞ þ uYukðrÞ; ð4Þ

uYukðrÞ ¼ ϵYuk
exp ½−κðr − σÞ�

r=σ
; ð5Þ

where κ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πλBρion

p
is the inverse Debye screening length,

with ρion the number density of monovalent counterions and

(a) (b) (c)

FIG. 4. Schematic representation of various models for hard-
sphere colloids. (a) A sterically stabilized particle has surface
“hairs” (not to scale) of average thickness δ̄, resulting in a core-
stabilizer diameter σcs ¼ σc þ 2δ̄. (b) A charged colloid has an
electrical double layer (shaded area) that gives rise to an effective
diameter σeff. (c) A microgel particle is a heavily cross-linked
polymer. From Royall, Poon, and Weeks, 2013.

(a) (b)

FIG. 5. Estimate of effective colloid-colloid interactions for
various hard-sphere-like scenarios for particle diameters
(a) σ ¼ 200 nm and (b) σ ¼ 2000 nm. Shown is steric stabiliza-
tion [the pink (pale gray) line], a strong electrostatic interaction
[the solid blue (dark gray) line], and a weak electrostatic
interaction [the dashed blue (dark gray) line]. See the text for
additional details. From Royall, Poon, and Weeks, 2013.

7While an inverse power law is, of course, long-range, unlike the
steric stabilization, here we follow the work of Bryant et al. (2002).
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coions, and ϵYuk denotes the contact value of the Yukawa
interaction given by

βϵYuk ¼
Z2
e

ð1þ κσ=2Þ2
λB
σ
; ð6Þ

with Ze the number of electronic charges on the colloid. The
Bjerrum length

λB ¼ e2

4πϵ0ϵrkBT
ð7Þ

is the distance at which the interaction energy between two
elementary charges equals kBT, e is the electronic elementary
charge, ϵ0 is the permittivity of the vacuum, and ϵr is the
relative dielectric constant.
We first consider the case of aqueous systems in which the

charging is strong. In three dimensions, most work with
aqueous systems has used rather small colloids. We estimate
the electrostatic interaction potential by plotting the solid blue
line in Fig. 5(a), where we evaluate the Yukawa interaction (5)
as follows. We assume that salt is added such that the Debye
length is 4 nm. It has been suggested that an upper bound for
the effective charge in many systems (Alexander et al., 1984)
can be described by the rule of thumb ZeλB=σ ≈ 6. For higher
values of the colloid charge, the electric field at distances
beyond the Stern layer reduces to the electric field corre-
sponding to the effective charge due to ion condensation
(Alexander et al., 1984; Russel, Saville, and Schowalter,
1989). For colloids with σ ¼ 200 nm in water, this leads
to an effective colloid charge of Ze ¼ 1500. The resulting
electrostatic interaction [represented by the solid blue line in
Fig. 5(a)] demonstrates a noticeable degree of softness.
Sterically stabilized PMMA is used in nonaqueous sol-

vents. For example, the work of Pusey and van Megen (1986)
used a mixture of cis-decalin and carbon disulfide with a
dielectric constant ϵr ¼ 2.64, which leads to a Bjerrum length
λB ≈ 21 nm. With ionic sizes in the range of ≲1 nm, one
expects strong coupling between oppositely charged ions and,
consequently, little dissociation of surface groups. It was
therefore a long-held assumption that electrostatics could be
safely neglected. However, more recent work has demon-
strated that some electrostatic charging is always present
(Yethiraj and van Blaaderen, 2003; Leunissen, 2006; Roberts
et al., 2007; Klix et al., 2013).
To evaluate electrostatic interactions in solvents with such

low dielectric constants, we again use the ZeλB=σ ≈ 6 criterion
with a Debye length of κ−1 ¼ 5 μm, which is consistent with
measurements of the small ionic strength found in such
solvents (Klix et al., 2013). We can then evaluate Eq. (5)
for particles with diameters of σ ¼ 200 and 2000 nm [the
blue dashed lines in Figs. 5(a) and 5(b), respectively]. The
electrostatic repulsion changes only slightly over the chosen
range. Note that for smaller particles (σ ¼ 200 nm) these
parameters correspond to an electrostatic charge of just
Ze ¼ 2. Although small, comparable values have been mea-
sured in experiments (Klix et al., 2013). In this case, it is
highly probable that the spherically symmetric DLVO
approach would not be accurate. However, the effects seem

to be small enough that one can reasonably neglect electro-
static charging for this combination of solvent dielectric
constant and particle size. Larger colloids, however, require
density matching to suppress sedimentation. Since two of the
denser solvents used in experiments, namely, tetrachloro-
ethylene (TCE) and carbon tetrachloride, can be readily
absorbed by PMMA, both the density and the refractive
index of the particles change, resulting in a turbid system
characterized by substantial vdWattractions. The hard-sphere-
like behavior of the particles is then lost (Ohtsuka, Royall, and
Tanaka, 2008; Royall, Poon, and Weeks, 2013). Recent work
has nevertheless found excellent hard-sphere behavior using a
solvent mixture with TCE (Kale et al., 2023).
Finally, we consider stronger electrostatic charging in the

PMMA system often applied in studies using confocal
microscopy for larger colloids with σ ¼ 2000 nm. The sol-
vents used for light scattering with the smaller PMMA
particles have a relative dielectric constant of ϵr ≈ 2.
Relative to these, the density matching mixture of cyclohexyl
bromide (CHB) and cis-decalin has a dielectric constant of
ϵr ¼ 5.4, which is due to the CHB component with ϵr ¼ 7.9.
While nonaqueous, the dielectric constant is nevertheless
much higher than the aforementioned one and tetrabutyl
ammonium bromide (or a similar salt) is typically used to
screen the electrostatic interactions (Yethiraj and van
Blaaderen, 2003). CHB advantageously appears to be less
aggressive toward the PMMA particles than does TCE, for
example, with less absorption and swelling. If we again use
the same criterion ZeλB=σ ≈ 6, we arrive at Ze ≈ 500.
The Debye length corresponding to a saturated solution of
this salt is around κ−1 ≈ 100 nm (Royall, Leunissen, and van
Blaaderen, 2003; Leunissen, 2006; Royall et al., 2006).
Evaluating Eq. (5) then gives the solid blue line in Fig. 5(b),
which exhibits a considerable degree of softness. Therefore,
for the larger PMMA particles, which require density match-
ing, one can either accept some softness and add salt or
risk attractions due to solvent absorption (in the case of TCE,
for example).
Imaging quasi-2D or strongly confined systems [obtained,

for example, by sedimenting particles onto a substrate (Ivlev
et al., 2012)] is somewhat exempted from such drawbacks.
For example, polystyrene colloids in an aqueous solvent with
a suitable amount of salt added are hard, as the Debye length
of a few nanometers is much less than the micron-scale
particle diameter (Royall, Poon, and Weeks, 2013). Particles
with a size of 3–5 μm are readily imaged and their gravita-
tional length8 can be ≈0.01σ, so out-of-plane motion is small
(Marcus and Rice, 1997; Brunner et al., 2003; Williams et al.,
2013, 2015; Yunker et al., 2014; Thorneywork, Abbott
et al., 2017).

D. Mapping soft spheres to hard spheres

As discussed, real colloids inevitably display some degree
of softness. To compare experiments with theory and simu-
lations, it is therefore important to be able to map the behavior

8The gravitational length is a measure of vertical movement due to
thermal energy; see Sec. XI.A.
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of colloids to that of perfect hard spheres. Mapping entails
finding an effective hard-sphere diameter σeff such that
one may translate the experimentally controllable particle
number density ρ to an effective hard-sphere volume
fraction ϕeff using ϕeff ¼ πσ3effρ=6. Two distinct approaches
can be used to determine σeff : directly from the interaction
potential and indirectly from the observed behavior of the
system. The latter method rests on the assumption that the
weight fraction (which may be accurately determined) at
freezing may be taken to correspond to the freezing volume
fraction. This provides a calibration of the volume fraction
through an accurately known quantity. Developments of
this method to address the effects of gravitational settling
are discussed in Sec. VII.
For a known interaction potential, several analytical routes

to estimate an effective hard-sphere diameter have been
proposed. Arguably the simplest one is to set an effective
hard-sphere diameter σkT such that the interparticle repulsive
energy at this center-to-center separation between two par-
ticles is equal to the thermal energy kBT. A more sophisticated
approach that entails taking into account the functional
behavior of the pair interaction was proposed by Barker
and Henderson (BH) (Barker and Henderson, 1967),

σBH ¼
Z

∞

0

drf1 − exp ½−βuðrÞ�g: ð8Þ

An alternative mapping due to Andersen, Weeks, and
Chandler (1971) takes into account the structure of a hard-
sphere reference fluid at the same density, making the effective
diameter density dependent. This approximation has been
shown to be effective for mapping the structural relaxation
time of soft spheres near the glass transition to the hard-sphere
model (Schmiedeberg et al., 2011). For the commonly used
Weeks-Chandler-Andersen potential (Weeks, Chandler, and
Andersen, 1971), both the Barker-Henderson and Andersen-
Weeks-Chandler mappings have been shown to provide
excellent phase behavior predictions at sufficiently low
temperatures (Dasgupta, Coli, and Dijkstra, 2020; Attia,
Dyre, and Pedersen, 2022). However, for higher temperatures
(or, equivalently, particles that are less hard-sphere-like)
significant deviations emerge. As a result, care is needed
when interpreting the results of this type of mapping in
colloidal systems (Royall, Poon, and Weeks, 2013). The
situation is illustrated for a model system of charged colloids
in Fig. 6, where the fluid-crystal phase boundaries from
simulations (Hynninen and Dijkstra, 2003) are mapped to
hard spheres using σkT and σBH. Both approaches present
significant deviations from true hard spheres. The fluid-crystal
coexistence gap is also narrower than that for the model
system. Therefore, as corroborated by simulation work show-
ing that nucleation barriers continue to be sensitive to the
softness even at screening lengths on the order of a few
percent of the particle diameter (de Jager and Filion, 2022),
simply obtaining σeff may not suffice to confidently reproduce
hard-sphere behavior.
The second option is to measure quantities that depend on

volume fraction. Structural quantities such as the radial
distribution function may be compared with simulation or
theory (Royall, Louis, and Tanaka, 2007; Thorneywork et al.,

2014; Royall, Williams, and Tanaka, 2018; Kale et al., 2023);
see Sec. VII.D. However, for dense hard spheres, these pair
correlations vary slowly with ϕ. Alternatively, one can choose
a quantity that strongly depends on ϕ, such as the relaxation
time at high volume fraction (see Fig. 39 in Sec. XII) or
higher-order structural observables (see Fig. 15 in Sec. VII.D)
(Pinchaipat et al., 2017; Royall, Williams, and Tanaka, 2018).
However, it is important to note that there is absolutely no
guarantee that different methods give the same mapping. For
example, higher-order structure measurements are highly
sensitive to missing (or “ghost”) particles (see Sec. IV.B),
while measuring dynamics in real space is more sensitive to
errors in particle positions.
In short, nearly hard spheres, whether realized in experi-

ments or in simulations, can closely approach the behavior of
true hard spheres, but subtle differences persist. Choosing an
effective diameter is an essential step in assigning an effective
packing fraction to an experimental system, and hence in
comparing its behavior to hard-sphere simulations or theory.
However, no unambiguous definition of such an effective
packing fraction exists, and different approaches result in
different estimates.

E. Accuracy in hard-sphere experiments

The previous discussion makes clear that, with care, an
effective hard-sphere volume fraction may be deduced for an
experimental system, but a degree of uncertainty necessarily
persists due to (i) softness arising from electrostatics, stabi-
lization, or other sources; (ii) attraction originating from vdW
interactions or other sources; and (iii) polydispersity9 s. These
features pertain to the particles alone. For nonaqueous
systems, in particular, other parameters might affect the state
point, including the solvent choice, its age and purity, and the

FIG. 6. Mapping the phase behavior of weakly charged hard-
core colloids to pure hard spheres. The hypothetical particles
have a diameter σ ¼ 2 μm and an electrostatic charge Z ¼ 500.
The Debye screening length of the solvent is κ−1 ¼ 100 nm,
which is typical for nonaqueous solvents (Royall, van Roij, and
van Blaaderen, 2005). The fluid-solid coexistence gap of the
hypothetical charged-colloid system as a function of the packing
fraction ϕ is taken from simulations (red, “sim”) (Hynninen and
Dijkstra, 2003) and is mapped to pure hard spheres while
assuming that the effective hard-sphere diameter corresponds
to the interaction potential βuðσkTÞ ¼ 1 (lilac, σkT) and using the
mapping of Eq. (8) (blue, σBH). The phase diagram of pure hard
spheres (gray, HS) is shown for comparison.

9There are even occasional reports of breakdowns in spherical
symmetry in the effective interactions (Reinke et al., 2007; Klix
et al., 2013).
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ambient temperature and humidity (which are often not
controlled in colloid laboratories).
Even if these uncertainties could somehow be mitigated,

there remains a fundamental aspect of colloidal systems that
sets them apart from most materials in that model colloids are
a synthetic material. As noted, sterically stabilized PMMA
colloids, for instance, cannot be purchased commercially;
they need to be synthesized, typically in small batches of
10–1000 g. Therefore, even if the aformentioned quantities
were somehow characterized for a given synthesis (which
would entail a sizable amount of work), once that batch is
exhausted, the operation would need to be carried out again
for a subsequent synthesis.
In other words, colloidal systems are not as well charac-

terized as atomic and molecular systems. One container of
argon of sufficient purity has the same characteristics as another
container of the same material. However, like homemade cakes,
colloidal hard spheres from two different syntheses are non-
identical. That is, the concept of an accurate measurement of a
physical property fundamentally differs. For example, the triple
point temperature of argon is 83.8058 K, i.e., known to six
significant figures, drawing on many successive and increas-
ingly accurate measurements of the same material. Such an
accuracy is essentially impossible to achieve in colloids. This
realization brings us to the question of just how much accuracy
can be expected in colloidal experiments. Poon, Weeks, and
Royall (2012) concluded that a relative error in volume fraction
around the freezing transition of 6% might be reasonable. Our
opinion is that when careful comparisons are made, as
described in Sec. III.D, an absolute error of 1% in the volume
fraction seems to be achievable, albeit not always realized. In
the remainder of this review, we revisit the impact of colloidal-
level accuracy when appropriate.
A more far-reaching interpretation of accuracy in the

context of this review is to consider what is meant by hard
spheres. This matter is not as straightforward as it might first
seem, as whether or not a system is sufficiently similar to hard
spheres depends on the physical property considered. For
example, it has long been known that even soft repulsive
particles have a fluid structure similar to that of hard spheres
(Weeks, Chandler, and Andersen, 1971). By contrast, phase
boundaries are highly sensitive to the interaction details. For
this review, we state that systems that are not hard-sphere-like
(i) are so soft that they form a bcc crystal (i.e., their phase
behavior differs qualitatively from that of hard spheres);
(ii) attract each other significantly, by which we mean a well
depth of 0.5kBT or above; and (iii) use the temperature rather
than the volume fraction as the control parameter. Beyond
these three criteria, the degree of hardness required for our
purposes is therefore context dependent. The interparticle
interactions in the work that we discuss in this review should
then be understood to be sufficiently hard for hard-sphere-like
behavior to be observed in the given context. We nevertheless
specifically discuss certain instances where the degree of
hardness is particularly relevant.

IV. MEASURING HARD SPHERES IN VITRO

We now turn to techniques for analyzing colloidal hard
spheres in experiments. The configurations adopted by the

particles and their dynamics are the main quantities of interest.
The experimental work that we review primarily used direct
observation through microscopy or scattering methods.
[Rheological approaches have been reviewed elsewhere
(Larson, 1998; Jacob, Moghimi, and Petekidis, 2019;
Wagner, 2022).] While some scattering studies of hard spheres
have used neutron (Cebula et al., 1981; de Kruif et al., 1988)
and small-angle x-ray scattering (Petukhov et al., 2002), as
well as more exotic x-ray scattering methods (Wochner et al.,
2009), most have used light scattering. The last method is
therefore the focus of our discussion.

A. Light scattering

Characterization of materials via the scattering of electro-
magnetic radiation dates back almost to the discovery of
x rays, whose wavelength is comparable to length scales
relevant to atomic and molecular systems. The colloidal length
scale corresponds to the longer wavelength of visible light,
which is scattered by spatial and dynamical fluctuations in
the refractive index of the sample studied. A typical light-
scattering setup is illustrated in Fig. 7 via a global view and by
a close-up of the scattering volume with the scattering wave
vector k defined in terms of the wave vector of the incident ki
and scattered ks light, together with the scattering angle θ.
The key observables in light scattering are the intensity of

the scattered light Iðk; tÞ and its time correlation. Here k is the
wave vector through which the light is scattered, t is the time,

(a)

(b)

FIG. 7. Schematic of a light-scattering setup. (a) Global view of
the setup. In the expanded view, scattering through an angle θ is
indicated in a small volume dV. (b) Close-up of the scattering
volume with the scattering wave vector k defined in terms of the
wave vector of the incident ki and scattered ks light and also the
scattering angle θ. Adapted from Pusey, 2002.
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and r is the particle position (Fig. 7). The scattered intensity is
then (Pusey, 2002)

Iðk; tÞ ¼ E2
0

r2
XN
j¼1

XN
k¼1

bjðk; tÞb�kðk; tÞ

× exp f−ik · ½rjðtÞ − rkðtÞ�g; ð9Þ

where E0 is the amplitude of the incident light field and bi is
the scattering length of the ith particle and is closely related to
the form factor.
Static light scattering. In the case of static light scattering

(SLS) temporal quantities are averaged over time. From
Eq. (9) for a given bðk; tÞ (which can be readily calculated
for spheres made of a material with a fixed refractive index)
we can then obtain the structure factor (Pusey, 2002)

SðkÞ ¼ 1

N

XN
j¼1

XN
k¼1

hexp ½−ik · ðrj − rkÞ�i; ð10Þ

and therefore its Fourier transform, the radial distribution
function gðrÞ. This quantity also provides a link to the
thermodynamics of the system, as in the long-wavelength limit
it is related to the isothermal (osmotic) compressibility χT,

lim
k→0

SðkÞ ¼ ρkBTχT ¼ kBT

�
∂ρ

∂P

�
T
: ð11Þ

Light scattering has been applied to soft-matter systems
since the 1930s (Doty and Edsall, 1951), for instance, by Doty
and Steiner (1952). Famed crystallographer Rosalind Franklin
and co-workers (Klug, Franklin, and Humphreys-Owen,
1959) were among the first to study colloidal-type crystals
of charged viruses. The approach benefited massively from
Spectra-Physics lasers becoming commercially available
in 1962.
Pusey was an early champion of light scattering. Because

synthetic colloids held the promise of being more robust than
viruses, he arranged to receive polystyrene samples from the
Bristol colloid group via Ottewill and Vincent; see Sec. II.B.
This enabled Pusey’s pioneering work on determining static
structure factors from the mid-1970s onward (Pusey et al.,
1972; Brown et al., 1975), which complemented other work
on colloidal crystals (Hiltner and Krieger, 1969; Williams and
Crandall, 1974). When one uses light scattering for denser
suspensions (by which we mean denser than the dilute limit,
ϕ≳ 0.01), precise refractive index matching between colloids
and solvent is essential, as noted in Sec. II.B.
Dynamic light scattering. As Eq. (9) makes clear, determin-

ing time correlations in the fluctuations in refractive index (in
the scattered form of the so-called speckle pattern) can reveal
dynamical behavior, i.e., dynamic light scattering (DLS). In
the 1960s, the pioneers in the field used a spectral technique to
analyze the speckle pattern (Clark, Lunacek, and Benedek,
1970; Cummins and Swinney, 1970) that was experimentally
tedious, while the now dominant technique uses the time
correlation of detected photons (frequently called photon
correlation spectroscopy) (Foord et al., 1970).

The key quantity measured in DLS is the normalized time-
correlation function

gð2Þðk; τÞ≡ hIðk; τÞIðk; 0Þi
hIðkÞi2 : ð12Þ

Note that gð2Þðk; τÞ is intimately related to a key dynamical
property, the intermediate scattering function Fðk; τÞ, via the
Siegert relation

Fðk; τÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gð2Þðk; τÞ − 1

q
; ð13Þ

which holds only if the scattered field is distributed over the
scattering volume according to a Gaussian distribution. This
means that the scattering volume can be divided into a large
number of subregions and the scattered intensities of these
subregions are statistically independent (Aschinger and
Winter, 2012). Equation (13) constituted the mainstay of
dynamical measurements of hard-sphere systems until
dynamical analysis using confocal microscopy became avail-
able around the turn of the millennium.
A significant advantage of DLS over confocal microscopy

is the possibility to access a broader range of timescales.
Microscopy is limited to a relatively narrow time window
relative to DLS. Both fast (< 10−2 s) and long timescales
(>104 s) are inaccessible, the former due to the scan time and
the latter due to limitations in sample stability. (See also the
discussion concerning the consequences of particle size in
Sec. IV.C.)
More exotic light scattering: Small angles, multiple length

scales, and multiple colors. While the essential methods of light
scattering were established by the mid-1970s, the technique has
since developed considerably. As Fig. 7 makes clear, going to
small angles (small-angle light scattering) probes smaller wave
vectors and larger real-space length scales (Cipelletti andWeitz,
1999). Mounting multiple detectors, such as one corresponding
to a “standard” wave vector around 2π=σ and one at a smaller
angle≪ 2π=σ, then enables multiple length scales to be probed
simultaneously. This approach has since been implemented to
great effect (Tamborini and Cipeletti, 2012; Franke, Golde, and
Schöpe, 2014). Other developments include two-color tech-
niques that enable more turbid samples to be studied (Schätzel,
1991; Segrè, Behrend, and Pusey, 1995; Segrè, van Megen
et al., 1995;Moussaïd and Pusey, 1999). Another approach is to
consider strongly scattered light, which then opens the door to
studying highly turbid samples: diffusing wave spectroscopy.
This technique was developed in the late 1980s and avoids the
need for a precise matching of refractive index between
particles and solvent (Maret and Wolf, 1987; Weitz et al.,
1989, 1993). More recent advances such as multispeckle
correlation spectroscopy enable simultaneous measurements
of dynamical and spatial heterogeneities (Golde, Franke, and
Schöpe, 2013; Golde, Palberg, and Schöpe, 2016).

B. Optical microscopy and particle-resolved studies

Unlike atomistic systems, colloids are amenable to in situ
observation via light microscopy techniques. Analysis of such
real-space images of colloidal hard-sphere systems dates back
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to at least the early 1970s, with the work of Kose et al. (1973),
Kose and Hachisu (1976), and Okamoto and Hachisu (1977),
but antecedents can be found in the Bragg scattering study
of “colloidal” crystals of viruses of Klug, Franklin, and
Humphreys-Owen (1959). Microscopy work may be broadly
classified into two categories: one in which individual
particles are resolved [so–called particle-resolved studies
(Ivlev et al., 2012)] and the other in which particles are
too small to be resolved. In the case of particle-resolved
studies of 3D systems, some kind of 3D imaging is important.
Here confocal microscopy is essential. A schematic of a
confocal microscope is shown in Fig. 8. Like light scattering,
confocal microscopy as a practical experimental technique
was transformed by the advent of lasers.
Since the signal recorded in epi-illumination confocal

microscopy is the distribution of fluorescent dye, some form
of labeling of colloidal particles (or solvent) is necessary.
Novel fluorescent particles suitable for confocal microscopy
were developed by van Blaaderen, Imhof et al. (1992). The
additional synthetic step of growing an undyed shell around
the fluorescently labeled core contributed greatly to the ability
to distinguish among particles; see Sec. III.B. To our knowl-
edge, the first 3D imaging of hard-sphere-like systems with

confocal microscopy was that of van Blaaderen, Imhof et al.
(1992), who observed colloidal crystals and glasses. The field,
which has since grown markedly, has also been extensively
reviewed (Hunter and Weeks, 2012; Ivlev et al., 2012).
Confocal microscopy has since been developed to incorporate
a shear stage, as discussed in Secs. XI and XII.J (Besseling
et al., 2009; Lin et al., 2014), and optical tweezers (see later
discussion).
Particle tracking. In a seminal paper, Crocker and Grier

(1996) developed an algorithm for tracking the coordinates of
colloidal particles from microscopy data. This approach
interpreted bright pixels as potential particle centers. In the
Crocker and Grier method, the trial centers are subsequently
refined through a series of criteria, such as being the center of
an object weighted by pixel intensity and being far enough
away from other objects that other particles do not overlap.
Note that the majority of work on 2D hard-sphere systems has
been carried out using microscopy, as such systems are less
amenable to scattering techniques.
While the algorithms introduced by Crocker and Grier

(1996) for quasi-2D systems have undoubtedly formed the
backbone of most work since, note that more sophisticated
approaches are available. van Blaaderen and Wiltzius (1995)
sought to improve the tracking accuracy in the axial direction
by fitting a Gaussian to the integrated intensities in each plane
that constituted a given colloid. The early work examined
hard-sphere glasses and crystals, i.e., colloidal solids in which
diffusion could be neglected (van Blaaderen and Wiltzius,
1995). Even though this method made imaging easier, the
slow scan rates needed to acquire images with low noise left
dynamical information beyond reach. For a quasi-2D system,
time-resolved tracking was carried out by the mid-1990s
(Marcus, Lin, and Rice, 1996). In 3D systems, two break-
through papers, published simultaneously in 2000, obtained
dynamical information by tracking particle coordinates over
time (Kegel and van Blaaderen, 2000; Weeks et al., 2000).
This local information led to a breakthrough experimental
measurement of dynamical heterogeneity, a particularly
important characteristic of glass physics; see Sec. XII.
More recently Jenkins and Egelhaaf (2008) pushed the

limits of the technique as they sought to identify contacts
between colloids in a dense sediment through ultrahigh
precision coordinate determination. Such precision was
achieved by first obtaining an empirical image of a colloid,
which could then be compared to the original image. Further
systematic improvements in this direction were made by Gao
and Kilfoil (2009). Other, more specialized developments
include the algorithmic advances in image processing of Lu
et al. (2006), which have since allowed for real-time tracking
of experiments, rather than their post facto analysis. This
distinction is particularly significant because the spatial region
of interest, which is usually small given the large file sizes
generated by time-resolved 3D imaging, can often drift out of
the field of view. Real-time tracking allows feedback to be
applied to the stage to correct for that drift.
Ever-present polydispersity is typically neglected, except in

the simple case of binary systems, wherein two-color imaging
enables the two species to be differentiated (Royall, Louis, and
Tanaka, 2007). More recently algorithms that identify the size
of each particle have been developed (Kurita, Ruffner, and
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FIG. 8. The principle of confocal microscopy in the conven-
tional epi-illumination mode. In epi-illumination, the objective
and condenser lenses are the same, and the dichroic mirror allows
the illuminating beam to pass through while reflecting the
returning beam to the detector. Light is focused onto a point
in the sample by the condenser lens. The confocal pinhole rejects
all light except that from the focal point (dotted lines show
reflection of light from out-of-focus regions). In this way, only
one point in a 3D sample is in focus, and the incident beam is
scanned relative to the sample to generate a 3D image. Epi-
illumination records fluorescent light emitted by the sample, so
the distribution of fluorescent dye is imaged.
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Weeks, 2012; Leocmach and Tanaka, 2013). Ideas to extract
more information than possible using conventional techniques
have also been implemented, such as comparing simulated
trial coordinates and experimental data (Statt et al., 2016), as
well as maximal precision methods (Bierbaum et al., 2017).
One might imagine that machine-learning techniques could be
applied to the vexing problem of obtaining particle coordi-
nates from confocal microscopy images, as proposed by
Bailey, Grillo, and Isa (2022) for a dilute suspension of
out-of-equilibrium (active) colloids. However, this is a chal-
lenging problem in the case of concentrated colloidal dis-
persions in three dimensions, not least because of the paucity
of “ground truth” (other than synthetic data) against which a
neural network can be trained (Kawafi, 2023).
When comparing experimental particle-resolved data for

hard spheres with numerical simulations, the effects of
polydispersity and particle tracking errors should never be
omitted. High-quality data nevertheless imply an error of
0.05σ in particle position and a few percent missing or
additional ghost particles (Royall, Louis, and Tanaka, 2007;
Ivlev et al., 2012). This problem may be mitigated to some
extent by mimicking such features in computer simulation
data (Royall, Louis, and Tanaka, 2007; Pinchaipat et al.,
2017), and through other techniques, as extensively reviewed
(Hunter and Weeks, 2012; Ivlev et al., 2012; Lu and
Weitz, 2013).
Optical tweezers. The development of lasers had yet

another important consequence for colloid experiments. A
tightly focused laser beam can serve as optical tweezers by
trapping colloidal particles and manipulating them (Ashkin,
1970). These setups have great potential to enable in situ
observation of phenomena that depend upon exquisite control
of constituent particles (Grier, 1997; Grier, 2003). Like
microscopy, 3D implementation of optical tweezers carries
challenges, related mainly to the requirement of refractive
index matching colloids and solvent for imaging while
simultaneously mismatching refractive indexes for tweezing.
The first fully 3D system for colloids was introduced by
Vossen et al. (2004) and single-lens 3D tweezer methods have
since been developed (Curran et al., 2014). By scanning the
optical tweezers along a line, it is possible to determine the
effective interaction potential between colloids (Crocker et al.,
1999); see Sec. IX.B. Note, however, that the maximum
number of particles that can be tweezed is limited to ∼102 and
that tweezing leads to a relatively weak confinement, of the
order of a few kBT at most (Williams et al., 2013).

C. Size does matter: Colloid dynamics in different experiments

Light-scattering and microscopy techniques have typically
been used for rather different-sized colloidal particles. The
former can operate with particles in the 100 s of nanometer
size range, while the latter typically uses particles larger than a
micron. While the behavior of systems over this size range
remains largely unaltered, this distinction has significant
consequences for the ability to access phenomena of interest.
As Eq. (1) shows, the Brownian time scales as the volume

of the colloidal particle τB ∼ σ3. In other words, a factor of
10 drop in particle size means that the Brownian time falls by a
factor of 1000. As a result, a phenomenon observed on the

timescale of a day in a light-scattering setup with 200 nm
diameter colloids might take a year to observe with confocal
microscopy with 2 μm diameter particles. In practice, that
would make it unobservable. This distinction is particularly
important for rare events such as crystal nucleation, for which
the “discrepancy regime” is inaccessible to confocal micros-
copy (see Sec. XIII), and for phenomena with long timescales,
such as glass formation (see Sec. XII).

V. HARD-SPHERE SYSTEMS IN SILICO

From a numerical simulation perspective, hard spheres
might seem to be as simple as it gets. Their interaction is
pairwise and short-range and is also trivial to calculate. These
features should result in efficient simulations, as is indeed
the case for Monte Carlo (MC) (Frenkel and Smit, 2002)
and event-driven molecular dynamics (EDMD) schemes
(Rapaport, 2004). Both methods perfectly sample the structure
and phase behavior of a pure hard-sphere model, and EDMD
simulations faithfully reproduce the dynamics of perfect hard
spheres in a vacuum. In practice, however, experiments using
colloidal spheres inevitably also include a solvent, which has
profound dynamical effects, especially in out-of-equilibrium
systems; see Secs. VII.D and XI. Hydrodynamic effects can be
included at different levels of detail, with Brownian dynamics
(BD) simulations, which reproduce the diffusive short-time
motion of colloidal particles, being the most straightforward
implementation. Simulating hard-sphere colloidal systems
away from thermal equilibrium, however, requires more
complex methods that explicitly model a coarse-grained
version of the background solvent, typically at a significant
computational cost. It is nevertheless important to note that,
for dense fluids close to equilibrium, the difference between
different simulation methods in terms of the dynamics is small
(Berthier and Kob, 2007; Montero de Hijes et al., 2017).
Detailed comparison of EDMD results even with experimental
data found no meaningful differences (Royall, Williams, and
Tanaka, 2018).
This section provides an overview of the simulation

techniques most commonly used for hard-sphere models
and provides references for the methodologies that are
mentioned in the remainder of this review. Note that all
of these methods should in principle correctly recover the
static equilibrium properties of hard-sphere systems, includ-
ing the equation of state and phase behavior, but implement
different microscopic dynamics. Additionally, because not
all of these simulation methods are easily applicable to
perfectly hard spheres, we discuss commonly used models
of nearly hard spheres.

A. Monte Carlo methods

Since MC simulations were first used to extract the radial
distribution functions and pressure of hard-sphere fluids
(Rosenbluth and Rosenbluth, 1954), the scheme has remained
instrumental for evaluating much of the static physical
behavior of the system. A key strength of the approach is
its adaptability. Different thermodynamic ensembles, boun-
dary conditions, or biased sampling can be considered
(Frenkel and Smit, 2002). Although standard implementations
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of these methods are often straightforward, DL_MONTE

(Brukhno et al., 2021), a general purpose code with advanced
sampling methods, and the HOOMD-blue package
(Anderson, Glaser, and Glotzer, 2020), which includes
[CPU- or graphics-processing-unit- (GPU-) based] paralleli-
zation for fast simulation of large systems (Anderson et al.,
2013), should nevertheless be noted.
The simplest local Metropolis algorithm for hard spheres

consists of single-particle attempted displacements, which are
accepted only if no overlap is created. Interestingly, in the
limit of small step sizes, this algorithm approximates BD
(Cichocki and Hinsen, 1990; Sanz and Marenduzzo, 2010). In
many scenarios, hard-sphere MC simulations can be made
more efficient by incorporating collective displacements, such
as cluster moves (Dress and Krauth, 1995; Dijkstra and van
Roij, 1997; Buhot and Krauth, 1998; Liu and Luijten, 2004;
Almarza, 2009; Ashton et al., 2011), or by employing
nonlocal sampling schemes. One particularly effective exam-
ple is to exchange the diameter of particles in dense mixtures
of hard spheres of different sizes (Kranendonk and Frenkel,
1991; Berthier et al., 2016; Ninarello, Berthier, and
Coslovich, 2017). In dense mixtures of not-too-dissimilar
hard spheres, this swap MC approach leads to a major
efficiency gain in configurational sampling. In glass-forming
hard-sphere mixtures, in particular, the swap MC algorithm
can probe the equilibrium fluid structure at packing fractions
far beyond the point at which conventional sampling would be
essentially arrested; see Sec. XII.D (Berthier et al., 2016;
Ninarello, Berthier, and Coslovich, 2017).
Another effective strategy for speeding up configurational

sampling of hard spheres is the rejection-free event-chain MC
moves introduced by Bernard, Krauth, and Wilson (2009). In
event-chain MC simulations, particle displacements involve a
chain of neighboring particles. A particle is displaced until it
collides with a neighbor, which then becomes the next particle
to be displaced. These rejection-free moves can accelerate
configurational sampling by more than an order of magnitude
compared to single-particle MC simulations in dense systems
of hard spheres in two or three dimensions (Bernard, Krauth,
and Wilson, 2009; Klement and Engel, 2019; Li et al., 2022).
A variant of this approach called Newtonian event-chain MC
simulations, which incorporate aspects of Newtonian dynam-
ics into the event-chain moves, were shown to lead to a
speedup of yet another factor of about 5 for dense hard-sphere
systems (Klement and Engel, 2019).

B. Event-driven simulations

Historically, MC simulations were soon followed by
EDMD simulations, which evolve the positions of elastic
hard spheres in vacuum (Alder and Wainwright, 1957). In
other words, each particle interacts purely via instantaneous
elastic collisions and moves at constant velocity between such
collisions (Rapaport, 2004). This yields physically realistic
dynamics for hard spheres in the absence of a solvent. The
efficiency of these simulations strongly hinges on the effi-
ciency of the algorithms used to predict and schedule future
collisions (Lubachevsky, 1991; Marín, Risso, and Cordero,
1993; Donev, Torquato, and Stillinger, 2005a; Paul, 2007) and
can rival event-chain MC simulations (Klement and Engel,

2019; Smallenburg, 2022) for equilibrating dense systems.
As a result, they are vastly more efficient than MC methods
based on single-particle moves. From a technical standpoint,
EDMD simulations are more challenging to implement
and adapt, but publicly available codes have greatly helped
spread the approach (Donev, Torquato, and Stillinger, 2005a;
Bannerman, Sargant, and Lue, 2011; Smallenburg, 2022).
EDMD simulations have also been adapted in order to
reproduce Brownian motion (Scala, Voigtmann, and De
Michele, 2007), to include swap moves (Bommineni et al.,
2019), and to incorporate isotropic compression (Donev,
Torquato, and Stillinger, 2005a).

C. Brownian dynamics simulations

Suspensions of colloidal hard spheres embedded in a
solvent effectively undergo Brownian motion. The stream
of collisions with the much smaller solvent molecules results
in the spheres experiencing random forces. The ensuing
equation of motion is

drðtÞ
dt

¼ DS

kBT
fðtÞ þ

ffiffiffiffiffiffiffiffiffi
2DS

p
RðtÞ; ð14Þ

where rðtÞ is the colloid position at time t,DS is the short-time
self-diffusion coefficient, and RðtÞ is a Gaussian random
process with zero mean and unit variance. The total force fðtÞ
on the particle includes its interactions with neighbors as well
as any external forces present in the system.
Simulating Brownian dynamics entails numerically inte-

grating Eq. (14). In practice, this integration is often achieved
using a fixed small time step. For hard spheres, however, this
approach does not work, because any fixed time step
inevitably leads to overlaps. An event-driven approach is
possible (Scala, Voigtmann, and De Michele, 2007;
Charbonneau, Hu, and Morse, 2024), but typical implemen-
tations are not particularly efficient: frequent stochastic
updates require one to repredict collisions for all particles
after each velocity change; hence, BD simulations are most
commonly performed on model systems that interact via a
continuous approximation of the hard-sphere potential.
(Variants are presented in Sec. V.F.) The implementation
approach for BD simulations closely follows standard molecu-
lar dynamics (MD) schemes. Each time step consists of
calculating the forces on all particles, followed by updating
the particle positions. As a result, MD codes can be readily
adapted to perform BD simulations, and MD packages such as
LAMMPS (Thompson et al., 2022), HOOMD-blue (Anderson,
Glaser, and Glotzer, 2020), and ESPRESSO (Weik et al., 2019)
provide efficient implementations of BD, including options
for parallelization or GPU computation.

D. Simulations including hydrodynamics

All simulation methods described thus far neglect hydro-
dynamic coupling, which is necessarily present for colloids
moving in a solvent. While hydrodynamic interactions do not
modify static equilibrium properties, they can play a signifi-
cant role in the dynamics of colloidal hard spheres (see
Sec. VII.D), especially when out-of-equilibrium phenomena
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are considered (an issue to which we return in Sec. XI). A
number of different numerical methods have therefore been
developed to account for hydrodynamic effects in hard-sphere
simulations.
Stokesian dynamics (Brady and Bossis, 1988) assumes an

incompressible fluid and a low Reynolds number, both of
which are typically valid for colloidal hard spheres.
Hydrodynamic interactions between colloids are then taken
into account via a many-particle mobility matrix that models
the solvent flow as a superposition of Stokeslets centered on
each colloid. Owing to the slow algebraic decay of this effect,
the matrix effectively couples the motion of all particles in the
system, making the method computationally expensive, par-
ticularly when Brownian forces are included. Significantly
better performance can be obtained using the so-called
accelerated Stokesian dynamics (ASD) (Sierou and Brady,
2001; Banchio and Brady, 2003). Publicly available imple-
mentations can be found in the simulation package ESPRESSO

(Weik et al., 2019), as a plug-in (Fiore and Swan, 2019) for
HOOMD-blue (Anderson, Glaser, and Glotzer, 2020), and in
specialized codes (Yan et al., 2020).
Lattice Boltzmann (LB) methods (Ladd and Verberg, 2001;

Cates et al., 2004; Dünweg and Ladd, 2009) divide the solvent
into lattice sites, each carrying a set of local solvent densities
associated with a discrete set of permitted solvent velocities.
These methods reproduce the dynamics of a Newtonian liquid
with a given shear viscosity and recover the relevant hydro-
dynamic variables as moments of the one-particle velocity
distribution functions (Succi, 2001). The effect of thermal
fluctuations can also be included directly in the discrete
Boltzmann equation (Adhikari et al., 2005; Gross et al.,
2011). The fluid dynamics then emerges from the evolution of
the one-particle distribution function. During each simulation
time step, these densities are updated by considering both the
streaming of the solvent to neighboring lattice sites and a
collision step, which relaxes the distribution of velocities at
each lattice site toward the equilibrium distribution. The
lattice-based solvent is then coupled to the colloidal particles
by imposing boundary conditions at their surface, thus
allowing momentum exchange between the solvent and the
particles. While explicit treatment of the solvent inherently
increases the computational cost, LB methods scale well
with particle size and can be readily parallelized for large
systems. Simulation codes are also publicly available
(Desplat, Pagonabarraga, and Bladon, 2001; Weik et al.,
2019; Bonaccorso et al., 2020).
Multiparticle collision dynamics (MPCD) simulations

(Malevanets and Kapral, 1999; Kapral, 2008; Gompper et al.,
2009; Howard, Nikoubashman, and Palmer, 2019) are similar
to LB methods in that they explicitly incorporate the solvent as
a simplified fluid evolved via a streaming and a collision
update. In MPCD approaches, however, the solvent is mod-
eled using discrete effective particles that move in continuous
space. At each time step, all particles first move forward
according to their instantaneous velocities (streaming) and
then exchange momentum with other nearby solvent particles
during a collision step. In the most commonly used collision
algorithm, the system is divided into cells, and the velocities
of all particles within a cell are mixed via a collective rotation
that conserves their total momentum. Owing to this rotation,

MPCDmethods using this update are also known as stochastic
rotational dynamics (Malevanets and Kapral, 1999; Ihle and
Kroll, 2001). Coupling to the colloids can be done either by
including the colloidal particles as collision partners in the
collision step or via direct interactions between solvent
particles and colloids during the streaming step. Note that
MPCD methods model compressible solvents. In terms of
implementation, MPCD methods are closely connected to
standard MD, and public (parallelized) implementations are
available in, for example, LAMMPS (Thompson et al., 2022)
and HOOMD-blue (Howard, Panagiotopoulos, and
Nikoubashman, 2018; Anderson, Glaser, and Glotzer, 2020).
Dissipative particle dynamics (DPD) (Hoogerbrugge and

Koelman, 1992; Espanol and Warren, 1995, 2017; Groot and
Warren, 1997) is similar to MPCD in spirit but introduces soft
repulsive interactions that include both a dissipative and a
stochastic term to replace the collision step. These interactions
are idealized in such a way that the dynamics of the solvent
particles can be resolved with time steps much larger than
those used for the steeper colloid interactions, thus signifi-
cantly lowering the computational cost relative to full-solvent
simulations. Coupling to the colloids is achieved by associat-
ing each colloid particle with one or more solvent particles
that overlap with it, and interact with the remaining solvent.
As with the MPCD approach, DPD can be seen as a variation
on classical MD, and efficient implementations can be
found in several simulation packages, including LAMMPS

(Thompson et al., 2022), ESPRESSO (Weik et al., 2019),
and HOOMD-blue (Anderson, Glaser, and Glotzer, 2020).
Fluid particle dynamics (FPD) (Tanaka and Araki, 2000) is

based on a direct numerical simulation of the Navier-Stokes
equations that resolves the problem of coupling the fluid and
the colloidal particles by approximating each colloidal particle
as highly viscous particle with a smooth viscosity profile at its
interface with the fluid. The largest advantage of the method is
that it avoids the difficulties associated with moving solid-
fluid boundary conditions and that it allows the fluid to couple
to additional fields. The fluid itself is also incompressible.
Thermal fluctuations can additionally be considered by
integrating the fluctuating hydrodynamics equations
(Furukawa, Tateno, and Tanaka, 2018). A method akin to
FPD is the smooth profile method (SPM) (Nakayama and
Yamamoto, 2005), which avoids introducing a large viscosity
in the particle domain by separating the calculation of the
hydrodynamic forces from that of the boundary conditions.
The approach has been applied to a large variety of passive
and active soft-matter systems (Yamamoto, Molina, and
Nakayama, 2021).

E. Advanced sampling and free-energy methods

For the purpose of studying more detailed aspects of
hard-sphere behavior, such as phase boundaries, defects,
interfacial properties, and nucleation, a wide variety of
advanced simulation techniques have been combined with
the previously outlined general approaches. Arguably the
most immediate way of obtaining phase boundaries is to
simulate the direct coexistence between the two phases of
interest, e.g., a hard-sphere fluid and a hard-sphere crystal. In
practice, however, this approach suffers from large finite-size
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effects, in addition to being sensitive to statistical error as well
as to details in the setup of the initial configuration (Espinosa
et al., 2013). As a result, studies of equilibrium phase behavior
in hard spheres often make use of free-energy calculations.
Although free energies typically cannot be directly measured
in simulations, thermodynamic integration can be used to
determine free-energy differences with respect to some known
reference state (Frenkel and Smit, 2002). The series of
simulations that define the integration path between the
system of interest and a reference system can be chosen in
a variety of ways. Common choices are the ideal gas for the
fluid phase (Frenkel and Smit, 2002) and an Einstein crystal
for an ordered phase (Frenkel and Ladd, 1984; Vega and
Noya, 2007), but a variety of other reference states have been
employed for hard-sphere systems, including cell models
(Hoover and Ree, 1968; Nayhouse, Amlani, and Orkoulas,
2011) and pinning schemes (Schilling and Schmid, 2009;
Moir, Lue, and Bannerman, 2021). Note that the hard-sphere
system itself has also often been used as a reference system
for more complex ones (Patey and Valleau, 1973; Bolhuis and
Frenkel, 1997; Dijkstra, Brader, and Evans, 1999; Hynninen
and Dijkstra, 2003; Smallenburg and Sciortino, 2013). After
obtaining the free energy of all relevant phases for a range of
state points, equilibrium phase boundaries can be determined
by identifying which phase (or coexistence of phases) has the
lowest free energy at any given state point. As an alternative
approach, accurate phase coexistence conditions can be
extracted by mapping out the free-energy landscape connect-
ing the fluid and crystal phases (Martin-Mayor, Seoane, and
Yllanes, 2011; Fernández et al., 2012). Note that all of these
methods require initial knowledge of the potential phases of
interest, which may require an extensive search for possible
crystal structures (Kummerfeld, Hudson, and Harrowell,
2008; Filion and Dijkstra, 2009; Filion et al., 2009;
Hudson and Harrowell, 2011; O’Toole and Hudson, 2011;
Hopkins, Stillinger, and Torquato, 2012), especially in multi-
component mixtures.
Free-energy integration methods also provide routes to

calculate the effect of interfaces and defects on the free energy
of hard-sphere systems. In particular, the equilibrium con-
centration of point defects in hard-sphere crystals has been
determined by setting up a thermodynamic integration path
between systems with and without a defect (Pronk and
Frenkel, 2001; van der Meer, Dijkstra, and Filion, 2017).
Similar approaches can also be used to determine the fluid-
solid interfacial free energy of hard spheres (Sec. VIII) by
constructing an integration path between a direct fluid-solid
coexistence and a state of two separate bulk phases
(Davidchack and Laird, 2000; Davidchack, 2010; Schmitz
and Virnau, 2015) or between a pure fluid and a fluid in
coexistence with a slab of crystal (Espinosa, Vega, and Sanz,
2014; Sanchez-Burgos et al., 2021). Alternatively, interfacial
free energies can be determined from interfacial fluctuations
(Davidchack, Morris, and Laird, 2006) or via thermodynamic
integration (Bültmann and Schilling, 2020). The free-energy
difference between face-centered-cubic (fcc) and hexagonal-
close-packed (hcp) crystals and the hcp-fcc interfacial free
energy can be computed using the lattice-switch method
(Bruce, Wilding, and Ackland, 1997; Pronk and Frenkel,
1999; Wilding and Bruce, 2000).

When studying rare events such as nucleation, it is common
to use sampling schemes that purposefully bias the simulation
toward sampling rare configurations. In particular, umbrella
sampling (Torrie and Valleau, 1977; Auer and Frenkel, 2001a;
Filion et al., 2010; Kästner, 2011) has been used extensively
to determine the barrier to nucleating hard-sphere crystals by
calculating the free-energy cost of creating crystalline nuclei
of different sizes. This approach, however, assumes that the
cluster is in local equilibrium at each cluster size, and
therefore ignores the possibility of any nonequilibrium
dynamics. Hence, to explore nucleation trajectories that take
into account the dynamics of the system, more specialized
methods such as forward-flux sampling (Allen, Warren, and
ten Wolde, 2005; Allen, Frenkel, and ten Wolde, 2006a,
2006b; Allen, Valeriani, and ten Wolde, 2009; Hussain and
Haji-Akbari, 2020), transition path sampling (Bolhuis et al.,
2002), and transition interface sampling (Moroni, van Erp,
and Bolhuis, 2004) are required. Biasing methods have also
found uses in other areas of hard-sphere simulations, such as
with potentials that influence crystallization to study hard-
sphere glasses (Valeriani et al., 2011; Taffs and Royall, 2016).

F. Simulation models

The general strategy to approximate the hard-sphere inter-
action is to consider a harshly repulsive continuous interaction
potential. Perhaps the simplest of such forms is the inverse
power-law potential of exponent n, as given in Eq. (3). In the
limit n → ∞, this potential converges to the true hard-sphere
potential with diameter σ. As with hard spheres, the thermo-
dynamic behavior of the inverse power-law model with a
given exponent n is effectively controlled by a single
parameter since a change in the interaction strength ϵ and
the particle size σ both have the same trivial effect of scaling
the total energy of the system. Experimental measurements
of the interactions between sterically stabilized colloids have
further been shown to agree well with power-law potentials
(Bryant et al., 2002); see Sec. III.A. However, the inverse
power law does not naturally capture the short-range nature of
the soft interaction that results from steric stabilization.
Another commonly used continuous approximation is the

Weeks-Chandler-Andersen (WCA) potential. Originally intro-
duced to consider the separate roles of attraction and repulsion
on the structure of simple liquids (Weeks, Chandler, and
Andersen, 1971), the WCA potential corresponds to a purely
repulsive variant of the Lennard-Jones potential

uðrÞ ¼
(
4ϵ
�ðσrÞ12 − ðσrÞ6 þ 1

4

�
; r ≤ 21=6σ;

0; r > 21=6σ;
ð15Þ

with energy parameter ϵ. This interaction form smoothly
approaches zero at the cutoff distance rc ¼ 21=6σ. At suffi-
ciently low temperatures (a common choice is ϵ=kBT ¼ 40),
the WCA potential has been shown to map well to hard
spheres in terms of the equation of state and nucleation rates
(Filion, Ni et al., 2011; Richard and Speck, 2018a; Dasgupta,
Coli, and Dijkstra, 2020). Variations of Eq. (15), with different
(typically higher) exponents have been designed to match the
hard-sphere behavior even more closely. A notable example of
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this is the so-called pseudo-hard-sphere potential (Jover et al.,
2012), which results in a freezing transition that is close to that
of true hard spheres (Espinosa et al., 2013). This class of
potentials has a long history as a substitute for hard spheres
and has the advantage of being purely short-range and
continuous, thus allowing for an easy BD implementation.
However, the thermodynamic behavior of this class of models
depends on both the chosen temperature and density.
Note that regardless of the exact functional form chosen, a

trade-off must generally be made between simulation effi-
ciency and the accuracy of the approximation of the true hard-
sphere potential. Generally, although a sharper interaction
potential provides a better approximation of hard spheres, it
also results in a more rapid variation of the interaction forces
as two particles approach. Since MD and BD simulations
numerically integrate the force experienced by each particle
over time, these faster variations then necessitate a smaller
integration time step to maintain accurate results, thus slowing
simulations down.

VI. HARD-SPHERE SYSTEMS IN THEORY

As noted in Secs. I and II, hard spheres came into existence
as a minimal model system for exploring condensed matter
and have been extensively reviewed (Tarazona, 1984; Roth,
2010; Hansen and McDonald, 2013; Santos, Yuste, and Lopez
de Haro, 2020). Here we cover only a couple of key theories
that are mentioned in later sections, and that we believe had a
significant impact on the success of the hard-sphere system.

A. Integral equation theory

Integral equation theory lies at the heart of descriptions of
the liquid state (Barker and Henderson, 1976; Hansen and
McDonald, 2013). In the context of hard-sphere colloids as
model atoms and molecules, it provides an elegant and simple
theoretical framework for obtaining predictions that may be
directly probed in experiments. For our purposes, integral
equation theory boils down to finding approximate solutions
(or closures) for the Ornstein-Zernike (OZ) relation

hðrÞ ¼ cðrÞ þ ρ

Z
hðjr − r0jÞcðr0Þdr0; ð16Þ

which relates the total correlation function hðrÞ ¼ gðrÞ − 1

[with gðrÞ the radial distribution function] to the direct
correlation function cðrÞ.
In the framework of classical density-functional theory (see

Sec. VI.C), the direct correlation function is related to the
second functional derivative of the excess part of the free-
energy functional with respect to the one-particle density of
the system (Hansen and McDonald, 2013). A homogeneous
and isotropic system at density ρ and temperature T interact-
ing with a pairwise additive potential uðrÞ is therefore
uniquely defined by its hðrÞ and thus by its gðrÞ, which is
measurable in experiments; see Secs. III and IV. Measuring
gðrÞ [or its Fourier transform SðkÞ] is therefore an important
means of characterizing the structure and thermodynamics of
an experimental system.

The OZ relation can also be solved using a second (closure)
relation. A relatively simple relation, first proposed by Percus
and Yevick (PY) (Percus and Yevick, 1958), is given by

cðrÞ ¼ ( exp½−βuðrÞ� − 1)½hðrÞ − cðrÞ þ 1�: ð17Þ

This relationship is fairly accurate for strongly repulsive and
short-range interactions, such as for hard spheres. In 1963,
Wertheim and Thiele independently showed that the PY
closure to the OZ equation for a fluid of hard spheres with
diameter σ and volume fraction ϕ ¼ πσ3ρ=6 yields for the
direct correlation function (Thiele, 1963; Wertheim, 1963)

cðrÞ ¼
(

−ð1þ2ϕÞ2þ6ϕ½1þð1=2Þϕ�2ðr=σÞ−ð1=2Þϕ½1þ2ϕ�2ðr=σÞ3
ð1−ϕÞ4 ; r ≤ σ;

0; r > σ:

The analytical Fourier transform of cðrÞ can then be used to
solve for the structure factor SðkÞ. The pair correlation
function gðrÞ can subsequently be numerically obtained from
SðkÞ. The theoretical predictions agree well with computer
simulation results for volume fractions 0 ≤ ϕ ≲ 0.5, i.e., over
the entire stable fluid regime. Examples of experimental
comparisons against the PYapproximation to the OZ equation
are shown in Fig. 13 in Sec. VII.
Given gðrÞ, three independent routes can then be followed

to extract thermodynamic quantities,

P ¼ ρkBT −
ρ2

6

Z
dr ru0ðrÞgðrÞ; ð18Þ

E
V
¼ 3

2
ρkBT þ ρ2

2

Z
dr uðrÞgðrÞ; ð19Þ

kBT

�
∂ρ

∂P

�
T
¼ 1þ ρ

Z
dr(gðrÞ − 1); ð20Þ

which are the virial, caloric, and compressibility routes,
respectively. An important exact sum rule for hard spheres
can be obtained straightforwardly from Eq. (18),

βP
ρ

¼ 1þ 2πρσ3gðσþÞ
3

; ð21Þ

which relates the pressure of the hard-sphere fluid to the
contact value of gðrÞ. Using gðrÞ from the PY approximation
to the OZ equation in Eq. (20) yields the compressibility
pressure Pc,

βPc

ρ
¼ 1þ ϕþ ϕ2

ð1 − ϕÞ3 ; ð22Þ

while the virial pressure Pv from Eq. (18) gives

βPv

ρ
¼ 1þ 2ϕþ 3ϕ2

ð1 − ϕÞ2 : ð23Þ

The compressibility equation of state overestimates the
pressure obtained from simulations, whereas the virial equa-
tion of state underestimates the simulation results (Hansen and

C. Patrick Royall et al.: Colloidal hard spheres: Triumphs, challenges …

Rev. Mod. Phys., Vol. 96, No. 4, October–December 2024 045003-18



McDonald, 2013). It turns out that the Carnahan and Starling
(CS) linear combination PCS ¼ ð2Pc þ PvÞ=3 (Carnahan and
Starling, 1969),

βPCS

ρ
¼ 1þ ϕþ ϕ2 − ϕ3

ð1 − ϕÞ3 ; ð24Þ

is essentially indistinguishable from simulations up to ϕ ≃ 0.5
(Hansen and McDonald, 2013). Note, however, that Carnahan
and Starling used not the simulation results but rather the
pressure from the virial expansion for the equation of state (2)
to motivate their expression (Carnahan and Starling, 1969).
When one uses the analytical expressions for the virial
coefficients B2, B3, and B4 and the numerical expressions
for B5 and higher, the equation of state (2) for hard spheres
becomes

βP
ρ

¼ 1þ 4ϕþ 10ϕ2 þ 18.365ϕ3 þ 28.225ϕ4 þ 39.74ϕ5

þ 53.5ϕ6 þ 70.8ϕ7 þ � � � : ð25Þ

Approximating the virial coefficients as Biþ1 ¼ ðπσ3=6Þiði2 þ
3iÞ then gives Eq. (24) (Carnahan and Starling, 1969).
While integral equation theory is successful in predicting

the structure and thermodynamics of equilibrium hard-sphere
fluids, the closures are somewhat uncontrolled and not
systematically improvable. A clear manifestation of this effect
is that predictions for binary mixtures of hard spheres turn out
to be extremely sensitive to the details of the approximation
scheme. A more robust approach in this sense is density-
functional theory, and especially fundamental measure theory,
as described by Tarazona, Cuesta, and Martínez-Ratón (2008)
and Roth (2010) and in Sec. VI.C.

B. Cell theory

The crystal branch of the equation of state of hard spheres is
less amenable to integral equation theory due to the broken
translational and rotational symmetry in the system. One early
mean-field theory that can be used as an approximate
analytical prediction was introduced by Lennard-Jones and
Devonshire (1937) to estimate fluid free energies and is now
commonly known as cell theory or free-volume theory when it
is applied to solids and, especially, crystals (Wood, 1952;
Salsburg and Wood, 1962). In this approach, it is assumed that
the Helmholtz free energy FðN;V; TÞ of the crystal phase can
be subdivided into contributions from each particle, and that
each can be computed by assuming that all other particles are
fixed exactly at their lattice site. In that approximation, the free
energy f1 of a single particle in an fcc lattice is given by

βf1ðρÞ ¼ − log
VfreeðρÞ
Λ3

; ð26Þ

where Vfree is the free volume available to the particle confined
in the cage of its neighbors and Λ is the thermal de Broglie
wavelength. This free volume is then typically approximated
as a sphere with diameter a − σ, with a the nearest-neighbor
distance, which is given by a ¼ ðρmax=ρÞ1=3. Here the

close-packed density of crystal lattices of monodisperse hard
spheres is ρmaxσ

3 ¼ ffiffiffi
2

p
. Hence, cell theory gives the approxi-

mate total free energy

βF
N

≃ βf1 ≃ − log(
4πσ3

3Λ3

��
ρmax

ρ

�
1=3

− 1

�
3

): ð27Þ

Taking the derivative with respect to the volume gives the
pressure

βP
ρ

¼ ½1 − ðρ=ρmaxÞ1=3�−1: ð28Þ

Although Eq. (28) significantly underestimates the pressure
(on the order of ∼1kBT=σ3), cell theory provides a quick and
physically intuitive estimate for the crystal free energy and
equation of state. As a result, it is commonly used for
pedagogical purposes (Barrat and Hansen, 2003; Kamien,
2007), as well as for back-of-the-envelope estimates of phase
transitions. Cell theory has been extended in a variety of
ways (Rudd et al., 1968; Koch, Radin, and Sadun, 2005;
Charbonneau, Morse et al., 2021), including for binary
mixtures of hard spheres (Cottin and Monson, 1993, 1995;
van der Meer et al., 2020) and glassy systems. Note that when
cell theory is applied to disordered systems, such as glasses, it
cannot be expected to take into account the configurational
entropy of the system; see Sec. XII. Furthermore, in the fluid
regime particles are no longer trapped in cells in a meaningful
way, and hence the description should be expected to break
down there as well.

C. Classical density-functional theory

Classical density-functional theory (DFT) provides an exact
theoretical framework for describing the thermodynamic and
structural properties of interacting many-body systems, start-
ing with a microscopic description of the interparticle inter-
actions. The approach is based on the observation that the
grand potential of a specified inhomogeneous fluid is a
functional Ω½ρðrÞ� of the variational one-body density profile
ρðrÞ, with the properties that (i) the equilibrium density profile
ρ0ðrÞ minimizes the functional Ω½ρðrÞ� and (ii) this minimum
equals the equilibrium grand potential Ω0½ρ0ðrÞ�. From Ω0, all
thermodynamic properties then follow. For instance, one can
obtain the homogeneous system pressure

P ¼ −
Ω0

V
: ð29Þ

Functional derivatives of the Helmholtz free-energy functional
additionally provide correlation functions. In particular, the
OZ two-body direct correlation function is related to the
second functional derivative of the functional from which
the two-body structure of the system follows. Because the
exact Helmholtz free-energy functional for a given interaction
potential is unknown, DFT depends on approximate free-
energy density functionals. The freezing transition of hard
spheres has been an important focus for the development of
various density-functional approximations. The pioneering
work of Ramakrishnan and Yussouff (1977, 1979), and later
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several others (Haymet and Oxtoby, 1981; Baus, 1989; Lutsko
and Baus, 1990), described the crystal as a perturbation
of a uniform fluid phase, using a density expansion of the
functional around a homogeneous density. Nonperturbative
approaches involve the weighted density approximation by
Tarazona (1984), which was based on a Gaussian paramet-
rization for the density profile, or modified weighted density
approximations (Denton and Ashcroft, 1989, 1990).
The most successful and widely used DFT for hard spheres

to date is the fundamental measure theory (FMT), which was
introduced by Rosenfeld (1989). In FMT, the Helmholtz free-
energy functional is based on weighted densities that are
convolutions of the density profiles with weight functions
depending on the geometrical properties of the spheres.
Various subsequent extensions and modifications have been
proposed to improve the description of various inhomo-
geneous systems of hard spheres. Further details on this
approach can be found in the comprehensive and excellent
reviews by Tarazona, Cuesta, and Martínez-Ratón (2008) and
Roth (2010). Finally, a recently presented neural functional
theory leveraged an exact functional mapping from the density
profile to the one-body direct correlation function through a
deep neural network (Sammüller et al., 2023). The network
was trained on simulation data of hard spheres subjected to
diverse external environments and exceeds in accuracy all
current density-functional approaches.

VII. BULK EQUILIBRIUM HARD SPHERES

Having in hand the wide array of experimental, numerical,
and theoretical methods described in the previous sections,
we can now consider the equilibrium behavior of hard-sphere
systems. This behavior not only serves as a reference point in
nearly all subsequent sections of this review but also is an
important scientific matter in its own right.
The first hard-sphere systems studied via computer simu-

lation were monodisperse (Alder and Wainwright, 1957; Wood
and Jacobson, 1957), but only quasimonodisperse in colloidal
experiments. However, because (as we see later in this section)
a mean size polydispersity s≲ 5% barely changes the equi-
librium phase diagram (Wilding and Sollich, 2010), both
experimental and numerical work has focused on essentially
equivalent systems. In this context, a natural starting topic is
their bulk phase behavior. Other topics considered include the
equation of state as well as the fluid structure and dynamics for
both 3D and (quasi-)2D hard spheres.

A. Equilibrium phase behavior of monodisperse hard spheres

Since hard spheres do not interact beyond contact, their
Helmholtz free energy comprises only an entropic contribu-
tion. Temperature plays but a trivial role, and hence the
hard-sphere equilibrium phase diagram depends solely on the
volume fraction ϕ (density) of the system. At low ϕ the system
is naturally in a fluid phase, whereas at high ϕ the system is in
a crystal phase. (In three dimensions, the two are separated by
a first-order phase transition.) In other words, at sufficiently
high ϕ the crystal entropy is higher than that of the fluid; the
regular arrangement of spheres on the crystal lattice provides

each particle with more local free volume to move around than
it would have in a fluid at the same density.
As mentioned in Sec. II, the first numerical validations of

this theoretical prediction were obtained in the 1950s when the
melting of an (fcc crystal was studied (Alder and Wainwright,
1957; Wood and Jacobson, 1957). Since then, considerable
efforts have been devoted to pinning down the details of this
transition, including the characterization of finite-size effects
(Polson et al., 2000). Figure 9 provides an overview of
numerical results for the coexistence packing fractions,
pressures, and chemical potentials. Apart from a few outliers
that are often associated with small system sizes, results for
these quantities are in good agreement and have established
that the freezing and melting volume fractions of monodis-
perse hard spheres are ϕf ≃ 0.492 and ϕm ≃ 0.543, respec-
tively. Similar predictions have been obtained from various
theoretical treatments, notably fundamental measure theory
(Roth, 2010). Experimental measurements on hard-sphere
colloids, such as those shown in Fig. 2 (Pusey and van Megen,
1986), agree reasonably well with this result provided that a
suitable σeff is chosen to account for any residual softness;
see Sec. III.C.
While these studies do not typically take into account the

presence of vacancies in the equilibrium crystal phase, its
effect on the coexistence pressure is expected to be smaller
than the typical errors considered here (βΔPcoexσ

3 ≃ −0.0026)
(Pronk and Frenkel, 2001). Simulation results have revealed
that the equilibrium fcc crystal is indeed nearly flawless.
The equilibrium fraction of defective sites at melting has
been computed to be approximately 10−4 for vacancies and
10−8 for interstitials (Bennett and Alder, 1971; Pronk and
Frenkel, 2001, 2004). However, comparing these predic-
tions to experiments is inherently difficult beyond the usual
concerns about coexistence determination, given (i) the low
concentrations involved, (ii) their sensitivity to the crystal
packing fraction, and (iii) the possibility that defects become
kinetically trapped during crystal formation (Sec. III.C)
(Poon, Weeks, and Royall, 2012; Royall, Poon, and
Weeks, 2013).
Although various properties of the bulk crystal phase,

including its elastic constants (Runge and Chester, 1987;
Pronk and Frenkel, 2003; Sushko and van der Schoot, 2005)
and defect diffusivity (van der Meer, Dijkstra, and Filion,
2017), have been studied in detail in simulation, they remain
to be systematically investigated in experiments.
Phase behavior in experiment. As noted in Sec. II, interest

in hard spheres received a tremendous boost from the experi-
ments of Pusey and van Megen (1986) (see Fig. 2), but earlier
work by Hachisu and Kobayashi (1974) and Kose and
Hachisu (1974) had already demonstrated that hard-sphere-
like colloids crystallize. Two systems were used. First, a
strongly screened charged stabilized aqueous system (Hachisu
and Kobayashi, 1974) and, second, a nonaqueous system (for
which electrostatic effects were expected to be minimal) that
used what would now be called microgel colloids of cross-
linked PMMA dispersed in benzene10 (Kose and Hachisu,
1974). Given the difficulty of determining effective volume

10Note that benzene is now typically avoided due to its toxicity.
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fractions for such particles (see Sec. III.C) (Poon, Weeks, and
Royall, 2012; Royall, Poon, and Weeks, 2013), however, a
quantitative comparison was challenging for this system
(Kose and Hachisu, 1974). Later work found that the softness
of microgel particles [which can be tuned via their degree of
cross-linking (Lyon and Fernandez-Nieves, 2012)] can indeed
have a profound effect on phase coexistence (Paulin and
Ackerson, 1996), as may be inferred from the discussion of
Fig. 6. Experimental efforts to determine the osmotic pressure
at freezing were pioneered by Takano and Hachisu (1977) and
Hachisu and Takano (1982), who, after drying and measuring
the total mass of particles from the fluid phase in a sedimented
system, found reasonable agreement with simulation results.
The subsequent development of sterically stabilized

PMMA (see Secs. II.B and III.B) brought better controlled
hard-sphere-like experimental systems to the field. A key
hurdle to achieving quantitative accuracy, however, has been
to properly determine their effective ϕ (Poon, Weeks, and
Royall, 2012; Royall, Poon, and Weeks, 2013); see Sec. III.C.
One might think that, even if colloidal particles have some
degree of softness (as is always the case), phase boundaries
should nevertheless lead to volume fractions that can be
mapped onto the predicted values. In fact, as discussed in
Sec. III.C and shown in Fig. 6, it is not that simple, as softness
affects the relative coexistence gap between fluid and crystal.
As noted by Pusey and van Megen (1986), sedimentation
further complicates matters.

One clever method to address the effects of sedimentation
was proposed by Paulin and Ackerson (1990). As shown in
Fig. 10, the fluid-crystal phase boundary (in vials such as
those shown in Fig. 2) tends to move upward as the fluid
phase slowly crystallizes. While the system starts as a
metastable fluid, with an effective volume fraction that falls
within the coexistence regime (see Fig. 3), the final sed-
imentation-diffusion equilibrium state is a crystal with only a
thin fluid phase above. (The thickness of the fluid phase is of
the order of the gravitational length defined in Sec. XI, which
in this case is much less than the container size.) In Fig. 10,
the top of the sediment is characterized by the supernatant A
colloidal fluid B interface. Sedimentation proceeds over
the course of the experiment (some two months) but after
approximately 27 days the colloidal fluid B is no longer
visible to the naked eye. The fluid “disappearance” reflects
the approach to sedimentation-diffusion equilibrium. The
colloidal fluid-crystal C phase separation, however, took
only about one day. [An additional, distinct layer in the form
of a polycrystalline sediment D also formed, akin to that
observed in Fig. 2(c), but plays no role in the subsequent
analysis.]
A phase diagram determination from these observations

requires a key assumption: that the boundary in the sedi-
menting system extrapolated back to t ¼ 0 reflects the phase-
separated system prior to any sedimentation. In other words,
t ¼ 0 should correspond to a phase-separated system in the

FIG. 9. Table summarizing prior reports of hard-sphere fluid-fcc phase coexistence using computer simulations (black) and DFT
[green (gray)]. For each result, we list the main method used to determine the free energy or stability of the solid phase (see also Sec. V),
the freezing and melting packing fractions, the coexistence pressure and chemical potential, and the system size considered. A system
size of ∞ indicates that results were extrapolated to the thermodynamic limit N → ∞, but the system sizes considered and the
extrapolation scheme vary between studies. The final consensus averages results from five studies with high reported accuracy (marked
with a dagger), namely, Frenkel and Smit (2002), Fortini and Dijkstra (2006), Fernández et al. (2012), Pieprzyk et al. (2019), and Moir,
Lue, and Bannerman (2021).
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absence of gravity. Using different samples of varying initial
ϕ, application of the lever rule then gives the equilibrium
fluid-crystal coexistence region. This method therefore
requires a separation of timescales between that of sedimen-
tation (one month) and that of fluid-crystal phase separation
(one day). The resulting phase behavior was later found to be
in reasonable agreement with the experimental equation of
state (Phan et al., 1996; Rutgers et al., 1996). (See Sec. VII.C
for a discussion of reasonable errors in the context of colloidal
experiments.)
Polymorphism. At sufficiently high ϕ, one expects the

stable crystal to be one of the close-packed structures (known
as Barlow packings) considered in the Kepler conjecture
(Hales et al., 2017), which consist of stacked layers of spheres
arranged at the vertices of a hexagonal (or triangular) lattice.
The nonuniqueness of the stacking follows from the fact that
each additional layer has two different positions in which it
can be placed with respect to the previous one. Computer
simulations combined with free-energy calculations have
demonstrated that the fcc structure (with an ABCABC stack-
ing order) is slightly entropically favored over the hcp
structure (with an ABAB stacking order) (Frenkel and
Ladd, 1984; Bolhuis et al., 1997; Mau and Huse, 1999;
Polson et al., 2000; Noya and Almarza, 2015). These
calculations indicate a marginally larger freedom of motion
for hard spheres in the fcc crystal in comparison to the hcp
crystal. An expansion of this entropy in terms of the free
volume available to clusters of mobile spheres within a rigid
crystal indicates that the collective motion of at least five
spheres needs to be considered before fcc is favored (Koch,
Radin, and Sadun, 2005). Given that the free-energy differ-
ence is only about 10−3kBT per particle, however, sponta-
neously formed hard-sphere crystals often contain defects in

the fcc stacking sequence, resulting in a random-hexagonal-
close-packing (rhcp) structure. This polytype11 is unlikely to
anneal out to the equilibrium fcc crystal phase over any
realistic timescale in simulation (Pronk and Frenkel, 1999).
However, annealing of rhcp into fcc crystal structures has been
observed in x-ray crystallographic experiments of suspensions
of small particles (600 nm) (Kegel and Dhont, 2000;
Martelozzo et al., 2002). Small external biases can also play
a significant role. For instance, crystallization resulting from
sedimentation under gravity more strongly favors the for-
mation of fcc (Hoogenboom et al., 2002; Marechal, Hermes,
and Dijkstra, 2011), whereas experiments in microgravity
result in rhcp crystals (Zhu et al., 1997; Cheng, Zhu et al.,
2001). We return to this issue in Sec. XIII.H when we consider
the role of polymorph selection in the formation of hard-
sphere crystals.

B. Impact of polydispersity on the equilibrium phase diagram

As mentioned in Sec. III, preparing a sample of colloidal
spheres necessarily leads to a size distribution pðσÞ
of diameters instead of the idealized identical-sphere
model. The standard deviation of pðσÞ relative to the mean
diameter defines the polydispersity s, which typically
quantifies this effect.
The phase behavior of systems with small polydispersity

(s ≤ 5%) is essentially indistinguishable (a ≲2% difference
in coexistence ϕ) from that of monodisperse hard spheres.
Going to larger polydispersities, however, strongly suppresses
crystallization. A “terminal polydispersity” (st ≈ 5%–12%,
depending on the higher moments of the distribution) beyond
which the crystal cannot be stabilized was therefore initially
suggested (Barrat and Hansen, 1986; Pusey, 1987; Ackerson
and Schätzel, 1995; Bolhuis and Kofke, 1996; Phan et al.,
1998; Bartlett and Warren, 1999).
Follow-up simulations, however, revealed that polydisperse

suspensions circumvent this barrier through fractionation;
see Fig. 11. The solid phase then splits into coexisting solid
phases with smaller polydispersity (each limited to s� ≈ 6%)
(Kofke and Bolhuis, 1999). In other words, instead of a single
crystal with widely different particle sizes (implying large
local strains), the system favors the formation of separate
crystalline domains of small and large particles. This proposal
has since been put on solid theoretical ground through
approximate free-energy calculations (Fasolo and Sollich,
2003, 2004) and has been experimentally validated (Martin,
Bryant, and van Megen, 2003).
Further support for fractionation can be obtained from

computer simulations, albeit with particular methodological
care. In standard fixed-volume simulations, accessing equili-
brated fractionated solids is obfuscated by the extremely slow
nucleation dynamics (see Sec. XIII) and the slow dynamics of
domain boundaries. Sollich and Wilding (2010) sidestepped
these difficulties by employing constant pressure Monte Carlo
simulations that prescribe a size-dependent chemical potential
ΔμðσÞ [instead of fixing the parent distribution pðσÞ].

FIG. 10. Determining the equilibrium coexistence volume
fraction from the time evolution of a sedimenting suspension.
The height of a system in the fluid-crystal coexistence region
undergoing sedimentation is recorded as a function of time.
After a short waiting period of two days, sharp interfaces form
between the clear supernatant A, the fluid phase B, the crystal
phase C, and a dense polycrystalline sediment D. Extrapolating
the fluid-crystal B-C interface [red (gray) line] back to the time
t ¼ 0 provides an estimate of the phase boundary prior to
sedimentation, i.e., in the absence of gravity. From Paulin and
Ackerson, 1990.

11Polytypes are crystal polymorphs whose symmetry differs only
along one direction.

C. Patrick Royall et al.: Colloidal hard spheres: Triumphs, challenges …

Rev. Mod. Phys., Vol. 96, No. 4, October–December 2024 045003-22



The simulation results qualitatively agree with the theoretical
proposal (Wilding and Sollich, 2010; Sollich and Wilding,
2011); see Fig. 11.
Recent swap-assisted EDMD simulations at fixed volume

(see Sec. V.A) report ordering of polydisperse hard spheres
into complex crystals with a large unit cell, such as Laves and
Frank-Kasper phases, instead of fractionating into fcc crystals
(Lindquist, Jadrich, and Truskett, 2018; Bommineni et al.,
2019). These large unit cells, which incorporate small and
large particles, are reminiscent of what is observed in binary
mixtures; see Sec. IX. Similarly, polydisperse mixtures with a
non-Gaussian size distribution have also been observed to
partially crystallize into an AlB2 structure (Coslovich, Ozawa,
and Berthier, 2018). The spontaneous formation of these
phases suggests that their formation might be thermodynami-
cally preferable over fractionation (see Fig. 11), but this
proposal has yet to be investigated using free-energy calcu-
lations. Although this phenomenon has not yet been observed
in colloidal hard spheres either, polydisperse charged silica
nanospheres do form comparably complex crystal phases
(Cabane et al., 2016). The question of the true equilibrium
phase diagram of strongly polydisperse hard-sphere mixtures
therefore remains open.

C. Equation of state

Equations of state (EOSs) are some of the most funda-
mental descriptions of equilibrium systems. On the theoretical
and numerical side, high-accuracy EOSs are now available for
both liquid and crystal phases of hard spheres (Pieprzyk et al.,
2019). This work caps decades of systematic improvements;
see Alder, Hoover, and Young (1968), Speedy (1997), Speedy
(1998b), Almarza (2009), and Santos, Yuste, and Lopez de
Haro (2020) and Secs. II and VI. Despite the quantitative
success of these efforts, physical insight largely emerges from
approximation schemes, which also suffice as reference and
calibration for colloid experiments. The expression obtained

by Carnahan and Starling (1969) for the fluid phase [Sec. VI,
Eq. (24)] is particularly useful. For the crystal, data fitted to
computer simulation results, such as Hall’s fit (Hall, 1972) and
the Speedy EOS (Speedy, 1998a), play a similar role.
Early experimental attempts at determining the fluid EOS

were carried out by Hachisu and Takano (1982) and Vrij et al.
(1983), and marked methodological improvements were later
achieved by Piazza, Bellini, and Degiorgio (1993). Although
both approaches obtained the EOS by integrating the
equilibrium density profile in a single sedimentation experi-
ment, the latter work used a charge-stabilized system of
polytetrafluoroethylene (a polymer colloid similar in some
respects to polystyrene but with a somewhat lower refractive
index) with a Debye length κ−1 much smaller than the
particle diameter σ (κ−1 ¼ 2 nm versus σ ¼ 146 nm), thus
yielding a good hard-sphere approximation; see Sec. III.D.
These later measurements compared well with the
Carnahan-Starling expression for the fluid and reasonably
well to Hall’s fit to simulation data for the crystal (Hall,
1972). As shown in Fig. 12, subsequent work by Rutgers
et al. (1996) using x-ray densiometry also found reasonable
agreement with theory for the fluid branch as well as for the
solid branch for ϕ approaching close packing.
What is reasonable agreement in this context? As discussed

in Sec. III.E, although colloidal systems are excellent model
systems for demonstrating a range of phenomena of con-
densed matter, they are not highly accurate standard measures,
at least compared to atomic and molecular systems. While the
accuracy limit has not been systematically characterized, it
seems reasonable that an error in volume fraction of about
δϕ ∼ 0.01 should result from measurements that base their
phase boundaries on the method of Paulin and Ackerson
(1990) discussed in Sec. VII.A.
At low ϕ, however, the results of Piazza, Bellini, and

Degiorgio (1993) exhibited a systematic drift far in excess of
the expected error. The measured volume fraction dropped

FIG. 11. Phase diagram of polydisperse hard spheres. Data are
from Sollich and Wilding’s free-energy calculations for a top hat
distribution (Fasolo and Sollich, 2004). Beyond 6%, the single
solid phase fractionates into coexisting solids of different size
distributions with smaller polydispersity. The larger the poly-
dispersity and packing fraction, the larger the number of coex-
isting phases needed to satisfy the polydispersity constraint on
individual crystal phases (Sollich and Wilding, 2010). From
Fasolo and Sollich, 2004.

FIG. 12. Experimental determination of the EOS, i.e., ZðϕeffÞ ¼
βPðϕeffÞ=ρeff vs ϕeff , for σ ¼ 0.720 μm PMMA particles from
the observed sedimentation-diffusion equilibrium: (A) superna-
tant, ϕeff ≈ 0; (B) fluid phase, 0 < ϕeff ≤ 0.492; (C) sharp inter-
face; and (D) crystalline phase, 0.543 ≤ ϕeff ≤ 0.74. The lines
denote the fluid and solid EOSs for true hard spheres. Inset: pho-
tograph of 1 cm of the sample. Adapted from Rutgers et al., 1996.

C. Patrick Royall et al.: Colloidal hard spheres: Triumphs, challenges …

Rev. Mod. Phys., Vol. 96, No. 4, October–December 2024 045003-23



much slower than anticipated as a function of height. In other
words, the sedimentation profile was extended. A putative
physical mechanism for this extension was later proposed by
van Roij (2003). In these systems, colloids and small ions
decouple under a gravitational field, with the latter only
negligibly affected on the experimental length scale. The
resulting macroscopic electric field then partially counters
gravity, thus extending the sedimentation profile. Subsequent
experiments confirmed that interpretation (Rasa and Phillipse,
2004; Royall, van Roij, and van Blaaderen, 2005).
Particle-resolved studies have enabled new developments in

EOS measurements. For example, Dullens, Aarts, and Kegel
(2006a) performed numerical Widom particle insertion on
experimental particle configurations to determine the chemi-
cal potential of colloidal hard spheres under the assumption of
a hard-sphere pair potential. The resulting thermodynamic
properties, including the EOSs, are good but become sta-
tistically inaccessible at higher volume fraction (ϕ ≳ 0.43).
The relation between free-volume measurements and free
energy has been explored separately in the supercooled regime
(ϕ ≥ 0.492) with reasonable quantitative agreement (Zargar
et al., 2013; Dang et al., 2022) despite the crudeness of the
assumptions underlying cell theory in this regime (Sec. VI.B).
Furthermore, as elegant as this approach can seem, the effects
of polydispersity and tracking errors can hamper analyses
based on particle coordinates. An analysis based on cavity
averages, compared with simulation data, found errors of up to
100% in the pressure and up to 10kBT in the chemical
potential (Schindler and Maggs, 2015).

D. Structure and dynamics of the hard-sphere fluid

Structure. As discussed in Sec. VI, the radial distribution
function gðrÞ and structure factor SðkÞ of the hard-sphere
fluid can be obtained from the Percus-Yevick closure to the
Ornstein-Zernike equation. The resulting theoretical predic-
tions have been extensively tested against simulation data
(Ree, Keeler, and McCarthy, 1966; Frenkel et al., 1986;
Hansen and McDonald, 2013). Experimental studies of
colloidal fluids using SLS (see Sec. IV.A) also provide a
natural probe for the pair structure. Early SLS experiments
(Vrij et al., 1983; de Kruif, Rouw et al., 1985) found that SðkÞ
for hard-sphere-like colloidal suspensions was consistent with
the Percus-Yevick expression in the small wave vector limit
k → 0. Because Sðk → 0Þ is directly linked to the isothermal

compressibility of the fluid under consideration, as described
by Eq. (11), this correspondence also experimentally validated
the hard-sphere EOSs. Subsequent small-angle neutron scat-
tering (de Kruif et al., 1988) and light-scattering experiments
(Moussaïd and Pusey, 1999) extended this correspondence
over a range of k that included the first peak of SðkÞ;
see Fig. 13.
Access to the real-space structure of bulk colloidal fluids,

made possible with the advent of confocal microscopy, led to
the first experimental measurements of gðrÞ of hard spheres
(van Blaaderen and Wiltzius, 1995). The example in Fig. 14
compares experimental and EDMD simulation results. Note,
however, that the measurements, especially the first peak of
gðrÞ, are sensitive both to polydispersity and to tracking errors
(Royall, Louis, and Tanaka, 2007; Ivlev et al., 2012; Mohanty
et al., 2014). Both effects can be explicitly taken into account
in simulations in order to improve the match with in silico
predictions of the experimental gðrÞ. The resulting pair
correlation functions match to a high degree of accuracy.
Recently a range of solvents was employed to obtain a
behavior indistinguishable from hard spheres when real-space
gðrÞ comparisons were carried out. That is, the effects
of softness (see Sec. III.C) were found to be negligible
(Kale et al., 2023).

FIG. 13. Structure factor of hard-sphere fluids determined using static light scattering. Experimental data are shown as points and
compared with Percus-Yevick predictions (the solid line) at the specified volume fractions. From Moussaïd and Pusey, 1999.

FIG. 14. Radial distribution function of hard-sphere fluids in
real space at various effective volume fractions. The points are
experimental data, while the lines are simulations of hard-sphere
fluids with the experimental polydispersity. Adapted from Royall,
Williams, and Tanaka, 2018.
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Many-body correlation functions and structural features are
also easier to extract from real-space than from reciprocal-
space information (Royall and Williams, 2015). In particular,
it has been possible to compare experiments (Taffs et al.,
2013), simulations, and theoretical predictions (Robinson
et al., 2019; Robinson, Roth, and Royall, 2020) for the
occurrence of clusters that are known to minimize packing
constraints (Manoharan, Elsesser, and Pine, 2003; Robinson
et al., 2019). As demonstrated in Fig. 15, theoretical pre-
dictions of the population of such clusters closely agree with
other approaches.
Dynamics. At short times (prior to colliding with a

significant number of solvent molecules), colloidal motion
is ballistic (Franosch et al., 2011; Hammond and Corwin,
2017). At slightly longer times, however, hard-sphere colloids
behave diffusively (Tough et al., 1986) due to their Brownian
motion. Owing to the frequent collisions of colloids with
solvent molecules, inertia can typically be neglected, thus
making their motion overdamped, as in Eq. (14).
Before particles have had the opportunity to interact with

their neighbors, their diffusivity can be described by a short-
time (real-space) diffusion coefficient DS. In the dilute limit
ϕ → 0, neglecting hydrodynamic interactions between col-
loids, the short-time diffusion coefficient coincides with the
free diffusion coefficient (DS ¼ D0), which for a single
colloidal sphere in a solvent with viscosity η is accurately
described by the Stokes-Einstein relation

D0 ¼
kBT
3πησ

: ð30Þ

At higher volume fractions, the short-time diffusion coeffi-
cient is reduced by hydrodynamic interactions. This slow-
down has been demonstrated in a variety of experimental
hard-sphere realizations (Ottewill and Williams, 1987; van
Megen et al., 1987; Qiu et al., 1990; van Megen and
Underwood, 1990; Zhu et al., 1992; Segrè, Behrend, and
Pusey, 1995) and reproduced in simulations that specifically
account for such interactions (Ladd, 1990; Segrè, Behrend,
and Pusey, 1995; Banchio and Nägele, 2008). Various
theoretical and empirical descriptions of the relation between
D0 and DS have also been proposed (Beenakker and Mazur,
1983, 1984; Pusey and Tough, 1983; Lekerkerker and Dhont,
1984; Cohen, Verberg, and De Schepper, 1998; Cichocki,
Ekiel-Jeżewska, and Wajnryb, 1999). A common semiempir-
ical expression introduced by Lionberger and Russel (1994),

DS

D0

≃ ð1 − 1.56ϕÞð1 − 0.27ϕÞ; ð31Þ

extends an earlier result by Batchelor (1976) to quadratic order
in ϕ. Figure 16(a) compares experimental results of DS=D0

with Eq. (31) as well as with several other theoretical and
simulation approaches. Similar experimental results were
obtained by Pusey and van Megen (1983), Fraden and
Maret (1990), Qiu et al. (1990), and Yodh, Kaplan, and
Pine (1990). Different simulation methods [force multipole
simulations by Ladd (1990) and accelerated Stokesian dynam-
ics by Banchio and Nägele (2008)] accurately describe the
experimental data, while the theoretical predictions based on
the work of Beenakker and Mazur (1983) agree well up to
reasonably high ϕ. Good agreement with the same theory up
to ϕ ≃ 0.4 was also obtained through the experimental work
of Orsi et al. (2012). The wave vector dependence of DS has
also been investigated and the theoretical predictions veri-
fied (van Megen et al., 1985; Segrè, Meeker et al., 1995).
In addition, high-speed optical techniques have allowed for
the direct observation of colloidal hard-sphere motion
during the transition from (short) ballistic timescales to
the Brownian regime (Weitz et al., 1989; Zhu et al., 1992;
Kao, Yodh, and Pine, 1993).
At still longer times, interactions with neighboring particles

hinder colloid mobility. This crowding leads to a subdiffusive
regime (as shown by the slope of the mean squared displace-
ment at intermediate times) before motion becomes diffusive
once more. This long-time diffusive behavior is now described
by a different diffusion coefficient DL < DS (Tough et al.,
1986). As discussed in Sec. XII, DL is strongly suppressed at
high ϕ in the regime of glassy dynamics. Here we focus on the
dynamics in the equilibrium fluid phase alone.
The long-time diffusion coefficient and other transport

properties of pure hard spheres (i.e., in the absence of hydro-
dynamics) have been extensively explored by means of theory
and simulations. For instance, early simulations considered the
agreement between low-density fluid results with predictions
from Enskog’s kinetic theory of gases (Alder and Wainwright,
1967; Alder, Gass, and Wainwright, 1970; Easteal, Woolf,
and Jolly, 1983; Speedy, 1987; Chapman and Cowling, 1990).
As discussed in Sec. V.E, when appropriately rescaled these
results are essentially independent of the choice of micro-
scopic dynamics (i.e., Monte Carlo, Brownian, or Newtonian

FIG. 15. Higher-order structure in the bulk hard-sphere fluid.
Shown are populations of higher-order structures Nc=N contain-
ingm ¼ 3 to 13 particles, whereNc is the total number of clusters
of a certain topology. The lines are from morphometric theory
(Robinson et al., 2019; Robinson, Roth, and Royall, 2020). Small
data points are from monodisperse Monte Carlo simulations,
except for the purple line for m ¼ 13 (with s ¼ 8% polydisper-
sity). Large data points are from a confocal microscopy experi-
ment using particles with σ ¼ 2.0 μm. Simulations and
experiments are analyzed with the topological cluster classifica-
tion using a simple “bond length” (or pair distance) of 1.2σ
(Malins et al., 2013).
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dynamics). For simulations of pure hard spheres, that equiv-
alence has been generally observed (Scala, Voigtmann, and De
Michele, 2007; Sanz and Marenduzzo, 2010).
In experimental colloidal hard-sphere fluids, the long-time

dynamics is influenced by collisions with neighbors as well as
by hydrodynamics. While hydrodynamic interactions typi-
cally lead to an overall density-dependent scaling of the
dynamical timescales only for systems close to equilibrium,
they can significantly influence nonequilibrium behavior;
see Secs. XI and XIII.D. Experimental measurements of
the diffusion coefficient in a variety of systems (Kops-
Werkhoven and Fijnaut, 1982; van Megen et al., 1987; van
Blaaderen, Peetermans et al., 1992; Imhof and Dhont, 1995b;
Segrè, Meeker et al., 1995) have shown broadly consistent
results for DL=D0 as a function of ϕ; see Fig. 16(b).
Theoretical approaches based on the generalized Langevin
equation (Medina-Noyola, 1988), on the expected scaling of
diffusion near random close packing (Brady, 1994), or on a
mean-field description (Cohen, Verberg, and De Schepper,
1998) provide a reasonably good description of this behavior.
Note that, although the experimental data in Fig. 16(b)
represent a variety of systems with different polydispersities
and electrostatic charge, these effects are largely hidden by the
experimental noise. Since both charge and polydispersity shift
the effective hard-sphere volume fraction, it is natural to
expect a corresponding shift in the dynamics. This effect can
be more clearly observed when viscosity measurements are
considered (Papir and Krieger, 1970; de Kruif, van Iersel
et al., 1985; van der Werff and de Kruif, 1989; Jones, Leary,
and Boger, 1991; Imhof et al., 1994; Segrè, Meeker et al.,
1995) and is closely matched by the theoretical treatment of
Cohen, Verberg, and De Schepper (1998). Charged colloids
also exhibit the same scaling, and it has been suggested that
the collapse may be more coincidental than fundamental.

The reciprocal-space dynamics of hard spheres has also
been extensively studied. Notably experiments by Segrè
and Pusey (1996, 1997) on sterically stabilized PMMA
particles found an unexpected collapse of the dynamical
behavior for large wave vectors: both the wave-vector-
dependent diffusion coefficient Dðk; tÞ and the intermediate
scattering function Fðk; tÞ collapsed onto a single curve
for kσ ≳ 5. Later work on charge-stabilized polystyrene
spheres could not reproduce that collapse (Lurio et al.,
2000), but that may be due to the presence of residual
charges, even if such charges hardly affected the static
structure factor. This interpretation is supported by the fact
that both mode-coupling theory calculations on pure hard
spheres (Fuchs and Mayr, 1999) and additional experi-
ments on sterically stabilized PMMA spheres (Orsi et al.,
2012) reproduce the approximate collapse of Fðk; tÞ
reported by Segré and Pusey.
While not strictly pertaining to colloidal hard spheres,

because the work was carried out using MD simulations
of hard spheres in a vacuum, we note that some attention
has been given to the tail of the velocity autocorrelation
function. Around the freezing volume fraction, this observ-
able turns from positive to negative back to positive
(Williams et al., 2006; Martinez et al., 2014) as a result
of collisional backscattering in high-density fluids. Unlike
some, however, we conclude based on the nature of the
phase transition and its equivalence in systems with other
microscopic dynamics that the emergence of this dynamical
phenomenon is merely coincidental with the thermody-
namic freezing point and not evidence of a deeper physical
relationship. To summarize, we have a clear and robust
theoretical understanding and experimental validation of
the diffusion of colloidal hard-sphere fluids at low and
intermediate densities.

FIG. 16. Self-diffusion coefficient of colloidal hard spheres. (a) Short-time diffusion coefficient obtained from various sources:
experiments (Segrè, Behrend, and Pusey, 1995), Eq. (31) by Lionberger and Russel (1994), a theoretical prediction based on up to three-
body hydrodynamic interactions (Cichocki, Ekiel-Jeżewska, and Wajnryb, 1999), force multipole simulations by Ladd (1990),
accelerated Stokesian dynamics (ASD) simulations (Banchio and Nägele, 2008), and theoretical predictions based on the theory of
Beenakker and Mazur (Beenakker and Mazur, 1983; Banchio and Nägele, 2008). From Banchio and Nägele, 2008. (b) Long-time
diffusion coefficient from various sources: experiments with hard-sphere-like suspensions by van Megen et al. (1987) (▽), Segrè,
Meeker et al. (1995) (⋄), van Blaaderen, Peetermans et al. (1992) (þ;△), Imhof and Dhont (1995b) (×), and Kops-Werkhoven and

Fijnaut (1982) (•), as well as the theories of Cohen, Verberg, and De Schepper (1998) (the solid line) and Medina-Noyola (1988) (the
dash-dotted line). Adapted from Cohen, Verberg, and De Schepper, 1998.
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E. Bulk hard spheres in two dimensions

Equilibrium phase behavior of hard disks. When mono-
disperse hard spheres are confined to a strictly two-
dimensional setup, they behave as hard disks, a model system
that has itself long been the focus of theoretical and computa-
tional study. However, the phase behavior of hard disks is
profoundly different from that of hard spheres.
As shown by Peierls (1955), thermal fluctuations destroy

positional order in two-dimensional solids, thus resulting in
an algebraic decay of the positional correlation function.
Orientational order, however, can persist even in the presence
of thermal fluctuations (Mermin and Wagner, 1966). The
behavior of these two order parameters is linked to that of two
different classes of topological defects. Positional order is
destroyed by free dislocations, which can be viewed as
additional rows of disks stuck in the crystal and which appear
in a dislocation-unbinding transition that shares many simi-
larities with the vortex-unbinding transition predicted by
Kosterlitz and Thouless for the two-dimensional XY model
(Kosterlitz and Thouless, 1973). Halperin and Nelson noted
that the unbinding of dislocation pairs, while destroying
positional order, can produce a new hexatic phase with
quasi-long-range orientational order. This quasi-long-range
orientational order is in turn destroyed by the unbinding
of free dislocations into a pair of disclinations, which

are topological defects where disks have either five or
seven neighbors. The resulting melting scenario is named
the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY)
theory (Kosterlitz and Thouless, 1973; Halperin and Nelson,
1978; Young, 1979).
How closely hard disks follow this scenario was debated for

decades. Simulations finally settled the question about a dozen
years ago (Bernard and Krauth, 2011; Engel et al., 2013).
The key difficulty is that finite-size effects cut off the algebraic
decay of correlations. Large system sizes are therefore
required to assess their relevance. This requirement is com-
pounded by the sluggish decay of structural correlations in the
regime of interest. This dual hurdle was first overcome thanks
to event-chain MC simulations (Sec. V.A). The results
revealed that the solid-hexatic transition is continuous, but
that the hexatic-fluid transition is weakly first order with a
narrow coexistence region 0.700 < ϕ < 0.716 wherein
domains of long-range orientational correlations coexist with
short-range orientational correlations; see Figs. 17 and 18. To
relate these predictions to experimental systems, the effect of
out-of-plane fluctuations was investigated using event-driven
molecular dynamics simulations (Qi, Gantapara, and Dijkstra,
2014). These simulations showed that the two-stage melting
scenario of hard disks persists even for monolayers of hard
spheres with out-of-plane buckling as high as half of a particle
diameter. These simulations have further shown that the solid-
hexatic transition is of the Kosterlitz-Thouless type and occurs
via dissociation of bound dislocation pairs, whereas the
hexatic-liquid transition is driven by a spontaneous prolifer-
ation of grain boundaries.
Early experimental work aiming at elucidating the nature of

the melting transition of colloidal monolayers have qualita-
tively confirmed a number of KTHNY predictions, but the
order of the two transitions could not be unambiguously
resolved (Murray and van Winkle, 1987). A study of PMMA
spheres suggested a first-order phase transition between the
fluid and hexatic phases as well as a first-order phase
transition between the hexatic and solid phases (Marcus
and Rice, 1997). However, Marcus and Rice argued that this
observation could be linked to nonhard attractive or repulsive
interactions between particles, which is consistent with an
earlier simulation study (Bladon and Frenkel, 1995). A study
using microgel spheres with temperature-dependent diameters
(Han, Ha et al., 2008) observed a clear two-step melting, even
though the temperature resolution was insufficient to identify
the order of the transitions.
A definitive experimental elucidation of the nature of the

hard-disk phase diagram was later provided by experiments on

FIG. 18. Table summarizing prior reports on the phase behavior of hard disks in two dimensions using computer simulations. For each
result, we list the area fractions of the coexisting fluid ϕf and hexatic ϕh phases, the area fraction at the hexatic-solid transition ϕhs, the
coexistence pressure at the fluid-hexatic phase transition βPfh

coexσ
2, and the system size considered. Note that the area fraction is defined

as ϕ ¼ πσ2N=4A, with A the system area. Note also that the accuracy is to the last reported digit.

FIG. 17. Hard-sphere phase behavior and EOS in two dimen-
sions as a function of area fraction ϕ. Close packing is found at
ϕcp ¼ 0.909…. The first-order fluid-hexatic transition is marked
by a narrow coexistence region of ϕ ≈ 0.700– − 0.7165. The
hexatic-solid transition is second order at ϕ ≈ 0.720. The EOS
for the fluid and solid phases is plotted using the fits given by
Liu (2021). Inset: fluid-hexatic phase coexistence.
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a tilted monolayer of colloidal hard spheres in sedimentation-
diffusion equilibrium (Thorneywork, Abbott et al., 2017); see
Fig. 19. By measuring the density profile at different tilts of
the plane, the full EOS was extracted via the barometric law,
unveiling a discontinuity at ϕ ¼ 0.68. By calculating the
height-resolved bond-orientational-order (BOO) correlation
function in time and a modified Lindemann parameter, this
discontinuity was identified as a first-order fluid-hexatic phase
transition, and a study of the thermal fluctuations of the
interface identified the width of the fluid-hexatic coexistence
region as Δϕ ≃ 0.02. In addition, no finite discontinuities
were found between the hexatic-solid transition. In short,
reasonably good agreement with the simulation results was
observed (with essentially the same level of accuracy as that
noted in Sec. VII.C). Later direct comparisons of correlations
in translational and BOO in the various phases demonstrated
excellent agreement between this experimental model system
and simulations (Thorneywork, Abbott et al., 2018).
Whether or not the hexatic phase is present depends

strongly on the details of the system. For instance, the
fluid-hexatic phase transition becomes metastable with respect
to a first-order fluid-solid transition for binary mixtures
of large (L) and small (S) disks with a diameter ratio
q ¼ σL=σS ¼ 1.4 for molar fractions of small disks as small
as 1% (Russo and Wilding, 2017; Russo, Romano, and
Tanaka, 2018). The two-stage melting scenario of a continu-
ous solid-hexatic and a first-order fluid-hexatic transition also
becomes metastable with respect to a first-order fluid-solid
transition for hard disks with less than 1% of the particles
pinned to a triangular lattice (Qi and Dijkstra, 2015). These
findings are corroborated with a renormalization group
analysis based on the KTHNY theory, which showed that
the renormalized Young’s modulus of the crystal increases in
the presence of pinned particles (Qi and Dijkstra, 2015). The
melting transition was shown to be qualitatively changed to
the KTHNY scenario for polydisperse disks (Ruiz, Sampedro,
Lei, and Ni, 2019), for which a significantly enlarged stability
range for the hexatic phase and reentrant melting have been
observed.

Equation of state. The EOS of hard disks has been
numerically explored since the introduction of the
Metropolis algorithm in 1953 (Metropolis et al., 1953) and
has been studied extensively ever since (Li et al., 2022).
Unlike 3D hard spheres, however, the Percus-Yevick closure
to the Ornstein-Zernike equation cannot be solved analytically
in two dimensions, thus necessitating the use of numerical
integration. As a result, a large number of different approx-
imations for the EOS have been proposed ((Helfand, Frisch,
and Lebowitz, 1961; Henderson, 1975; Tejero and Cuesta,
1993; Santos, Lopez de Haro, and Yuste, 1995; Mulero,
Cachadina, and Solana, 2009; Boublík, 2011). Scaled particle
theory offers a particularly simple one (Helfand, Frisch, and
Lebowitz, 1961),

βP
ρ

¼ 1

ð1 − ϕÞ2 ; ð32Þ

which agrees reasonably well with experimental results;
see Fig. 19(b). When more accurate results are required, a
common approach is to use a polynomial fit to the simulation
data of Kolafa and Rottner (2006).
The experimental EOS was measured by Brunner et al.

(2003) in the fluid regime and by Thorneywork, Abbott et al.
(2017) for the entire ϕ regime; see Fig. 19. Comparison using
test-particle insertion agrees exceptionally well with simula-
tions (Stones, Dullens, and Aarts, 2018). Good agreement
between theory and simulations has also been reported
for gðrÞ at various ϕ (Marcus and Rice, 1997; Santana-
Solano and Arauz-Lara, 2001; Brunner et al., 2003;
Thorneywork et al., 2014).
Dynamics of the hard-disk fluid. The dynamics of 2D

confined hard-sphere colloids has been explored experimen-
tally, with early work investigating the decay of the short-
time diffusion to its long-time limit (Marcus, Lin, and Rice,
1996). This study was followed by explorations of hydro-
dynamic effects on the short-time dynamics and related
these to the 3D system (Carbajal-Tinoco, Cruz de León,

FIG. 19. Experimental determination of the hard-sphere phase behavior in two dimensions. (a) Experimental image of quasi-2D hard
spheres in sedimentation-diffusion equilibrium under a slight tilt. (b) The EOS P=ρkBT. Inset: expanded view of the EOS around the
discontinuity. The solid red (gray) line is a prediction of scaled particle theory for the fluid regime [Eq. (32)]. The solid blue (dark gray)
line is a semiempirical fit P=ρkBT ¼ a=ðϕcp − ϕÞ. From Thorneywork, Abbott et al., 2017.
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and Arauz-Lara, 1997; Santana-Solano and Arauz-Lara, 2001;
Bonilla-Capilla et al., 2004).
Another way to form a 2D colloidal system is for particles

to adhere to an interface between two liquids. The dynamics in
such a system provides a good estimate of the drag coefficient
of the particles (Peng et al., 2009). Other work has empha-
sized the importance of hydrodynamic interactions at short
times (Thorneywork et al., 2015). Surprisingly, while higher ϕ
lead to a lower short-time diffusion coefficient DS, as
expected, the behavior of the long-time diffusion coefficient
DL agrees well with simulation results of a pure hard-disk
system. Hence, although hydrodynamics slows down the
individual motion of particles at short times, its effect is
largely compensated at longer timescales. Recently the degree
of confinement to a plane has also been investigated using
simulations incorporating hydrodynamic interactions. The
long-time diffusion was then found to be enhanced in weaker
confinement (Tian, Kob, and Barrat, 2022).

VIII. INTERFACES IN HARD SPHERES

Hard-sphere systems spontaneously form interfaces as a
result of fluid-crystal phase separation as well as grain
boundaries in the crystal phase. Interfacial effects can also
arise by bringing hard spheres into contact with a boundary.
This section delves into the various phenomena, starting with
the conceptually important case of a single hard wall.

A. Fluid in contact with a wall

Planar wall. A bulk fluid of hard spheres next to a single
hard wall is considered to be the simplest inhomogeneous
system. Intuitively the presence of a flat wall induces some
local structuring of the fluid, which in turn promotes the
formation of the crystal phase. Early simulations by
Courtemanche and van Swol (1992) and Courtemanche,
Pasmore, and van Swol (1993) indeed demonstrated that
crystalline layers could spontaneously form near a planar hard
wall, even at pressures below bulk freezing. However, note
that in simulations, because of periodic boundary conditions, a
single wall is essentially a confined system with two walls at a
plate separation determined by the system size. Therefore,
complete wetting of a hard-sphere crystal at a single wall, also
termed prefreezing, is challenging to distinguish from capil-
lary freezing (Groot, Faber, and van der Eerden, 1987; Kegel,
2001; Dijkstra, 2004). Careful simulation studies have now
demonstrated that (i) a ð111Þ hard-sphere crystal completely
wets a hard wall-fluid interface at about 98.3% of the bulk
freezing density via interfacial free-energy calculations (Laird
and Davidchack, 2007), and that (ii) a crystalline film at a
single wall, independent of the plate separation, grows
logarithmically and is clearly distinguishable from capillary
freezing (Dijkstra, 2004).
The interface between a hard-sphere fluid and a hard wall

also gives rise to an interfacial free energy γ that depends on
the fluid volume fraction ϕ. Although a virial-like expansion
for this quantity is possible, too few coefficients are known for
it to be of much practical use (Charbonneau et al., 2010).
Davidchack, Laird, and Roth (2016) numerically studied a
hard-sphere fluid close to a planar wall and computed the

density profiles, γ, and the excess adsorption by means of
computer simulations and DFT; see Sec. VI.C. They detected
systematic deviations between numerical and DFT results for
ϕ > 0.3; see Fig. 20. Similar deviations were previously
reported in a study of confined hard-sphere fluids (Deb
et al., 2011) that suggested that nontrivial correlations
between fluid particles beyond nearest-neighbor shell might
develop at higher ϕ. These correlations could not, however, be
accurately captured by DFT.
In experiments (Hoogenboom, Vergeer, and van

Blaaderen, 2003), the presence of a bottom wall was found
to initially induce layering in a sedimenting colloidal fluid;
as sediment thickness increased, crystallization occurred
within these fluid layers. Crystallization in the first layer
appeared to proceed via a first-order transition, consistent
with predictions from BD simulation and theory (Biben,
Ohnesorge, and Löwen, 1994). Using grand-canonical
Monte Carlo simulations including a gravitational field, it
was later shown that the fluid crystallized via a first-order
freezing transition at which several fluid layers close to the
bottom of the sample froze at the same chemical potential
(Marechal and Dijkstra, 2007). The number of such layers
simultaneously freezing decreases for higher gravitational
field strengths.
The presence of a wall can also affect colloid dynamics.

Evanescent DLS experiments have studied sterically stabi-
lized PMMA particles for various volume fractions over a
range of scattering wave vectors. In the dilute regime,
Michailidou et al. (2009) observed that the near wall short-
time diffusion was slowed down due to particle-wall hydro-
dynamic interactions. However, for a concentrated suspen-
sion, the wall effect progressively diminished at all vectors k
and many-body hydrodynamic interactions became less

FIG. 20. Interfacial free energy of a hard-sphere fluid in contact
with a flat hard wall as a function of ϕ. The lines are theoretical
predictions based on fundamental measure theory (FMT) and
scaled particle theory (SPT). The points are simulation data.
Simulation and FMT data from Davidchack, Laird, and Roth
(2016); the SPT expression is based on the work of Heni and
Löwen (1999).
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relevant (Michailidou et al., 2009; Liu, Bławzdziewicz
et al., 2015).
Patterned wall. The wetting behavior of the hard-sphere

crystal has also been studied for patterned walls (Heni and
Löwen, 2000). In the case of a ð111Þ structured surface,
complete wetting of the hard-sphere crystal already sets in at a
pressure 29% below the bulk freezing pressure. Even crystal
structures that are unstable in bulk can be promoted by the
wall surface pattern. As an example, hcp (rather than fcc or
rhcp) has been epitaxially grown on a structured template
(Hoogenboom et al., 2003). By contrast, surface wetting by
the crystal below freezing can be completely suppressed by
wall patterns that are incommensurate with the equilibrium
crystal structure (Espinosa et al., 2019).

B. Fluid-solid interface

At coexistence, the fluid phase is separated from the
ordered solid by a thermally fluctuating fluid-solid interface.
Understanding the properties of this interface on a micro-
scopic scale is fundamental to assess crystal nucleation; see
Sec. XIII. For a planar fluid-crystal interface at coexistence,
one can define the interfacial (or surface) free energy γ as the
reversible work needed to form a unit area of a flat interface.
The quantity γ generally depends on the orientation of the
interface normal (n̂) relative to the crystalline axes. When
considering the fluctuations of the same interface, the quantity
of interest is instead the interfacial stiffness γ̃. We discuss
efforts to quantify both γ and γ̃ here.
Interfacial free energy. In a pioneering numerical simu-

lation, Davidchack and Laird (1998) characterized the face-
centered-cubic ð100Þ and ð111Þ fluid-solid interfaces, thus
demonstrating that the transition from crystal to fluid occurred
over a few crystal planes made of domains of coexisting
crystal and fluid phases. They later extended the method
developed by Broughton and Gilmer (1986), based on a
thermodynamic integration along a reversible path defined by
cleaving, to determine γ for hard-sphere fluids, whose value
depended on the crystalline lattice structure (Davidchack and
Laird, 2000). Their results were then sufficiently precise to
assess the anisotropy of the fluid-solid interfacial free energy.
This work was followed by more simulation-based efforts to
determine γ using a wide variety of approaches, including the
analysis of interfacial fluctuations using capillary wave theory
(Mu, Houk, and Song, 2005; Davidchack, Morris, and Laird,
2006; Härtel et al., 2012), nonequilibrium work methods
(Davidchack, 2010), tethered Monte Carlo simulations
(Fernández et al., 2012), classical nucleation theory
(Cacciuto, Auer, and Frenkel, 2003), mold integration
(Espinosa, Vega, and Sanz, 2014), and thermodynamic inte-
gration (Benjamin and Horbach, 2015; Bültmann and
Schilling, 2020); see also Sec. V. Härtel et al. (2012) addi-
tionally used FMT (see Sec. VI), but this approach resulted in
significantly higher values than in simulations. An overview
of results for γ provided in Fig. 21 lists results for
both individual interfaces and an orientationally averaged γ̄,
which is a key quantity in crystal nucleation; see Sec. XIII.
Significant variations exist between different methods, espe-
cially when compared to the relatively small error bars
reported. Schmitz, Virnau, and Binder (2014) and Schmitz

and Virnau (2015) suggested that systematic errors (related to
finite-size effects) could be a possible explanation for this
disagreement. Benjamin and Horbach (2015) proposed a
theoretical tool to obtain reliable estimates for γ in the
thermodynamic limit.
To establish whether the fcc or hcp crystal is favored due to

a difference in interfacial free energy, Sanchez-Burgos et al.
(2021) computed γ by means of the mold integration method
considering both ordered phases. They concluded that the
ð112̄0Þ plane of the hcp crystal has a slightly higher γ than any
of the faces of the fcc polytype. They also found a higher
orientationally averaged γ̄ for the hcp phase when considering
spherical nuclei using a seeding approach; see Fig. 22.
Only more recently have interfacial properties been inves-

tigated in experiments (Gasser, 2001; Dullens, Aarts, and
Kegel, 2006b; Hernández-Guzmán and Weeks, 2009); see
Fig. 23. Experimentally γ can be obtained from indirect
measurements of crystal nucleation rates using classical
nucleation theory; see Sec. XIII. Using this method on
PMMA colloids, Gasser (2001) obtained a surprisingly low
γ̄ (see Fig. 21), possibly due to the colloids being softened by
electrostatic interactions (see Sec. III.C).
Interfacial stiffness. For rough fluid-crystal interfaces such

as in hard spheres,12 capillary wave theory (CWT) can be
applied to define the interfacial stiffness γ̃ that controls the
resulting waves. The tensorial expression for γ̃ is then

γ̃αβðn̂Þ ¼ γðn̂Þ þ ∂
2γðn̂Þ

∂n̂α∂n̂β
; ð33Þ

with n̂α and n̂β two directions orthogonal to n̂ (Fisher and
Weeks, 1983). While the first contribution [γðn̂Þ] describes the
free-energy cost of increasing the interfacial area, the second
contribution accounts for the free energy required to locally
change the crystal orientation.
If the anisotropy of the interfacial free energy is known, γ̃

can be calculated directly from Eq. (33), in the manner of
Härtel et al. (2012). Alternatively, it can be obtained from
interfacial fluctuations measured in simulations using CWT
(Mu, Houk, and Song, 2005; Davidchack, Morris, and Laird,
2006; Zykova-Timan et al., 2009; Zykova-Timan, Horbach,
and Binder, 2010; Härtel et al., 2012). Values from various
different approaches are given in Fig. 21. Overall, γ̃ shows
significantly more anisotropy than γ, but there are also
significant discrepancies between different measurements.
Hernández-Guzmán and Weeks (2009) used confocal

microscopy to study the interfacial fluctuations of a
solid-fluid interface and determined the interfacial stiffness
using CWT predictions for the dynamical behavior of an
interface between two fluids; see Fig. 23. They obtained a
value about twice as high as that obtained from computer
simulations; see Fig. 21. Whether this discrepancy stems
from the approximation of the crystal-fluid interface as a
fluid-fluid interface or from the presence of slight charges
on the particles remains to be verified.

12The roughening transition temperature of thermal systems
is system dependent (Schmid and Binder, 1992; Zykova-Timan,
Horbach, and Binder, 2010), but hard spheres are always rough.
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Similar values of the interfacial stiffness were obtained by
Ramsteiner, Weitz, and Spaepen (2010). After sedimenting
hard-sphere silica colloids onto ð100Þ and ð110Þ oriented
templates, they located the interface by confocal microscopy

and again used CWT to determine γ̃. For all three main crystal
orientations, they noted that the Fourier amplitudes are
independent of the in-plane direction of the associated wave
vectors in the long-wavelength limit. This result directly

FIG. 21. Interfacial free energy γ and stiffness γ̃, where ðhjkÞ are the Miller indices of the interfacial crystal plane. For the stiffness we
might also indicate the symmetry of the short (in-plane) direction. γ̄ is averaged over ð100Þ, ð110Þ, and ð111Þ (of an fcc crystal). Various
approaches have been employed for the determination: cleaving (CL), capillary wave (CW), nonequilibrium work (NEW), mold
integration (MI), tethered Monte Carlo simulations (TET), CNT analysis of the nucleation rate (CNT), thermodynamic integration (TI),
ensemble switch (SW), fundamental measure DFT (FMT) (theory), and experiments ½�exp.
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contradicts simulation results for the ð110Þ interface, from
which a difference consistent with the stiffness tensor of a
cubic crystal is expected. Ramsteiner, Weitz, and Spaepen
(2010) suggested that the relatively thin fluid layer and the
small gravitational length could explain this discrepancy.
van Loenen et al. (2019) studied the interfaces between

hard-sphere colloidal fluids and fcc crystals sedimented onto
differently oriented templates. The values of γ̃ that they
obtained from CWT were not only much closer to the
simulation results than earlier estimates by Hernández-
Guzmán and Weeks (2009), but their order was also more
consistent with simulation predictions; see Fig. 21.
As these different results show, experimental measure-

ments of the stiffness of nominally the same system have
yielded markedly different results. A recent study by
MacDowell (2023) suggested that the surface stiffness of
colloidal hard spheres, as measured by interface fluctuations,
might include a gravity-dependent contribution that could
account for this discrepancy. The external field dependence
of the interfacial stiffness could then be explained by an
improved interface Hamiltonian that provides corrections to
the capillarity theory equation, thus reconciling the exper-
imental and theoretical results.

C. Grain boundaries

Grain boundaries form spontaneously in crystalline materi-
als at finite temperature or, in the case of hard spheres, for
volume fractions below close packing, i.e., ϕ < ϕcp. In a
polycrystalline material, crystalline grains with differing
orientations are separated by an interface made of amorphous
grain boundaries. Most of the work on grain boundaries
has been performed in two dimensions (Zhang et al., 2009;
Gray et al., 2015; Lavergne, Aarts, and Dullens, 2015). Grain
boundaries and other defects reduce long-range order of a
single crystal (Zhang et al., 2009), thereby deforming the
underlying hexagonal order (in two dimensions) due to a

preference for fivefold and sevenfold coordinated particles to
be adjacent to impurities (Gray et al., 2015).
Considering a polycrystalline monolayer of colloidal hard

spheres (see Fig. 24), Lavergne, Aarts, and Dullens (2017)
followed the grain growth process and detected an anomalous
slow growth of the BOO correlation length. They invoked the
curvature-driven coarsening of the large-angle grain bounda-
ries at a rate dependent on the grain boundary length to explain
the effect. When dealing with a polycrystalline monolayer
of hard spheres with embedded impurities, Lavergne et al.
(2016) demonstrated that the size of the impurities determined
whether they behaved as interstitial or substitutional impu-
rities in the bulk crystal. Once formed, grain boundaries can
also shrink. Spontaneous shrinkage of circular grain bounda-
ries was studied in 2D colloidal crystals by Lavergne et al.
(2019), who demonstrated that the shrinkage can be driven by
three mechanisms: curvature-driven migration, coupled grain
boundary migration, and grain boundary sliding.
The grain boundary dynamics is driven by their local

curvature and has been thoroughly studied by means of point

FIG. 22. Interfacial free energy γ for different polytypes at
coexistence. For planar interfaces (at the bulk melting pressure),
an average γ̄ was obtained by averaging over different crystal
orientations for both polymorphs. The values at higher pressures
correspond to γ̄ estimated for spherical nuclei (from the seeding
technique) using CNT. From Sanchez-Burgos et al., 2021.

FIG. 23. Rendering of particle coordinates determined from
confocal microscopy showing the fluid-crystal interface. Shown
is a slice that is two crystalline layers thick. Particles are colored
according to the number of ordered neighbors they have. From
Hernández-Guzmán and Weeks, 2009.

FIG. 24. Grain boundaries in a polycrystalline 2D solid of
colloidal hard spheres. Left panel: the particles. The scale bar is
20 μm. Right panel: the Voronoi cells of the particles, colored by
the local orientation of the BOO parameter, as encoded in the
color bar, which allows for easy distinction between the different
domains. Adapted from Lavergne, Aarts, and Dullens, 2017.
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sampled surface analysis techniques (Lavergne, Aarts, and
Dullens, 2015). While the structure on length scales larger
than the grain boundary distances strongly depends on defect
concentration, local structural distortions close to a grain
boundary occur only over short distances compared to the
grain boundary size and are independent of the defect
concentration (Gray et al., 2015). The kinetics of grain
boundaries is closely related to the topological constraints
imposed on their dislocation structure. As an example,
Lavergne et al. (2018) showed that a local rotational defor-
mation of a 2D colloidal crystal with an optical vortex might
originate a grain boundary loop, thus underlining the rel-
evance of defects in the kinetics of grain boundaries.
Thin-film crystals of microgel (N-isopropylacrylamide)

with a thickness of 15–20 layers have been studied with
video microscopy at a single-particle resolution to observe the
thermal roughening of grain boundaries (Liao et al., 2018).
Unlike the roughening of free surfaces, the thermal fluctua-
tions of grain boundaries were shown to exhibit both static and
dynamic critical-like behavior.
In three dimensions, studies of hard-sphere grain boundaries

are much more sparse. Recently Orr et al. (2021) introduced a
newmethodology to detect and characterize grain boundaries in
experimental data on colloidal grain boundaries, thus revealing
detailed misorientation distributions and grain boundary struc-
tures, but much remains to be done.

IX. BINARY HARD-SPHERE MIXTURES

The phase behavior of binary mixtures of L and S hard
spheres with diameters σL and σS, respectively, is rich. Even at
close packing, complex binary crystals emerge as the size ratio
q ¼ σS=σL changes (Hudson and Harrowell, 2011; Hopkins,
Stillinger, and Torquato, 2012; Dijkstra, 2014). In this section,
we review some of the salient thermodynamic features of

these systems, including the diversity of binary crystal
structures that they can form, the structural crossover in
binary fluids, fluid-fluid demixing and the quest for its critical
point, and the behavior of sedimented monolayers of binary
hard-sphere mixtures.

A. Crystal regime

In binary mixtures of hard spheres of two similar sizes, the
most stable state at infinite pressure is phase separated into
two separate fcc crystals: one of large spheres and one of small
spheres. Density-functional theory, computer simulations, and
scaled particle theory have revealed further enrichment of the
crystal regime at finite pressure, away from close packing.
In the limit q ¼ σS=σL → 1, the system reduces to a one-
component hard-sphere system for which the phase behavior
is discussed in Sec. VII.A. As the two components become
more dissimilar in size, i.e., q≲ 1, the freezing transition
changes from spindlelike via an azeotrope to the emergence
of a eutectic (Barrat, Baus, and Hansen, 1986, 1987; Denton
and Ashcroft, 1990; Zeng and Oxtoby, 1990; Kofke, 1991;
Kranendonk and Frenkel, 1991; Cottin and Monson, 1997),
as shown in Fig. 25.
In the case of spindlelike phase behavior, the coexistence

between a fluid and a substitutionally disordered fcc crystal
phase is narrow in the sense that only a small composition
difference between the two phases develops. When spheres
become more dissimilar in size, the fluid-solid region broad-
ens and an azeotropic point appears at around q ¼ 0.94
(Kranendonk and Frenkel, 1991). At higher packing fractions
a coexistence region between two substitutionally disordered
fcc solids appears when the spheres become sufficiently
dissimilar, which shifts to lower densities as the size ratio
is further increased. When this miscibility gap in the solid
phase interferes with the fluid-crystal coexistence, the phase

FIG. 25. Phase diagrams of binary hard-sphere mixtures displaying a spindlelike phase behavior at size ratio q ¼ 0.95, an azeotropic
phase diagram at q ¼ 0.92, an azeotropic phase behavior with a solid-solid demixing transition at q ¼ 0.90, and an eutectic phase
diagram at q ¼ 0.85 as obtained from simulations. Data from Kranendonk and Frenkel (1991).

C. Patrick Royall et al.: Colloidal hard spheres: Triumphs, challenges …

Rev. Mod. Phys., Vol. 96, No. 4, October–December 2024 045003-33



diagram becomes eutectic at q ≃ 0.875 (Kranendonk and
Frenkel, 1991). Note that only substitutionally disordered
fcc phases appear for the size ratio range q∈ ð0.85; 1Þ, in
contrast to what happens at smaller q.
The phase behavior of more asymmetric mixtures was

studied in experiments using light scattering (Bartlett,
Ottewill, and Pusey, 1990, 1992; Pusey et al., 1994). For size
ratios q ¼ 0.58 and 0.62, complex binary LS2 and LS13
superlattice structures were found for sterically stabilized
PMMA spheres (Bartlett, Ottewill, and Pusey, 1990; Bartlett,
Ottewill, and Pusey, 1992). The stability of these superlattice
structures, which are analogous to their atomic counterparts
AlB2 and NaZn13 (see Fig. 26), was subsequently confirmed
by computer simulations for 0.42 < q < 0.625 (Eldridge,
Madden, and Frenkel, 1993a, 1993b, 1993c; Eldridge et al.,
1995; Dijkstra, 2014) and by density-functional approaches
(Xu and Baus, 1992).
For size ratios 0.2 < q < 0.42, a superlattice structure

isostructural to the rocksalt NaCl was predicted by computer
simulations (Trizac, Madden, and Eldridge, 1997) and verified
experimentally (Hunt, Jardine, and Bartlett, 2000; Vermolen
et al., 2009); see Fig. 26. Surprisingly the experimental
observations of NaCl always showed a crystal phase with
many vacancies in the sublattice of the small spheres in such a
way that the L∶S stoichiometry of the crystal is not 1∶1 but
rather 1∶x, with x ≤ 1 (Hunt, Jardine, and Bartlett, 2000;
Vermolen et al., 2009). Free-energy calculations from
Monte Carlo simulations subsequently showed that an inter-
stitial solid solution constructed by filling the octahedral holes
of an fcc crystal of large spheres with small spheres is indeed
the stable phase (Filion, Hermes et al., 2011). Upon increasing
pressure, the fraction of octahedral holes filled with a small
sphere can be completely tuned from 0 (corresponding to a fcc
phase of pure large spheres) to 1 (corresponding to a NaCl
phase). For less asymmetric size ratios, nonequilibrium
interstitial solid solutions are found, which are long-lived
on the experimental timescale (Rios de Anda et al., 2017).
For larger size ratios, another set of LS2 phases, known as

Laves phases, were found in computer simulations (Hynninen

et al., 2007; Hynninen, Filion, and Dijkstra, 2009;
Bommineni, Klement, and Engel, 2020). Three Laves phase
structures exist: hexagonal MgZn2, cubic MgCu2, and hex-
agonal MgNi2. Each is characterized by the stacking of large-
sphere dimers in the crystal structure, as shown in Fig. 26. The
MgCu2 phase is particularly interesting because it consists of a
diamond lattice of large (Mg) spheres and a pyrochlore lattice
of small (Cu) spheres. By selectively removing one of the
species, one can readily obtain either the diamond or pyro-
chlore phase. Because both the diamond and pyrochlore
phases have a photonic band gap (Hynninen et al., 2007),
which makes them potential targets for various applications in
optics, Laves phases are strongly sought after. However, these
phases are notoriously difficult to self-assemble. At the high
packing fractions at which they become thermodynamically
stable, the fluid phase is dynamically sluggish (Dasgupta,
Coli, and Dijkstra, 2020) and may show instabilities under
sedimentation (Milinković, Padding, and Dijkstra, 2011).
Additionally, the Laves phases are predicted to contain a
significant concentration of substitutional defects (van der
Meer et al., 2020), which can disrupt crystal growth and hence
hinder self-assembly (Dasgupta and Dijkstra, 2018).
Laves phases have nevertheless been observed experimen-

tally for binary nanoparticle suspensions, which diffuse much
faster than micron-scale colloids (see Sec. III.A) (Shevchenko
et al., 2006; Evers et al., 2010; Cabane et al., 2016), as well as
sub-micron-sized spheres that interact with soft repulsive
potentials (Nakagaki et al., 1983; Hasaka, Nakashima, and
Oki, 1984; Ma, Fukutomi, and Morone, 1994; Gauthier et al.,
2004). The observation of Laves phases in softer spheres is
consistent with recent simulation work showing that inter-
particle softness pushes the glass transition in the binary fluid
phase to higher densities and hence enhances crystallization
of Laves phases in nearly hard spheres (Dasgupta, Coli, and
Dijkstra, 2020). However, Schaertl et al. (2018) recently
demonstrated self-assembly of Laves phases in a slightly
off-stoichiometric mixture of nearly hard microgel particles
using static light scattering.
Simulation and theoretical studies using a variety of

methodologies have explored other dense possible crystal
structures of binary hard-sphere mixtures (Kummerfeld,
Hudson, and Harrowell, 2008; Filion and Dijkstra, 2009;
Filion et al., 2009; Hudson and Harrowell, 2011; O’Toole and
Hudson, 2011; Hopkins, Stillinger, and Torquato, 2012).
These surveys have revealed a rich variety of dense packings
at different size ratios and compositions that are expected to be
stable in the limit of infinite pressures (Hopkins, Stillinger,
and Torquato, 2012). However, many of them have yet to be
observed in simulations or experiments at finite pressure.

B. Binary fluids: Structural crossover, demixing, and dynamics

Structure: Crossover and demixing. DFT and computer
simulations have identified a structural crossover line in the
phase diagram of binary hard-sphere fluids. This line marks a
rather abrupt change in the wavelength that dominates the
asymptotic decay of the radial distribution function (Grodon
et al., 2004, 2005). Experimental evidence for this effect
was also found in sedimented quasi-2D hard-sphere glasses
(Baumgartl et al., 2007) and subsequently in 3D hard-sphere

FIG. 26. Binary crystal phases of binary hard spheres. Sche-
matic representations of binary crystal structures known to be
stable or nearly stable in binary hard-sphere mixtures are
displayed.
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fluids where quantitative agreement with theory and simu-
lation was found (Statt et al., 2016); see Fig. 27.
For smaller size ratios, it has long been debated whether or

not a stable fluid-fluid demixing transition exists. Such a
spinodal instability in the fluid mixture can be ascribed to the
depletion mechanism, which is known to drive phase sepa-
ration in colloid-polymer suspensions (Asakura and Oosawa,
1954; Long, Osmond, and Vincent, 1973; Vrij, 1977;
Lekkerkerker et al., 1992). The depletion effect, which was
first described by Asakura and Oosawa in 1954 (Asakura and
Oosawa, 1954; Oosawa, 2021), induces an attractive inter-
action between large colloids due to an unbalanced osmotic
pressure of the polymer or small spheres. Alternatively, this
effect can be explained by the increase in free volume
available to the small spheres upon clustering of the large
spheres. The resulting entropy gain for the small spheres
would then drive phase separation of the colloids.
The effective depletion interaction between the larger

spheres due to the smaller ones has been calculated theoreti-
cally (Attard, 1989; Attard and Patey, 1990; Mao, Cates, and
Lekkerkerker, 1995; Dickman, Attard, and Simonian, 1997;
Götzelmann, Evans, and Dietrich, 1998; Götzelmann et al.,
1999; Roth, Evans, and Dietrich, 2000) and extracted from
computer simulation (Biben, Bladon, and Frenkel, 1996;
Dickman, Attard, and Simonian, 1997; Götzelmann et al.,
1999; Ashton et al., 2011). The results exhibit a short-range
attraction close to the surface of large hard spheres, followed
by several oscillations around zero at larger distances.
Experimental investigations of the depletion interaction

include tracking the Brownian trajectory of a large sphere
near a wall in a suspension of small spheres with video
microscopy (Kaplan, Faucheux, and Libchaber, 1994) and
using optical tweezers to study the interaction between two
large colloids (Crocker et al., 1999). The latter work showed
a discrepancy with subsequent theory (Roth, Evans, and
Dietrich, 2000). Later work that determined radial distribution
functions from which the interaction may be inferred showed
better agreement with simulation and theory (Roth, Evans, and
Dietrich, 2000; Royall, Louis, and Tanaka, 2007); see Fig. 28.

Other experimental investigations probing fluid-fluid dem-
ixing have suggested that it might be strongly coupled to
freezing. For instance, Sanyal et al. (1992), using mixtures of
polystyrene spheres with q ¼ 0.2, observed segregation in
regions rich in large spheres and rich in small spheres in the
sediment at the bottom of their samples. However, when they
suspended the mixture in a density-matched solvent, neither
sedimentation nor demixing was seen. van Duijneveldt,
Heinen, and Lekkerkerker (1993) observed a phase instability
in a fairly narrow concentration range of small and large
sterically stabilized silica particles with q ¼ 0.1667, but
sedimentation obscured whether the transition corresponded

(a) (b)

FIG. 27. Structural crossover in binary hard-sphere fluids. Plots of ln jrhijðrÞj obtained via (a) a real-space experiment and
(b) simulation for L-L, L-S, and S-S total correlation functions. The packing fraction ϕS (marked) is increasing from top (blue) to
bottom (red) for each case. Curves are shifted vertically for clarity. The black lines are fits from which parameters controlling the
crossover are obtained (Grodon et al., 2005). Simulations are for a binary hard-sphere mixture with a size ratio q ¼ 0.648. From
Statt et al., 2016.

FIG. 28. Radial distribution function of large colloids in binary
hard spheres at various concentrations of the smaller species for
(a) low ϕS ≤ 0.25 and (b) high ϕS > 0.25. Monte Carlo simu-
lation data at small colloid volume fraction ϕS are denoted by
solid lines and compared to the experimental data (circles). The
dashed lines correspond to gðrÞ ≈ exp½−βuðrÞ�, where uðrÞ is the
effective interaction between the large colloids consisting of
the depletion interaction induced by the smaller and a residual
electrostatic contribution. In addition to experimental resolution
and polydispersity, MC simulations account for residual colloid
charge. From Royall, Louis, and Tanaka, 2007.
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to fluid-fluid demixing or freezing. Experiments by Kaplan
et al. (1994) on mixtures of polystyrene particles with 0.069 <
q < 0.294 revealed the existence of a single homogeneous
disordered phase, a coexistence between two disordered
phases, and a coexistence between one or two disordered
phases and a surface crystal on the sample wall. However,
bulk crystallization was not observed. A possible reason why
no surface crystallization was found in the experiments of van
Duijneveldt, Heinen, and Lekkerkerker (1993) is that silica
spheres settle quickly relative to polystyrene particles. In the
experiments of Dinsmore, Yodh, and Pine (1995) on mixtures
of polystyrene particles with 0.083 < q < 0.149, a phase
separation into a disordered fluid phase consisting primarily
of small spheres and a crystalline solid of large spheres
permeated by a disordered fluid of small spheres was observed
at sufficiently high volume fractions. They additionally
showed that the crystallites on the surface of the sample cell
had the same structure as the bulk crystals, which they
attributed to wetting of the bulk phase. Finally, Imhof and
Dhont (1995a, 1995b) observed a fluid-solid type of phase
separation but no fluid-fluid demixing in experiments on a
binary mixture of silica spheres with q ¼ 0.1075.
Conflicting results have been reported from various theo-

retical approaches. Integral equation theory approaches pre-
dict that the homogeneous fluid phase of a binary mixture of
large and small hard spheres will be stable with respect to
demixing (Lebowitz and Rowlinson, 1964; Mansoori et al.,
1971), that a spinodal instability will occur in the fluid phase
(Biben and Hansen, 1990, 1991a, 1991b; Rosenfeld, 1994), or
that the fluid-fluid demixing transition will be metastable with
respect to a broad fluid-solid transition when using a simple
freezing criterion (Caccamo and Pellicane, 1997). Free-
volume theoretical approaches have further predicted that
the fluid-fluid phase separation is metastable with respect to
freezing (Poon and Warren, 1994; Dinsmore et al., 1997).
Furthermore, it has been shown that large spheres could
crystallize at the wall well below those corresponding to bulk
phase separation due to the presence of small spheres, which is
in agreement with experimental observations. A broad fluid-
solid coexistence was also found in DFT (Xu and Barentin,
1995), while theoretical approaches based on virial coeffi-
cients predicted a fluid-fluid phase separation in the limit
of highly asymmetric sizes (Saija and Giaquinta, 1996;
Coussaert and Baus, 1997, 1998b), a demixing transition
metastable with respect to either a broad or a narrow fluid-
solid phase transition (Coussaert and Baus, 1998a), a simple
narrow fluid-solid phase transition in the limit q → 0 (Vega,
1998), or a complete absence of a fluid-fluid demixing
transition (López de Haro, Tejero, and Santos, 2013). What
this broad range of predictions makes clear is that the
phase behavior is too sensitive to the details of the specific
approximations used in integral equation theories and virial
expansion approaches to reach a clear conclusion.
Dijkstra, van Roij, and Evans (1998, 1999b) followed a

different approach by mapping the binary hard-sphere mixture
onto an effective one-component system by formally integrat-
ing out the degrees of freedom of the small spheres in the
partition function. Using the two-body depletion potential
contribution to the effective Hamiltonian in simulations, this
effort revealed that the fluid-solid phase coexistence region

significantly broadens as q becomes small. In addition, it
found a stable isostructural solid-solid demixing transition for
q < 0.05 and fluid-fluid demixing that remains metastable
with respect to the fluid-solid transition for q < 0.10. These
predictions were later validated by simulations of the true
binary hard-sphere mixture (Dijkstra, van Roij, and Evans,
1999a, 1999b). However, only recently has the critical point
for the fluid-fluid demixing transition been reported
(Kobayashi et al., 2021). Kobayashi et al. (2021) managed
that feat using a two-level simulation approach based on a
coarse-grained description with effective two- and three-body
interactions and the full fine-grained binary mixture, and then
matching the probability distribution for the number of large
particles to the 3D Ising universality class scaling form. Even
then, a nontrivial dependence on q was also found. In
summary, it is now well settled that a fluid-fluid demixing
transition exists in a binary mixture of hard spheres for
sufficiently large size asymmetries, but this transition is
metastable with respect to a broad fluid-solid transition.
Dynamics in binary hard spheres. Dynamics in binary

fluids, as probed with multiple light scattering, has shown
reasonable agreement with hydrodynamic theory (Kaplan,
Yodh, and Pine, 1992). Later Imhof and Dhont (1995b)
measured the diffusion in strongly asymmetric mixtures by
photobleaching part of the sample and examining the recovery
of the fluoresence as the system rearranged. They found good
agreement with a previous theory by Batchelor (1983) for the
diffusion of the small spheres in the dilute regime but observed
significant deviations for the large spheres, which they attrib-
uted to the large size disparity in their system. Significant
experimental and simulation work has also focused on the
dense fluid regime (Williams and vanMegen, 2001; Foffi et al.,
2003; Götze and Voigtmann, 2003; Marín-Aguilar et al.,
2020), thus revealing a sensitive dependence of the diffusivity
behavior of both species on the size ratio and composition of
the chosen mixtures. This is of particular importance when
studying glassy systems (see Sec. XII), in which, depending on
q, one might find a single glass (where only the large particles
are dynamically arrested) or a double glass (where both species
are arrested) (Voigtmann, 2011; Laurati et al., 2018; Lazaro-
Lazaro et al., 2019).

C. Sedimented monolayers of binary hard spheres

Analogous to the monodisperse case, binary mixtures of
hard spheres can be confined to a quasi-2D setup by allowing
them to sediment into a monolayer on a substrate. In this case,
the system can be mapped onto a binary hard-disk model,
which typically has to be nonadditive in order to account for
the centers of the small spheres being positioned below those
of the large spheres (Thorneywork et al., 2014). Thorneywork
et al. performed a detailed characterization of the radial
distribution function (Thorneywork et al., 2014), structure
factor (Thorneywork, Schnyder et al., 2018), and self-
diffusion coefficient (Thorneywork, Aarts et al., 2017) of
these systems and found their experimental results to be in
good agreement with simulations and theory of model
mixtures. An interesting consequence of the depletion inter-
action in sedimented binary hard spheres is that the large
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particles are in fact repelled from the edge of a raised surface
(Dinsmore, Yodh, and Pine, 1996).
As in the bulk 3D case, the introduction of a second size of

particles vastly increases the phase diagram complexity. In 2D
hard disks, fluid-fluid demixing is generally expected only for
positively nonadditive hard disks (Sillrén and Hansen, 2010),
which would be difficult to achieve in colloidal experiments
with hard spheres. In the crystal regime, however, binary hard
disks can stabilize extremely diverse behavior. Considering
only structures in the limit of infinite pressure, Likos and
Henley (1993) identified a wide range of distinct periodic
crystals as well as the possibility of a quasicrystal with 12-fold
symmetry. For extreme size ratios, the densest possible crystal
phases are expected to consist of a hexagonal packing of large
disks with an increasing number of small particles inserted
into the triangular voids (Uche, Stillinger, and Torquato,
2004). For the specific case of hard spheres sedimented onto
a substrate, simulations predict the spontaneous self-assembly
of both 12-fold and eightfold quasicrystals (Fayen et al.,
2023). Note that while monolayers of hard-sphere mixtures
closely approximate true 2D systems, simulations incorpo-
rating hydrodynamics on binary mixtures confined between
two plates suggest that even small amounts of vertical freedom
can significantly speed up dynamics of quasi-2D binary
mixtures (Tian, Kob, and Barrat, 2022).

X. CONFINEMENT

As detailed in Sec. VII, the entropy-driven equilibrium
phase diagram of bulk hard-sphere systems is fairly well
understood. The insertion of one or more confining walls in
the fluid, however, decreases the number of possible con-
figurations and generally alters the system structure and phase
behavior (Bechinger, 2002; Araújo et al., 2023). In this
section, we specifically consider the interfacial behavior of
hard-sphere fluids between two hard walls, under quasi-1D
and quasi-2D conditions as well as within cylindrical, spheri-
cal, and flexible immurement. Note that the case of a single
planar wall, which results in an interface albeit not in proper
confinement, is presented in Sec. VIII.A.

A. Toward 2D confinement

The effect of confinement between two planar hard walls
was first investigated by Pieranski, Strzelecki, and Pansu
(1983) using colloidal polystyrene spheres. They observed a
sequence of layered solid structures with triangular (△) and
square (□) symmetry 1△ → 2□ → 2△ → 3□ → 3△ � � � →
n□ upon increasing the plate separation, where n denotes the
number of layers. Using MC simulations and cell theory
(Sec. VI.B), Schmidt and Löwen (1996, 1997) later mapped
out the phase diagram for plate separations ranging from
one to two particle diameters and found additional buckled
and rhombic phases. The sequence of high-density structures
was determined more accurately in subsequent experiments
(Neser et al., 1997; Fontecha et al., 2005), further identifying
prism phases with both square and triangular symmetry.
Using extensive free-energy calculations in MC simula-

tions, the full phase diagram for plate separations from one to
five hard-sphere diameters was mapped out as a function of

volume fraction (Fortini and Dijkstra, 2006); see Fig. 29.
These results identify a first-order fluid-solid transition,
corresponding to either capillary freezing or capillary melting
depending on the plate separation, with the coexisting solid
phases consisting of crystalline layers with either triangular
or square symmetry. At high densities, prism, buckled, and
rhombic phases are found to be thermodynamically stable, in
agreement with experiments (Neser et al., 1997; Fontecha
et al., 2005; Oğuz et al., 2012). An interesting twist under
strong confinement is to consider nonequilibrium behavior
where geometric frustration in a buckled triangular lattice
leads to behavior reminiscent of spin ice and frustrated
magnetic materials. This was realized in experiments with
diameter-tunable microgels (Han, Shokef et al., 2008; Shokef
and Lubensky, 2009).
Curk et al. (2012) used simulations to investigate hard

spheres in soft quasi-2D confinement with a parabolic potential
along one dimension. As in hard confinement, a sequence of
confined hexagonal and square-symmetric packings was found,
but none of the intervening ordered phases were observed; the
system was found to undergo phase separation instead.

B. Cylindrical confinement

Hard spheres perfectly confined to a 1D line form a
Tonks gas. This model, which has a rich theoretical history

FIG. 29. (a) Equilibrium phase diagram of hard spheres con-
fined between two parallel hard walls with plate separation H vs
volume fraction representation. The white, yellow, and dotted
regions indicate the stable one-phase region, the two-phase
coexistence region, and the forbidden region, respectively.
(a) From Fortini and Dijkstra (2006). (b),(c) Optical microscopy
images of charged spheres in an aqueous system confined in a
wedge geometry. Shown are both (b) a 2Δ phase and (c) a 2□
phase. (b),(c) From Fontecha et al., 2005.
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(Lieb and Mattis, 1966), captures reasonably well the behavior
of various condensed-matter systems, such as linear chains
of mercury in Hg3−δAsF6 (Spal et al., 1980; Chaikin and
Lubensky, 1995)13 and chains of cobalt atoms confined by
platinum steps (Gambardella et al., 2002). [Its quantum
mechanical relative, the Tonks-Girardeau model, has also
been experimentally realized (Bloch, Dalibard, and Zwerger,
2008).]
The Tonks gas can be solved by a transfer matrix (TM)

scheme. A rich set of structural and thermodynamic observ-
ables can thus be obtained at minimal computational cost.
With appropriate discretization schemes, the TM scheme can
also be extended to quasi-1D systems (Barker, 1962). Both
hard disks between hard lines (Kofke and Post, 1993; Gurin
and Varga, 2013; Godfrey and Moore, 2014; Robinson,
Godfrey, and Moore, 2016; Hicks et al., 2018; Hu, Fu, and
Charbonneau, 2018; Zhang, Godfrey, and Moore, 2020) and
hard spheres within a hard cylinder (Kamenetskiy, Mon,
and Percus, 2004; Hu, Fu, and Charbonneau, 2018) [as well
as more exotic hard shapes (Kantor and Kardar, 2009; Gurin
and Varga, 2015; Gurin, Varga, and Odriozola, 2016; Gurin,
Odriozola, and Varga, 2017; Gurin et al., 2017)] have thus
been considered using this approach.
The TM size, however, jumps markedly as the number of

interacting particles increases, which limits the maximal
cylinder width that can be computationally resolved. At
present it is nevertheless possible to study systems with up
to next-nearest-neighbor interactions. Spheres in a cylinder
with a diameter of 2σ (and for disks a line spacing of up to
5σ=2) can thus also be solved this way (Hu, Fu, and
Charbonneau, 2018). Although limited, this range of cylinder
sizes is sufficient for zigzag and helical orders to emerge at
high density.
The analysis of these systems provides key insights into

quasi-1D ordering. For instance, although 1D systems with
finite-range pairwise interactions have long been known to be
unable to exhibit a phase transition (Van Hove, 1950) [see also
Theorem 5.6.7 of Ruelle (1999)], various numerical simu-
lations of cylindrically confined hard spheres have identified
somewhat abrupt structural changes as density increases
(Gordillo, Martínez-Haya, and Romero-Enrique, 2006; Koga
and Tanaka, 2006; Durán-Olivencia and Gordillo, 2009;
Varga, Ballo, and Gurin, 2011). Similarly, it has been
proposed that confined disks could exhibit a Kosterlitz-
Thouless-type phase transition (Hu and Charbonneau,
2020; Huerta et al., 2020). The TM scheme resolves these
apparent paradoxes. First, it confirms that in thermodynamic
equilibrium no phase transition is observed (as would be noted
in the evolution of the largest TM eigenvalue with density).
Second, it reveals the physical origin of the marked structural
changes that nevertheless emerge. Because the correlation
length that describes the spatial decay of structural order is
given by the ratio of the two largest (magnitudewise) TM
eigenvalues ξ ∼ lnðλ1=λ2Þ, crossing of subdominant TM

eigenvalues can indeed give rise to marked structural cross-
overs without any thermodynamic singularity (Hu, Fu, and
Charbonneau, 2018).
To observe richer order types, larger cylinder diameters

need to be considered. The diameter dependence indeed does
not result in continuous structural changes, as is most obvious
at close packing. [The effect is also notable at finite pressure
(Mon and Percus, 2000).] The associated morphological
richness was first studied by Pickett, Gross, and Okuyama
(2000), who found that chiral order spontaneously develops
for certain diameter ratios. Mughal, Chan, and Weaire (2011)
and Mughal et al. (2012) later noted that for cylinders of
diameter up to 2 ≥ D=σ ¼ 1þ 1= sinðπ=5Þ ≈ 2.70 close pack-
ing is described using a phyllotactic construction because all
spheres then coat the cylinder wall. Beyond this diameter
regime, not all spheres touch the cylinder wall, which even-
tually results in a separation between core and shell particles
(Fu et al., 2016). As shown in Fig. 30, exotic arrangements,
complex helices, and limit periodic structures follow. More or
less systematic numerical exploration of these structures ends
around D=σ ¼ 4, but it is conceivable that larger diameters
might accommodate even more unusual structures.
Considerable interest has also been paid to the transport

dynamics of these systems. In particular, for the hard-sphere
case Mon and Percus (2002, 2003) identified a crossover from
single-file to Fickian diffusion for sufficiently wide cylin-
ders, i.e.,D ≥ 2σ. A transition state theory description of the
hopping mechanism that enables sphere passing was later
proposed (Wanasundara, Spiteri, and Bowles, 2012), and
the impact of microscopic dynamics (Flomenbom, 2010;
Sané, Padding, and Louis, 2010) as well as size dispersity
(Wanasundara, Spiteri, and Bowles, 2012) on these has
been considered.
From the experimental standpoint, hard spheres in quasi-1D

confinement have notably been used to rationalize the packing
behavior of C60 in nanotubes (Mickelson et al., 2003;
Khlobystov et al., 2004; Khlobystov, Britz, and Briggs, 2005;
Troche et al., 2005), of confined nanoparticles (Tymczenko
et al., 2008; Sanwaria et al., 2014), and of vacuolated cells in
an embryonic structure (Norman et al., 2018). A few colloid-
based realizations have also been achieved (Lohr et al., 2010;
Jiang et al., 2013; Liu, de Folter et al., 2015; Fu, Bian et al.,
2017), as have granular-scale ones (Bogomolov et al., 1990).
In all cases, a good correspondence between theory and
experiments is obtained, although the assembly pathway
may need to be taken into account to rationalize the observed
packings (Mughal et al., 2012; Fu, Bian et al., 2017).
Nevertheless, relatively few of the aforementioned numerical
and theoretical predictions have been tested directly in
colloidal experiments.

C. Quasi-1D confinement

A lower-dimensional generalization of cylindrical confine-
ment considers 2D hard disks between parallel lines a distance
D apart. These models have largely been studied for the
insight they offer into the physics of disordered systems.
Given that the geometry of these systems is a lot simpler
than that of spheres in cylindrical confinement, only fairly
unremarkable structures form the densest close packing as D

13Note that the analysis of Spal et al. (1980) and Chaikin and
Lubensky (1995) did not take advantage of the exact 1D solution.
Using this solution to redo the analysis is left as an exercise for the
interested reader.
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increases. Subtleties in these packings nevertheless lead to the
emergence of nontrivial local features (Ashwin and Bowles,
2009; Zhang, Godfrey, and Moore, 2020). Such irregularities
have allowed these models to find particular use in clarifying
the physics of low-dimensional disordered systems.
Given the robustness of the jamming phenomenology

down to 2D systems, such as the algebraic scaling of weak
forces and small gaps (see Sec. XII.H), an interesting target
has been to consider the structural criticality of quasi-1D
systems. For D < 1þ ffiffiffi

3
p

σ=2, jammed states are then
isostatic and have a nonzero complexity (Ashwin and
Bowles, 2009; Bowles and Ashwin, 2011; Ashwin, Zaeifi
Yamchi, and Bowles, 2013; Godfrey and Moore, 2018) but
do not exhibit a critical structure. For 1þ ffiffiffi

3
p

=2 < D < 2,
however, it is possible to consider states that are structurally
critical. Depending on the system details, different critical
exponents have been reported (Ikeda, 2020; Zhang,
Godfrey, and Moore, 2020). This sensitivity of the structural
criticality possibly follows from these systems being below
the lower critical dimension for jamming.
These models have also been used to study dense fluids

(Godfrey and Moore, 2014; Robinson, Godfrey, and Moore,
2016; Hicks et al., 2018) so as to assess how some of the
mean-field theory predictions then fare. Unsurprisingly for
such low-dimensional models, a qualitatively different physics
is observed. The findings should nevertheless caution against
possible confounding physical factors in the study of higher-
dimensional fluids, such as the importance of local structure
and the possibility of crossovers at fairly large system sizes.
Given the rich physics of such simple models, a seemingly

open area of research is their experimental study. Microfluidic
channels with colloids (Mark et al., 2010), for instance, might
be a promising approach to consider.

D. Spherical confinement

Arguably the most natural way of confining colloidal spheres
in three dimensions is inside a larger sphere. As a natural toy
model system for small many-body systems, even studies of
just a few hard spheres in spherical confinement have attracted
significant theoretical attention exploring, for example, the
effect of the thermodynamic ensemble on the observed struc-
ture (González et al., 1997, 1998) and the thermodynamic

properties of the confined fluid (Urrutia, 2011; Urrutia and
Castelletti, 2012; Urrutia and Pastorino, 2014).
As expected, hard-sphere fluids confined to larger spherical

cavities are known to show structuring near the cavity walls
(Macpherson, Carignan, and Vladimiroff, 1987; Zhou and
Stell, 1989; Calleja et al., 1991; Chui, 1991). The dynamics
inside the cavity then depends strongly on whether the cavity
walls are rough or smooth (Németh and Löwen, 1999), with
rough walls more strongly inducing dynamical arrest. In
particular, when a glassy fluid of hard spheres is confined
in a spherical cavity with rough walls consisting of pinned
particles, the dynamics approaches that of a bulk hard-sphere
glass for large cavities, thus providing a route to probe
dynamical correlations in these systems (Németh and
Löwen, 1999; Zhang and Cheng, 2016).
Experimental self-assembly of hard-sphere colloids in

spherical confinement can be achieved by confining the
colloids inside emulsion droplets (Yi et al., 2002; Manoharan,
Elsesser, and Pine, 2003; Manoharan, 2006). When the droplets
shrink [due to either evaporation or Ostwald ripening (Schmitt
et al., 2016)], the slowly increasing density of the colloids
can eventually lead to self-assembly. The resulting structure
depends sensitively on the number of colloidal particles within
the cluster. Clusters containing only a handful of colloids form
small polyhedral clusters whose geometry can often be under-
stood as the densest configuration possible in the circum-
stances. However, in these small clusters, capillary forces
during the final stages of solvent evaporation also play a
significant role, and in many cases drive the cluster to minimize
the second moment of its mass distribution (Manoharan,
Elsesser, and Pine, 2003; Lauga and Brenner, 2004; Yi
et al., 2004; Cho, Yi, Kim et al., 2005). For hard spheres,
this set of minimal clusters was studied by Sloane et al. (1995).
For larger clusters of monodisperse spheres in spherical

confinement, the natural tendency of hard spheres to crystallize
into an fcc crystal competes with the curvature of the surface.
Although sufficiently large clusters (N ≳ 105) form a simple
fcc structure, intermediate cluster sizes (100≲ N ≲ 105) spon-
taneously form clusters with icosahedral symmetry (de Nijs
et al., 2015). The core of these icosahedral clusters consists of
tetrahedral-shaped domains of distorted fcc crystal, with one
hexagonal plane from each domain forming the faces of an
icosahedron, often called Mackay clusters (Mackay, 1962).

(a) (b)

FIG. 30. Close-packing fraction of hard spheres confined in cylinders of diameterD along with some of the structures. These packings
(a) are phyllotacticlike for D=σ ≲ 2.8 and (b) exhibit a core-shell structure beyond that point. From Fu et al., 2016, and Fu, Steinhardt
et al., 2017.
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For sufficiently large clusters, these domains can be capped by
additional surface layers, resulting in a family of anti-Mackay
sphere packings with varying surface reconstructions (de Nijs
et al., 2015; Wang, Mbah et al., 2018); see Fig. 31. Free-energy
calculations based on computer simulations have shown that
these clusters are indeed thermodynamically stable configura-
tions for pure hard spheres in spherical confinement (de Nijs
et al., 2015), with clusters containing certain “magic numbers”
of spheres corresponding to defect-free clusters being particu-
larly stable (Wang, Mbah et al., 2018; Wang et al., 2019).
This already complex behavior can be further tuned by

considering, for example, binary mixtures of spheres in
spherical confinement. For small clusters, complex aniso-
tropic colloidal supraparticles can result (Cho, Yi, Lim et al.,
2005). For larger clusters, Wang, van der Wee et al. (2021)
demonstrated the formation of clusters consisting of the
thermodynamically stable MgZn2 Laves phase when there
is an excess of small spheres. However, these clusters turn into
an icosahedral cluster consisting of tetrahedral domains of the
less stable MgCu2 Laves phase when the fluid composition is
isostoichiometric with the Laves phase (Wang et al., 2021).
As the self-assembly behavior of colloidal spheres under

spherical confinement is robust on both the nanometer and
micrometer scales (de Nijs et al., 2015) and for a variety of
materials (Yi et al., 2004), it provides a versatile route for
tuning material structure across various length scales.
Supraparticles created via this technique have been pro-
posed as building blocks for additional self-assembly steps,
such as for creating materials with structural order on two
different length scales (Bai et al., 2007). In addition, the
icosahedral nature of intermediate-sized clusters of colloidal

spheres may lead to interesting optical effects, including
iridescent structural color patterns that can be used to track
the self-assembly dynamics inside the clusters in real time
(Wang et al., 2020).

E. Flexible confinement

Thus far in this section we have seen that a large variety of
packing geometries can be obtained by confining spheres in a
container of fixed shape. A different question concerns the
most efficient packing of spheres in a natural bin, which is the
smallest convex hull (volumewise) that can enclose a certain
number of spheres. Counterintuitively, the result is not always
a compact cluster of spheres. For a packing of spheres with up
to n ¼ 55, along with n ¼ 57, 58, 63, 64, the linear con-
formation in which the spheres lie on a straight line, also
called a sausage, is denser than a clusterlike or platelike
configuration (Gandini and Wills, 1992). The optimal packing
for n ¼ 56 is not fcc-like, and the exact configuration remains
unknown. [By contrast, in four dimensions, this sudden
transition from a sausage packing to a cluster shape is
conjectured to happen at n ¼ 375 769 spheres and is therefore
referred to as the sausage catastrophe (Henk andWills, 2021).]
Hard spheres in a flexible container can be used to model
colloids in a fluctuating vesicle, which was studied theoreti-
cally and in simulations by Maibaum, Schmidt, and Löwen
(2001). Recently such a system of non-close-packed colloids
in a flaccid lipid vesicle has been experimentally realized
(Marín-Aguilar et al., 2023). Through a combined experi-
mental and simulation study, Marín-Aguilar et al. obtained a
state diagram that includes linear, planar, and cluster con-
formations of spheres, as well as bistable states, which
alternate between cluster-plate and plate-linear conformations
due to membrane fluctuations. In addition, Marín-Aguilar
et al. (2023) identified truncated polyhedral packings of
56 ≤ N ≤ 70 spheres (excluding N ¼ 57 and 63) that pack
more efficiently than linear arrangements.
In experiments, flexible confinement may be induced by

optical tweezers. To our knowledge, in the context of hard
spheres, using lasers to induce structuring may be traced to the
work of colloid pioneers Chowdhury, Ackerson, and Clark
(1985), who did so to induce freezing in quasi-2D systems.
A more recent approach has been to confine a system inside a
ring of particles held in optical traps. Such traps have well-
defined potentials, which means that the osmotic pressure and
therefore the EOS could be measured. At low density, the
results were found to agree with the bulk EOS. At higher
density, by contrast, the fluid takes on a layered structure, thus
reflecting the confinement. At still higher density, a bistable
state between the layered fluid and a hexagonal structure was
observed, reminiscent of the bulk hexatic phase (Williams
et al., 2013).

XI. OUT-OF-EQUILIBRIUM PHENOMENA

In this section, we discuss how hard spheres have shed light
on material phenomena away from thermal equilibrium. When
studying out-of-equilibrium suspensions, it is useful to dis-
tinguish linear response around thermal equilibrium, which
can be treated perturbatively within the framework of

FIG. 31. Icosahedral clusters of spheres self-assembled in
spherical confinement. Top row: an electron microscopy image
of a cluster of nanoparticles and a reconstruction of its surface
layer. Bottom left image: cluster obtained in experiments with
micron-sized colloids. Bottom right image: cluster obtained in
simulations of hard spheres. Adapted from de Nijs et al., 2015.
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statistical mechanics, from phenomena that occur due to
strong driving beyond the linear regime. Nonequilibrium
effects often appear as fluxes of macroscopic observables
and transport phenomena. Because particle motion remains
governed by thermal fluctuations, the relative magnitude of
this transport compared to diffusion, as captured by the
various dimensionless Péclet numbers (Table I), for exam-
ple, for gravitation, shear flow (Russel, Saville, and
Schowalter, 1989), or other fields such as optical tweezers
(Williams et al., 2016), is a crucial measure of how strongly
a system is driven.
Thus far we have largely considered the solvent as a

structureless quiescent medium. Out of equilibrium, however,
this simplification is often no longer appropriate. The solvent
dynamics has to be taken into account. We therefore shift our
focus away from hard spheres as a model system and instead
consider the colloidal material as a complex fluid. In that
context, the full dynamics of a particle-laden Newtonian
solvent is described by the Navier-Stokes equation together
with a suitable (typically no-slip) boundary condition on the
particle surfaces. By eliminating the solvent, forces between
suspended particles effectively couple through the mobility
tensor, which can in principle be derived from the Oseen
tensor (Dhont, 1996). In bulk systems, hydrodynamic cou-
pling is long-range due to momentum conservation of the
solvent. Taking these hydrodynamic interactions into account
in simulations is feasible but computationally costly; see
Sec. V.D for available methods. A recurring theme is the
importance of colloidal forces over hydrodynamic coupling. If
the latter can be neglected, one can resort to computationally
cheaper BD simulations (Sec. V.C).

A. Nonequilibrium sedimentation in hard-sphere colloids

We first consider what is arguably the simplest nonequili-
brium situation, namely, the gravitational settling of a sus-
pension. As discussed in Sec. VII.C, waiting for the
suspension to relax yields a density profile from which the
equation of state may be inferred. While such equilibrium
profiles are straightforward to calculate, the approach to

equilibrium from an out-of-equilibrium starting point is a
challenging problem to address.
As previously alluded to, a useful way to distinguish

different regimes is through the gravitational (or sedimenta-
tion) Péclet number

Peg ¼
τB
τg

¼ σ=2
ξg

¼ πσ4δρg
12kBT

; ð34Þ

which is defined as the ratio of the Brownian diffusive time τB
[Eq. (1)] to the time τg for a sphere to sediment its own radius,
where δρ is the mass density difference between colloidal
particles and the solvent. Alternatively, it can be expressed
through the gravitational length ξg ¼ kBT=mmg, withmmg the
buoyant mass. Note that without loss of generality, sedimen-
tation is assumed to occur in the z direction and has no
dependence on the x, y coordinates. Equation (34) describes
the sedimentation of a single colloid and thus holds in the
dilute limit.
For more concentrated systems, when the density varies

on length scales sufficient for local packing effects to be
neglected, and for which gravitational settling is slow, i.e.,
Peg ≪ 1, the time evolution of the sedimentation profile
ϕðz; tÞ largely follows a batch settling process (Russel,
Saville, and Schowalter, 1989). Under these conditions, the
volume fraction at any height and at any time may be captured
by a set of relatively simple coupled equations. [For more
strongly driven systems, in the granular regime strong swirls
due to hydrodynamic coupling can be observed (Segrè,
Herbolzheimer, and Chaikin, 1997; Segrè et al., 2001).]
For smaller systems, in which packing effects can be more

noticeable (see Sec. X), classical DFT (see Sec. VI.C) is
needed. Using dynamical DFT, it is indeed possible to
propagate these density profiles forward in time, as shown
in Figs. 32(d) and 32(e). The time-dependent density profiles
predicted by dynamical DFT agree extremely well with
particle-resolved results from BD simulations. With the
inclusion of a simple treatment for the volume fraction-
dependent slowdown in dynamics due to hydrodynamic
interactions (treated with the Hayakawa-Ichiki method), the
time evolution of the density profiles of sedimenting hard
spheres in experiments has been accurately described (Royall
et al., 2007; Schmidt et al., 2008); see Figs. 32(a)–32(e).
This description of sedimentation presumes translational

invariance in the x-y plane, which holds empirically for a
starting configuration that is approximately homogeneous
(Royall et al., 2007; Schmidt et al., 2008). An inhomogeneous
configuration such as that shown in Fig. 33(a) presents a much
different (and at first sight surprising) proposition. Density
fluctuations with a characteristic length scale [Fig. 33(b)] then
develop, leading to a behavior reminiscent of the catastrophic
Rayleigh-Taylor instability when two immiscible liquids are
prepared with the denser liquid above. What is particularly
surprising here is that the hard-sphere fluid, which is a
single phase, then behaves like a phase-separated system.
These complex time-dependent patterns can further be
accurately captured by multiparticle collision dynamics sim-
ulations (Wysocki et al., 2009, 2010). Therefore, even

TABLE I. Péclet numbers Pex ¼ τB=τx relate the diffusive time τB,
as defined in Eq. (1), to the timescale τx of a directed transport
process using the particle radius σ=2 as reference length. μ ¼
D0=kBT is the particle mobility. Sedimentation (the second column)
is due to the gravitational forcembg, with the acceleration of gravity g
and buoyant mass mb ¼ ðπσ3=6Þδρ, where δρ is the density differ-
ence between particle and solvent. In this case the Péclet number can
also be written as Peg ¼ σ=2ξg, with gravitational length ξg. In the
case of shear flow, the timescale of directed transport is γ̇−1. For
normal fluids, the Brownian time τB is appropriate, but for glassy
systems the Weissenberg number γ̇τα is often used instead; see
Sec. XII.J.

Drive
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force F

Gravitation
g
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v

Shear
flow γ̇

Glassy
flow γ̇

τx
σ

2μF
σ

2μmbg
σ
2v γ̇−1 γ̇−1

Pex Fσ
2kBT

πσ4δρg
12kBT

2σv
D

γ̇τB γ̇τα
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phenomena far from equilibrium can be accurately captured
by theory and simulation.
Adding a second colloidal species whose gravitational

Péclet number can be tuned independently provides a
further means of controlling the structural properties of the
swirls. Note that these swirls depend mainly on the relative

magnitudes of the Péclet numbers of the two species and much
less on the composition of the mixture, which would be the
case closer to equilibrium (Milinković, Padding, and Dijkstra,
2011); see Sec. IX.

B. Rheology, flow, and shear-induced order

The most common way to probe mechanical properties is to
subject a sample to external forces and measure its deforma-
tion rate (Larson, 1998; T. Chen et al., 2010; Wagner, 2022).
In addition to the packing fraction ϕ, the strain γ (and strain
rate γ̇), not to be confused with the interfacial free energy
in Sec. VIII.B, with conjugate stress τ are then needed to
characterize a hard-sphere system. The absence of cohesive
forces between hard spheres implies that their solids deform
easily. The elastic moduli, which encode how a solid linearly
deforms in response to an applied force, nevertheless diverge
as ∝ kBT=σ3ðϕcp=ϕ − 1Þ2 upon approaching close packing
(Stillinger and Salsburg, 1967; Farago and Kantor, 2000).
Similarly, a hard-sphere fluid starts flowing in response to

shear forces, thus entering a dissipative nonequilibrium state.
In certain geometries [such as Couette or cone-plate shear
cells; see Fig. 34(a)], a uniform strain rate γ̇ can be achieved,
thus defining viscosity η ¼ τ=γ̇. How strongly a suspension is
sheared is described through the dimensionless shear Péclet
number Peγ̇ ¼ γ̇τB, again using the Brownian time τB [Eq. (1)]
(Table I), characterizing the importance of advection over
diffusion. Figure 34(b) shows typical flow curves τðγ̇;ϕÞ for
dense hard spheres. For the fluid (ϕ ¼ 0.52) one observes
shear thinning with a stress that is smaller than the initial linear
increase. The denser (ϕ ≥ 0.59) no-slip samples behave as
Herschel-Bulkley fluids following the empirical flow curve
τ − τ0 ∝ γ̇n with some exponent n. They approach a finite
yield stress τ0 in the limit γ̇ → 0, thus indicating that the
sample behaves as a disordered solid. Rheology therefore
provides a mechanical route to probe the glass transition, to
which we return in Sec. XII.J.
Traditional rheological studies probe macroscopic volumes

through small-amplitude oscillatory shear so as to only weakly
perturb the material from thermal equilibrium. In this linear

(a)

(e)

(b) (c) (d)

FIG. 32. Nonequilibrium sedimentation of hard spheres on
the particle scale. (a) A system of sterically stabilized PMMA
particles under the influence of gravity g and vertically confined
between two walls separated by a distance L. (b)–(d) Time series
of confocal micrographs taken in the (vertical) x-z plane at times
(b) t ¼ 3τB, (c) 26τB, and (d) 200τB. The scale bars denote
20 μm; the horizontal lines indicate the position of the walls. In
(b)–(d) the sedimentation Péclet number is Peg ¼ 0.625. (e) Time
evolution of the sedimentation profile ϕðz; tÞ for a system with
Peg ¼ 1.11. The solid lines display experimental data from
particle-resolved studies, whereas the dashed lines represent
dynamical DFT. No fit parameters are used. From Royall
et al., 2007.

(a)

(d)

(b)

(c)

FIG. 33. Rayleigh-Taylor-like instability in hard-sphere colloids. (a)–(c) Time series of images taken with a confocal microscope for
1.43τB, 5.5τB, and 11.2τB. λ denotes the characteristic growing wavelength of the Rayleigh-Taylor instability. (d) Image in x-y plane at
the height of the dashed line in (c). From Wysocki et al., 2009.
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response regime with Peγ̇ ≪ 1, the system reaches a periodic
state with stress

τðtÞ ¼
Z

t

−∞
dsGðt − sÞγ̇ðsÞ ð35Þ

leading to the storage modulus G0ðωÞ and loss modulus
G00ðωÞ, the real and imaginary parts of the complex shear
modulus GðωÞ, as a function of the external frequency ω.
For a dilute hard-sphere suspension, Einstein showed that

(to linear order in ϕ) η=ηsol ¼ 1þ ð5=2Þϕ (Einstein, 1906;
Mewis and Wagner, 2011). In other words, the suspension
viscosity is larger than for the pure solvent ηsol due to volume
excluded by the suspended particles. A quadratic-order
correction in ϕ arises from the hydrodynamic coupling
between spheres, but the value of the coefficient depends
on the analytical approach. [Batchelor (1977), for instance,
found 6.2ϕ2.]
At higher strain rates beyond linear response (for Peγ̇ ≈ 1),

shear thinning sets in. Viscosity then decreases upon
approaching a plateau η∞ (van der Werff and de Kruif,
1989), as has been observed in BD simulations without
hydrodynamics (Strating, 1999). The phenomenon can there-
fore be linked to a change in the local arrangement of particles
(Xu, Rice, and Dinner, 2013) through the excess shear stress

Δτ ¼ −
1

2
kBTρ2

Z
d3r

xy
r
gðrÞδðr − σÞ: ð36Þ

The pair distribution function gðrÞ is then no longer isotropic
(Lin et al., 2013; Lin, Cheng, and Cohen, 2014) because
an external force or flow defines a preferred direction. In
particular, its contact value gþðσ; θÞ, using polar coordinates
within the x-y plane through the particle center, varies with
orientation and derived quantities like pressure become
anisotropic with the off-diagonal component determining
the shear stress; cf. Eq. (36). In linear response, Brady

(1993) determined the Brownian stress as the equilibrium
gðσþÞ at contact divided by the short-time self-diffusivity.
The deformation at intermediate Péclet numbers is shown in

Figs. 35(a)–35(c). The relationship between macroscopic
material properties and microscopic structure is at the heart
of theoretical approaches. Much effort has been devoted to
predict the deformation of the pair distribution in response to
external forces and flows (Squires and Brady, 2005), which
allows one to calculate flow curves τðγ̇Þ from first principles.
Combining confocal microscopy (of sufficient frame rate) and
rheological measurements provides a powerful means to
access the local structure in hard-sphere fluids far from
equilibrium (Besseling et al., 2009; Lin et al., 2014).
At even higher strain rates (or shear stresses) and moderate

to high packing fractions (ϕ > 0.3), some experiments report
an abrupt (sometimes discontinuous) viscosity increase as
the stress is increased, i.e., shear thickening (d’Haene, Mewis,
and Fuller, 1993; Bender and Wagner, 1996; Meeker, Poon,
and Pusey, 1997; Cheng et al., 2002). A comprehensive
understanding of this somewhat counterintuitive behavior
(it is notably absent in atomistic and molecular liquids) has
remained an open challenge (Brown and Jaeger, 2014). For
Brownian hard spheres it is now broadly accepted to be a
hydrodynamic phenomenon caused by the reversible forma-
tion of “hydroclusters” held together through lubrication
forces (Wagner and Brady, 2009). Confocal microscopy
evidence (Cheng et al., 2011) has also been used to investigate
the hydrodynamic and contact force contributions to shear
thickening (Lin et al., 2015). Shear thickening extends to
dilute suspensions (ϕ < 0.1), although only at high strain rates
(Bergenholtz, Brady, and Vicic, 2002). [See Fig. 35(d) for a
summary.] Shear thickening has also been proposed as the
mechanism linking rheology of Brownian hard spheres

(a)

(c)

(b)

FIG. 34. (a) Sketch of a cone-plate rheometer together with a
confocal microscope. (b) Measured shear stress τ as a function
of the applied strain rate γ̇a for several packing fractions ϕ below
and above the glass transition. The open symbols indicate
uncoated smooth plates, while the full symbols show the data
for coated plates with no-slip boundary conditions. (c) The excess
stress τ − τ0 is linear, with the slope ηeff defining an effective
viscosity. From Ballesta et al., 2008.

(a) (b) (c)

(d)

FIG. 35. The microstructure gðrÞ deforms in shear flow at
(a) Peγ̇ ¼ 0.1, (b) Peγ̇ ¼ 1, and (c) Peγ̇ ¼ 10. (a)–(c) From Foss
and Brady, 2000a. (d) Sketch of the different flow regimes of
hard-sphere suspensions. The lines indicate crossovers, with
shear thinning predominately due to colloidal forces and shear
thickening having a hydrodynamic origin. Shear thickening has
also been observed in dilute suspensions at high strain rates
(Bergenholtz, Brady, and Vicic, 2002). At high packing fractions
and high strain rates shear-induced ordering is possible.
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(σ ≲ 1 μm) with the physics of non-Brownian granular hard
spheres (σ ≳ 50 μm) (Guy, Hermes, and Poon, 2015).
While the shear-thickening behavior is associated with an

abrupt increase in the hydrodynamic stresses between the
colloidal spheres, which locks them together, giving rise to
the large hydroclusters resistant to flow, hydrodynamic
interactions between smooth surfaces predict a continuous
shear-thickening transition (Ball and Melrose, 1995, 1996;
Foss and Brady, 2000b; Melrose and Ball, 2004). The
discontinuous appearance of shear thickening instead is found
to depend on the small scale surface asperities of the colloidal
particles. These asperities can break the lubrication layer and
can give rise to a frictional contribution. The relative motion
of the particles is then akin to a stick-slip scenario triggered
by the breakage of the lubrication layer (Mari et al., 2015;
Hermes et al., 2016; Kawasaki and Berthier, 2018; Morris,
2018; Jamali and Brady, 2019). Simulations have explicitly
shown a transition from continuous to discontinuous shear
thickening by progressively increasing the surface roughness
of the particles (Wang, Jamali, and Brady, 2020). The
importance of surface characteristics has also been confirmed
in a large variety of experimental works (Fernandez et al.,
2013; Hsiao et al., 2017; Hsu et al., 2018; Schroyen et al.,
2019). In the absence of inertia, two types of discontinuous
shear thickening are predicted to occur, depending on whether
the frictional particles are below or above their jamming point,
where the thickened phase either flows smoothly or is
completely jammed (Wyart and Cates, 2014). Curiously, in
experiments an additional high-frequency and low-amplitude
shear orthogonal to the primary shearing flow has been shown
to suppress shear thickening (Lin, Ness et al., 2016).
The high ϕ and high strain rate regime leads to even more

surprising observations. Experiments first revealed (Ackerson
and Pusey, 1988; Ackerson, 1990), and BD simulations later
confirmed (Strating, 1999), that particles then form layers
perpendicular to the shear gradient that slide over each other.
The system therefore keeps flowing with a viscosity that
suddenly drops at Peγ̇ ≈ 10. Hard spheres under shear can also
exhibit nonuniform flow profiles, so-called shear banding.
One mechanism is the formation of an arrested band due to
small variations of the local packing fraction that trigger the
arrest of a much larger region of the flow (Besseling et al.,
2010). Other exotic phenomena include the formation of
twinned fcc crystals and sliding layers (Haw, Poon, and Pusey,
1998), strings of particles in hard-sphere fluids (Cheng et al.,
2012), and novel configurations that optimized packing
(Cohen, Mason, and Weitz, 2004). The nonequilibrium phase
behavior of a fluid of colloidal hard spheres under oscillatory
shear was investigated in real space with experiments on
PMMA colloidal suspensions and BD simulations as a
function of the frequency of the oscillations and 0 ≤ Peγ̇ ≤ 15,
displaying a shear-induced oscillating twinned fcc phase, a
sliding layer phase, a string phase, and a tilted layer phase
(Besseling et al., 2012).
Shearing hard-sphere crystals opens yet another range of

phenomena. These include melting (Wu et al., 2009), shear
banding (Cohen, Mason, and Weitz, 2004; Cohen et al., 2006;
Dhont and Briels, 2008), and, in the case of confined crystals,
buckling phenomena (Schall et al., 2004). It is even possible

to infer information about stresses between defects in hard-
sphere crystals through a careful analysis of particle trajecto-
ries (Lin, Bierbaum et al., 2016).

C. Microrheology

Trapping a colloidal probe with optical tweezers and
imaging its stochastic motion provides insights into the
mechanical properties of the host material (Wilson et al.,
2009; Puertas and Voigtmann, 2014). This microrheological
technique is particularly important for biological materials
that are difficult to prepare in sufficient amounts for conven-
tional rheological studies (Wilhelm, 2008) and to resolve local
mechanical properties in inhomogeneous (soft) materials.
Microrheology also enables the noninvasive determination
of rheological properties from optical diffusive wave spec-
troscopy (Sec. IV.A), i.e., from the scattering of many
diffusing probes (Mason and Weitz, 1995b). The method
then provides moduli at higher frequencies than those acces-
sible via mechanical measurements.
Depending on whether or not the probe is forced, one

distinguishes active from passive microrheology. The latter
exploits the fluctuation-dissipation theorem, which greatly
simplifies the analysis, while analyzing the data from driven
probes requires a preexisting model of the host material.
In this context, hard spheres have emerged as a particularly
useful reference for colloidal suspensions. Squires and Brady
(2005) provided a comprehensive analysis of the deformation
of the microstructure (Fig. 36) around a hard probe with
diameter σprobe forced through a bath of hard spheres with drift
Péclet number Pev ¼ vðσ þ σprobeÞ=2D0. Here v is the probe
speed. Analytical expressions for the viscosity are derived in
the limits of small and large Pe, thereby yielding an accurate
extrapolation to intermediate Péclet numbers. Forcing a probe
through a crystal (Vossen, 2004; Dullens and Bechinger,
2011) and a colloidal glass (Habdas et al., 2004; Gazuz
et al., 2009; Gruber et al., 2016) has also been studied.

D. Other out-of-equilibrium phenomena

Time-resolved confocal microscopy has been used to study
other out-of-equilibrium phenomena. One such example is the
dynamics of colloidal particles in externally created energy
landscapes, such as optical potentials generated by interfering
laser beams. Other significant examples include ordering of
polystyrene spheres in quasiperiodic patterned potentials
(Mikhael et al., 2008), driving colloidal monolayers through
time-dependent fields (Bohlein, Mikhael, and Bechinger,

FIG. 36. The microstructure gðrÞ deforms around a driven
probe with (a) Pev ¼ 0.15, (b) 0.5, and (c) 1.5. From Squires
and Brady, 2005.
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2012; Brazda et al., 2018), diffusion in random landscapes
(Evers et al., 2013), and the transmission of forces through
dense colloidal aggregates (Williams et al., 2016).
Following the trajectories of single colloidal particles has

also been instrumental in experimentally verifying fluctuation
theorems (Wang et al., 2002; Carberry et al., 2004; Blickle
et al., 2006) and in verifying a class of exact relations from
nonequilibrium statistical physics starting with Jarzynski’s
seminal work relation (Jarzynski, 1997). [See Seifert (2012)
for a comprehensive theoretical review.] In a nutshell, thermo-
dynamic (currentlike) quantities like work and heat can be
extended to single stochastic trajectories, which are therefore
described by probability distributions constrained by the
(near-universal) fluctuation theorems. These relations have
also been tested in colloidal suspensions (Gomez-Solano
et al., 2015), and recent experimental results, including with
colloidal particles, were reviewed by Ciliberto (2017).
More recently “active” colloidal particles have moved into

focus. A wealth of interfacial phoretic mechanisms between
molecular and colloidal solutes can be exploited to generate
self-sustained gradients that move with the colloidal particles
and lead to directed motion (revealed as a correlation in
displacements absent in passively diffusing particles). One
phenomenon where simulations of active hard disks (and
spheres) have been, and still are, instrumental is the coexist-
ence of dense and dilute regions following motility-induced
phase separation (Cates and Tailleur, 2015). Given the
absence of cohesive forces, these processes are genuine far-
from-equilibrium phase transitions. In light of the many
reviews that have been devoted to this rich and fast-moving
field (Marchetti et al., 2013; Elgeti, Winkler, and Gompper,
2015; Bechinger et al., 2016; Janssen, 2019), we will not,
however, delve into this field further here.

XII. HARD-SPHERE GLASSES AND THEIR FORMATION

At its core, the glass problem consists of understanding how
the equilibrium dynamics of a liquid that exhibits no obvious
structural change grows to be sufficiently sluggish to freeze
particles in place. Although glasses are traditionally associ-
ated with cohesive supercooled liquids, dense hard spheres
have also long played a key conceptual role. Since the 1976
numerical simulations of Gordon, Gibbs, and Fleming (1976)
and Woodcock (1976), hard spheres have in fact been fueling
the debate about the nature and location of the glass transition,
initially with computer simulations (Frenkel and McTague,
1980; Woodcock, 1981; Woodcock and Angell, 1981; Speedy,
1987), and later with experimental advances such as dynamic
light scattering (Sec. IV.A) (Pusey and van Megen, 1987; van
Megen and Pusey, 1991; van Megen, Underwood, and Pusey,
1991a, 1991b), real-space analysis (Sec. IV.B) (van Blaaderen
and Wiltzius, 1995; Kegel and van Blaaderen, 2000; Weeks
et al., 2000; Leocmach and Tanaka, 2012; Hallett, Turci, and
Royall, 2018), and rheology (Mason and Weitz, 1995a; Bonn
et al., 2017).
In this section, we review the contribution of hard spheres to

our understanding of glasses. We first provide some context
(Sec. XII.A) before discussing the early work with light
scattering (Sec. XII.B), developments made possible by real-
space imaging (Sec. XII.C), and more recent work that

approaches much longer timescales than some of the earlier
studies (Sec. XII.D). We also consider the effect of confine-
ment (Sec. XII.E) as well as its 2D limit on hard-sphere glass
formation (Sec. XII.F). We then move on to the related
phenomenon of jamming (Sec. XII.H) and to specific proper-
ties of glasses, such as their vibrational behavior (Sec. XII.G),
aging (Sec. XII.I), and rheology (Sec. XII.J).
This section, like many others in this review, is limited in

scope. Here we exclusively discuss contributions to our
understanding of glasses [which has certain universal qualities
(Berthier and Biroli, 2011)] that result from hard-sphere
studies. We therefore do not include important work that
used other systems. For a more complete picture, we refer the
interested reader to reviews on the glass transition (Berthier
and Biroli, 2011) and on specific aspects such as mean-field
theory and high-dimensional work (Charbonneau et al.,
2017), dynamical heterogeneity (Berthier et al., 2011),
dynamical and structural length scales (Karmakar, Dasgupta,
and Sastry, 2014), local structure (Royall andWilliams, 2015),
jamming (Liu and Nagel, 2010; Torquato and Stillinger, 2010;
van Hecke, 2010; Charbonneau et al., 2017; Arceri, Corwin,
and O’Hern, 2023), aging (Arceri and Corwin, 2020), and
rheology (Bonn et al., 2017).
In this section, we also take a departure from the nomen-

clature used in the rest of this review. Hard spheres have no
liquid phase (Fig. 3, Sec. VII.A). However, because the glass
transition in molecular systems is typically driven by cooling a
liquid below its melting point such that it is supercooled, the
analogous behavior in hard spheres is to compress the system
beyond its freezing point Pf [or, following Berthier and
Witten (2009) Zf, for the reduced pressure Z ¼ βP=ρ] as the
control parameter. Therefore, in keeping with much of the
hard-sphere glass literature and to emphasize the analogy with
molecular systems, we refer to fluid state points thus com-
pressed as supercooled liquids (instead of supercompressed
fluids). Similarly, we refer to state points far beyond Zf as
being deeply supercooled. While the reduced pressure Z
emphasizes the link with molecular systems (Berthier and
Witten, 2009), some of the literature expresses state points in
terms of the volume fraction. Here we prefer Z, but when a
particular reference uses ϕ we also often use it.

A. Historical theoretical developments and persistent challenges

Understanding the glass transition has been an active area
of research for over a century (Berthier and Biroli, 2011), but
as it pertains to hard spheres the 1980s saw the independent
emergence of two major microscopic theories of the phe-
nomenon: a density-functional description of amorphous
solids (Singh, Stoessel, and Wolynes, 1985; Wolynes, 1985;
Baus and Colot, 1986; Löwen, 1990), and a kinetic-theory-
based (Dorfman, van Beijeren, and Kirkpatrick, 2021) mode-
coupling theory (MCT) of glasses (Bengtzelius, Gotze, and
Sjolander, 1984; Leutheusser, 1984; Kirkpatrick, 1985;
Barrat, Gotze, and Latz, 1989; Fuchs, Hofacker, and Latz,
1992; Goetze, 2009). Using spin glass models as inspiration,
the random first-order theory (RFOT) of glasses was
then proposed to unify the two descriptions (Kirkpatrick
and Wolynes, 1987; Lubchenko and Wolynes, 2007). In
short, this framework posits the existence of a dynamical
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(or mode-coupling) transition at which ergodicity is lost [at
reduced pressure Zd (or ZMCT)–] due to phase space then
subdividing into a number of metastable states so large that the
transition sees the emergence of a thermodynamic entropy
contribution, i.e., a configurational entropy (or complexity).
While this description is now understood to hold in high

dimensions (Charbonneau et al., 2017; Parisi, Urbani, and
Zamponi, 2020), in two and three dimensions, the situation is
more subtle. This largely reflects the fact that this ideal scenario
neglects activated processes that can restore ergodicity beyond
the MCT transition (thus turning it into a crossover), perhaps
even up to the point at which the configurational entropy
Sconf ¼ S − Svib of the supercooled liquid is extrapolated to
become equal to that of the crystal (Kauzmann, 1948), where
Svib is the vibrational contribution to the entropy (Berthier,
Ozawa, and Scalliet, 2019). In the case of molecular liquids,
this would happen at a finite (Kauzmann) temperature. The
analogous scenario for hard spheres is sketched in Fig. 37, with
the configurational entropy of the supercooled liquid becoming
equal to that of the crystal at a certain pressure PK . [Here we use
pressure to connect with the crystal in the spirit of the work
with molecular systems (Kauzmann, 1948; Cavagna, 2009).]
Section XII.D details measurements of the configurational
entropy using advanced computer simulation methods that
confirm this picture (Berthier et al., 2017).
The drop in configurational entropy is understood to be

accompanied by an increase in a structural length scale
(Lubchenko and Wolynes, 2007), which would diverge at
PK [unless the transition is avoided (Stillinger, Debenedetti,
and Truskett, 2001; Royall et al., 2018)]. Such a length scale

may be accessed by point-to-set correlations, which measure
the impact of a frozen, disordered boundary (often spherical)
on the fluid behavior away from it (often the center of the
sphere) (Biroli et al., 2008). Cooperative relaxation at deep
supercooling (for P > PMCT or Z > ZMCT) leads to dynamical
heterogeneity, with some regions relaxing slower or faster
than one another in supercooled liquids (Berthier et al., 2011).
The size of these dynamically heterogeneous regions defines a
dynamical length scale.
Despite its considerable success and broad epistemic reach,

RFOT is far from the only theory of the glass transition to
have been formulated and used to interpret results from
colloidal hard spheres. A well-studied structural mechanism
for dynamical arrest has its roots in the work of Frank (1952),
who hypothesized that local fivefold symmetric arrangements
of particles would inhibit crystallization. This line of thought
was later extended to a dynamical theory built on geometric
frustration that imagines domains of particles in fivefold
symmetric local environments that grow with supercooling
(Tarjus et al., 2005). A related proposal identifies growing
structural length scales including regions of local crystalline
order (Tanaka, 2005a, 2005b, 2005c, 2022).
Yet another view revolves around facilitated dynamics,

which places much emphasis on dynamical correlations and
the dynamical facilitation (DF) of particle mobility (Chandler
and Garrahan, 2010). While based on simplified kinetically
constrained models, it has been applied to particulate systems.
DF invokes a dynamical phase transition between a phase in
which the system relaxes quickly (the active phase) and a
glassy phase with low mobility (the inactive phase). In
systems with nontrivial thermodynamics, the inactive phase
has a lower configurational entropy than the active phase
[somewhat akin to the crystal in the Kauzmann scenario
(Fig. 37)] (Royall, Turci, and Speck, 2020). Given this
background and context for the glass transition for the
purposes of this review, we now consider the research carried
out using (or at least inspired by) colloidal hard spheres.
From a practical standpoint, a colloidal hard-sphere glass

former must not obviously crystallize. One approach, inspired
by atomistic systems such as metallic glasses, is to use binary
systems as a means to suppress crystallization. As Sec. IX
makes clear, binary systems present a rich phase behavior, but
these complex assemblies can be slow to form. Certain binary
mixtures have therefore long been used as glass formers, e.g.,
the model metallic glass former Cu-Zr (Royall and Williams,
2015). A systematic study that used binary hard spheres as a
model for these systems has identified suitable compositions
and size ratios to suppress crystallization (Zhang et al., 2014).
Interestingly, for highly asymmetric size ratios (q≲ 0.1),

smaller particles deplete larger ones, thus leading to effective
attractions, as discussed in Sec. IX.B. The result is a more
complex dynamical arrest scenario, reminiscent of colloid-
polymer mixtures (Poon, 2002; Royall, Williams, and Tanaka,
2018) in which gelation competes with an attractive glass in
addition to the usual hard-sphere glass (Hendricks et al., 2015).
Another unexpected behavior includes a critical size asymme-
try, at which anomalous collective transport of the small
particles appears in a matrix of dynamically arrested large
particles (Sentjabrskaja et al., 2016). The rest of this section,
nevertheless, considers only relatively small size asymmetries.
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FIG. 37. Road map to the glass transition in hard spheres, with
the configurational entropy Sconf given as a function of the inverse
pressure 1=P (osmotic pressure in the case of colloidal systems).
Typically Sconf of molecular liquids decreases faster than that of
crystals as a function of temperature. (The configurational entropy
of the crystal is nonzero due to defects.) At some pressure PK , the
supercooled liquid configurational entropy would fall below that of
the crystal. Pg is the operational glass transition, which is mapped
from that of molecules where the structural relaxation time τα
typically exceeds that of the liquid by 1014 (corresponding to about
100 s). Further compression (fast relative to τα) leads to non-
equilibrium states (the colored lines). PMCT is the MCT crossover,
and Pf is the freezing point. Consideration of the inverse pressure
dependence here emphasizes the connection with molecular
systems (Kauzmann, 1948; Cavagna, 2009).
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B. Reciprocal-space picture: Early studies of the hard-sphere
glass transition

When hard-sphere experimental work took off in the 1980s,
the relaxation time14 τα window available spanned at most
four decades (with respect to a simple colloidal fluid at a
volume fraction ϕ ≈ 0.5). Thermodynamic aspects, such as
marked changes in configurational entropy, were therefore
largely beyond both numerical and experimental reach
(Berthier and Biroli, 2011). As a result, early investigations
focused mostly on the MCT description of the liquid dynam-
ics, which predicts a dynamical divergence at a volume
fraction ϕMCT ≈ 0.58. For instance, van Megen and Pusey
(1991), van Megen, Underwood, and Pusey (1991b), van
Megen and Underwood (1993b, 1993c), and van Megen et al.
(1998) undertook a series of studies of colloidal hard spheres
from the MCT perspective, as reviewed by Sciortino and
Tartaglia (2005). Other particular highlights from this period
include rheological studies of dense colloidal suspensions
(Mason and Weitz, 1995a); see Sec. XII.J. Given the relatively
short relaxation timescales probed, activated processes could
then also be neglected, thus resulting in reasonably good
agreement with the MCT predictions. The characteristic
power-law growth of the relaxation time and the stretched
exponential (or Kohlrauch) form of the correlators, in par-
ticular, were found to closely match the MCT prediction
(van Megen et al., 1998).

C. Real-space picture: Local structure and dynamical
heterogeneity

Local structure in real space. With the use of particle-
resolved studies, information about certain features that are
otherwise difficult to discern in molecular liquids started to
emerge. In their pioneering work, van Blaaderen and Wiltzius
(1995) identified the presence of local fivefold symmetric
structures in colloidal glasses, as had been predicted by
Frank’s conjecture (Frank, 1952) and subsequent dynamical
descriptions based on geometric frustration (Nelson and
Spaepen, 1989; Tarjus et al., 2005). Subsequent efforts to
probe specific predictions of that theory, such as growing
frustration-limited domains of particles in fivefold symmetric
motifs upon supercooling, however, uncovered little evidence
of the phenomenon at weak to moderate supercooling
(Z ≲ ZMCT) (Charbonneau, Charbonneau, and Tarjus, 2012,
2013; Dunleavy et al., 2015; Royall et al., 2015; Royall,
Williams, and Tanaka, 2018). Although some growth of such
domains was later found at deeper supercooling (Hallett,
Turci, and Royall, 2018, 2020) (see Sec. XII.D), these
findings nevertheless suggest that hard-sphere supercooled
liquids are strongly geometrically frustrated in the dynamical
regime up to the MCT crossover (Z ≲ ZMCT). Dynamical
sluggishness can at best be only partially attributed to that
effect.
Tracking colloids in supercooled liquids in time:

Dynamical heterogeneity. An important contribution to our
understanding of the glass transition has come through both

time- and particle-resolved studies. In the context of the glass
transition, this feat was first performed in quasi-2D systems
by Marcus, Lin, and Rice (1996), Marcus, Schofield, and
Rice (1999), and Cui, Lin, and Rice (2001) and was soon
after extended to 3D systems by Kegel and van Blaaderen
(2000) and Weeks et al. (2000). Later work investigated
spatially correlated clusters of slow particles (Weeks and
Weitz, 2002) that percolate across the system (Conrad et al.,
2006). This work brought forward clear evidence of spa-
tially heterogeneous dynamics as the liquid grows increas-
ingly viscous, thus validating earlier computer simulation
(Perera and Harrowell, 1996). Colloidal observations pro-
vide arguably the most explicit experimental evidence for
dynamical heterogeneity in glass-forming systems, a key
discovery in the field in recent decades (Ediger, 2000);
see Fig. 38.
This feature has since been variously interpreted, including

as the fluctuations associated with the avoided dynamical
transition predicted by mean-field (RFOT) theory (Berthier
and Biroli, 2011) and as constituting an integral part of DF and
inhomogeneous MCT (Mishra, Habdas, and Yodh, 2019).
More recently real-space studies using hard spheres have also
been leveraged to gain insight into DF and to observe the
dynamical and structural-dynamical phase transitions in
experiments (Pinchaipat et al., 2017; Abou et al., 2018)
and simulations (Campo and Speck, 2020). Other tests of that
theory include the prediction for the structural relaxation time
in two dimensions (Isobe et al., 2016) and three dimensions
(Ortlieb et al., 2023) and the identification of the elementary
units of relaxation, so-called excitations, which are localized
short-term relaxation events seen in 2D colloidal experiments
using optical tweezers (Gokhale et al., 2014, 2016; Gokhale,
Sood, and Ganapathy, 2016). By contrast, in other studies

FIG. 38. Dynamical heterogeneity in real space is identified by
highlighting the locations of the fastest particles (larger spheres)
compared to the other particles (smaller spheres). The latter are
drawn smaller for clarity; the particles all have the same physical
size, which is the displayed size of the large spheres. Shown is a
supercooled sample with ϕ ≈ 0.56 and measurement time
Δt� ¼ 1000 s. The fastest particles are displaced by about
0.32σ. The red (pale gray) cluster contained 69 particles; the
light blue cluster contained 50 particles. FromWeeks et al., 2000.

14The relaxation time is typically defined as the time needed for
structural correlations to decay to 1=e of their initial value.
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correlations have been found between short- and long-term
relaxation associated with RFOT (Mishra et al., 2019);
see Sec. XII.D.
The various interpretations leveraged to make sense of these

studies reflect an incomplete first-principles understanding of
glass formation. For instance, even though microscopic
proposals for the origin of collective fluctuations [traditionally
captured by the dynamical susceptibility χ4ðtÞ] were advanced
soon after dynamical heterogeneity was reported (Berthier
et al., 2011), only recently has a first-principles explanation
(based on displacements being correlated along different
dimensions of space) emerged for their single-particle
counterpart [traditionally encoded by the non-Gaussian
parameter α2ðtÞ (Biroli et al., 2021; Folena et al., 2022;
Charbonneau, Hu, and Morse, 2024)]. Put simply, the
dynamical heterogeneity of supercooled liquids remains an
active area of research.
Correlation between structure and dynamics in super-

cooled hard spheres. The aforementioned work that consid-
ered fivefold symmetry notwithstanding, a number of studies
have demonstrated that a significant amount of information
about the dynamics is encoded in the local structure of
supercooled hard spheres. Marín-Aguilar et al. (2020), for
instance, demonstrated a strong link between the number
of local tetrahedral clusters in mixtures of hard spheres and
their local and global dynamics. Similarly, methods based on
information theory (Dunleavy, Wiesner, and Royall, 2012;
Jack, Dunleavy, and Royall, 2014; Dunleavy et al., 2015) and
machine learning (Boattini et al., 2020; Boattini,
Smallenburg, and Filion, 2021; Alkemade et al., 2022) are
capable of predicting the local dynamics of glassy hard-sphere
systems based on structural data alone, which is analogous
to similar observations in other model systems (Bapst et al.,
2020).
In some hard-sphere systems, the growth of a static length

scale has been related to a dynamical length (Kawasaki, Araki,
and Tanaka, 2007; Kawasaki and Tanaka, 2010b; Tanaka
et al., 2010; Leocmach and Tanaka, 2012), and to the extent to
which the relaxation time increases in response to the control
parameter, i.e., the fragility of the supercooled liquid15

(Tanaka, 2005a, 2005b, 2005c, 2022). In 2D systems, this
length scale can be particularly significant (Kawasaki, Araki,
and Tanaka, 2007; Tanaka et al., 2010; Russo and Tanaka,
2015); see Sec. XII.F. That length scale often corresponds to
“medium-range crystalline order” (Kawasaki, Araki, and
Tanaka, 2007; Tanaka et al., 2010) and is therefore distinct
from the previously noted fivefold symmetric local order. A
more general setup for detecting this length has also been
considered (Tong and Tanaka, 2018). Because most of this
analysis has been carried out in the regime up to the MCT
crossover P≲ PMCT (or Z ≲ ZMCT) range, where small length
scales are typically encountered, it would be most interesting
to see what happens at deeper supercooling. It is important to
obtain a sharper understanding of why certain systems and

analyses provide longer length scales than others (Kawasaki,
Araki, and Tanaka, 2007; Kawasaki and Tanaka, 2010b;
Tanaka et al., 2010; Dunleavy, Wiesner, and Royall, 2012;
Leocmach and Tanaka, 2012; Dunleavy et al., 2015; Hallett,
Turci, and Royall, 2018, 2020; Marín-Aguilar et al., 2020),
and sometimes even longer than in molecular systems super-
cooled to Tg (Dauchot, Ladieu, and Royall, 2023) or computer
simulations using swap MC (Berthier et al., 2017); see
Sec. XII.D. In the case of the more weakly polydisperse
samples with the largest length scales, a comparison with the
work of Zhang et al. (2018) showed that a means to
distinguish polycrystals from glasses could be particularly
useful; see Sec. XII.F.

D. Deeper supercooling: Beyond the MCT (dynamical) crossover

Since 2010, both experiments (Brambilla et al., 2009; El
Masri, Berthier, and Cipelletti, 2010; Hallett, Turci, and Royall,
2018, 2020) and simulations (Brambilla et al., 2009) have been
able to equilibrate hard-sphere liquids beyond the MCT cross-
over, and therefore to probe the activated processes that restore
ergodicity in that regime; see Fig. 39.
The use of smaller colloids and the concurrent improvement

of imaging capabilities (Sec. IV.B) (Hallett, Turci, and Royall,
2018; Hallett, Turci, and Royall, 2020) have markedly
enlarged the range of experimentally accessible relaxation
timescales; see Fig. 40 and Sec. IV.C. Among the insights
afforded (in addition to the growth of local structures with
fivefold symmetry) is the increase of a structural length scale.
A length scale may also be extracted from the dynamical
heterogeneity (Lačević et al., 2002), which was found to grow
concurrently with the structural length scale. Although both
exhibited scaling compatible with RFOT-based arguments,

ξðZÞ ¼ ξ0

�
1

ZVFT − Z

�
1=ð3−θÞ

; ð37Þ

FIG. 39. Relaxation beyond the MCT crossover. Shown is the
relaxation timescale for DLS experiments (black circles) and MC
simulations (open triangles), respectively, in units of τ0 ¼ 1 s and
τ0 ¼ 7 × 104 MC steps. The red (pale gray) dashed line is a
power-law fit to the MCT critical scaling with a transition (or,
rather, a crossover) around ϕMCT ¼ 0.590 (vertical dotted line)
and exponent γ ¼ 2.5. The solid blue line is a fit to DLS data
using a modified Vogel-Fulcher-Tammann form with divergence
at ϕVFT ¼ 0.637. The inset emphasizes that the MCT singularity
is absent. From Brambilla et al., 2009.

15In molecular systems, fragility quantifies the rate of increase of
the relaxation time upon cooling, with more fragile systems exhibit-
ing a faster rate. For hard-sphere systems, the equivalent is the rate of
increase of the relaxation time with either Z or ϕ.
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where ξ0 is a length at higher pressure and PVFT (or ZVFT) is
the compressibility corresponding to the dynamical diver-
gence of the Vogel-Fulcher-Tammann (VFT) fit and θ ≈
2.05� 0.1 (Hallett, Turci, and Royall, 2018), this work is
still well short of the 14 orders of magnitude increase in
relaxation time corresponding to the operational glass tran-
sition. An interesting means of using still smaller particles
(which could access longer effective timescales) could be to
sacrifice particle-resolved imaging and instead measure fluo-
rescence recovery from photobleaching (van Blaaderen,
Peetermans et al., 1992; Simeonova and Kegel, 2004).
An interesting new direction for experiments with small

particles benefits from recent developments in synchotron
intensity with x rays (Wochner et al., 2009; Lehmkühler et al.,
2020; Liu et al., 2022; Striker et al., 2023). This approach has
enabled the development of methods such as x-ray photon
correlation spectroscopy (XPCS), microbeam x-ray scattering,
and x-ray cross-correlation analysis (XCCA). XPCS is the
x-ray equivalent of DLS and is therefore sensitive to dynami-
cal information, though at much smaller wavelengths than
DLS. Techniques based on the latter two can reveal higher-
order structure and have been used to identify local fivefold
symmetric order in systems of 100 nm diameter silica particles
(Wochner et al., 2009; Lehmkühler et al., 2020; Liu et al.,
2022), i.e., smaller than what has been achieved even with
superresolution microscopy. Furthermore, XCCA can even be
coupled with XPCS to combine higher-order structure and
dynamical measurements (Striker et al., 2023). The ability to
access, in principle, much smaller particles shows that these
methods may enable access to much longer timescales (in
terms of τB), enabling equilibration at a higher reduced
pressure Z than has yet been achieved.
These advances, however, pale in comparison with the

scale of the numerical developments based on the swap MC
algorithm (Ninarello, Berthier, and Coslovich, 2017). Prior
studies of hard spheres had mostly considered minimally size
polydisperse mixtures, which benefit from a certain proximity
to theoretical frameworks and experiments while suppressing
crystallization (Bernu, Hiwatari, and Hansen, 1985; Mountain
and Thirumalai, 1987; Eldridge et al., 1995), but Ninarello,
Berthier, and Coslovich (2017) showed that astronomical
sampling gains can be obtained by enabling diameter
exchanges in broadly polydisperse mixtures of hard spheres.
Although these ergodicity restoring processes correspond to
an extraordinarily unphysical dynamics that at best indirectly

informs our understanding of actual liquid dynamics (Ikeda,
Zamponi, and Ikeda, 2017; Wyart and Cates, 2017; Berthier,
Biroli, Bouchard, and Tarjus, 2019), their reach beyond the
MCT scaling regime of the resulting equilibrium configura-
tions has no equal: it can match and even surpass the
experimental glass transition of molecular liquids, where
the relaxation time is some 1014 longer than in the liquid.
Note that the relatively high polydispersity required for swap
MC to suppress crystallization also seems to reduce the degree
of fivefold symmetric structures, thus suggesting a lack of
universality for the kind of structural approach employed in
geometric frustration (Coslovich, Ozawa, and Berthier, 2018).
As shown in Fig. 41, these configurations have notably

enabled crisp complexity measurements in hard-sphere
(Berthier et al., 2017) and hard-disk models (Berthier,
Charbonneau et al., 2019). These results provide an unprec-
edented test of the thermodynamic complexity vanishing at a
Kauzmann-like entropy crisis at ZK .
The same configurations have also been used to study

certain features of a proposed ergodicity restoring process.
Given that equilibrium liquid configurations are metastable (in
a mean-field sense) beyond the MCT crossover, it has long
been proposed that a nucleationlike process should dominate
dynamical relaxation. Thanks to swap MC, the growth of the
point-to-set metastability length associated with the growing
amorphous order that underlies that mechanism has even been
detected (Berthier et al., 2017; Berthier, Biroli, Bouchard,
and Tarjus, 2019) significantly beyond what was previously
possible (Biroli et al., 2008). The relationship of these
observables to actual activated dynamics, however, remains
far from controlled. Recent studies have isolated the contri-
bution of an altogether different, hoppinglike, relaxation
mechanism (Biroli et al., 2021). The seeming robustness of
the coupled (and cooperative or facilitated) relaxation of
localized features (Chacko et al., 2021; Kapteijns et al.,

FIG. 40. Resolving small colloids in real space. (a) Stimulated
emission depletion nanoscopy image for ϕ ¼ 0.598. The scale
bar corresponds to 3 μm. Rendered coordinates of defective
icosahedra (green, top right structure) and full icosahedra (purple,
bottom right structure) for (b) ϕ ¼ 0.523 and (c) 0.598, respec-
tively. From Hallett, Turci, and Royall, 2018.
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pressure; this is congruous with the existence of a Kauzmann-
type entropy crisis. Inset: depiction of the growing extent of
amorphous order (dark colors) as pressure increases. From
Berthier et al., 2017.
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2021; Guiselin, Scalliet, and Berthier, 2022; Ortlieb et al.,
2023) suggests that a great deal of conceptual tension remains
to be resolved.
Other approaches to assess the validity of the RFOT

description have also been devised. Evidence for a drop in
configurational entropy has been inferred by comparing
different regions in deeply supercooled colloid experiments
(Hallett, Turci, and Royall, 2018). Alternatively, in deeply
supercooled liquids pinning a fraction of the particles in place
also reduces the configurational entropy, thus bringing the
system closer to the Kauzmann transition without further
equilibration (Cammarota and Biroli, 2012). In colloidal
experiments, a similar setup has been achieved with optical
tweezers (Gokhale et al., 2014, 2016; Gokhale, Sood, and
Ganapathy, 2016) and by adhering colloids to a substrate
(Williams et al., 2018). Spherical confinement (see Sec. X.D)
has been used to investigate amorphous order in supercooled
liquids through measurements akin to cavity point-to-set
correlations (albeit without an equilibrated confining boun-
dary). Experiments confining particles within an emulsion
droplet have similarly revealed growing structural length
scales (Zhang and Cheng, 2016).
Identifying transitions between metabasins in the free-

energy landscape (Rodriguez Fris, Appignanesi, and Weeks,
2011; Rodriguez Fris et al., 2018) through measuring the
fractal dimension of so-called cooperatively rearranging
regions (CRRs) has also been investigated experimentally.
Early results were found to be consistent with more compact
CRRs at deep supercooling (Nagamanasa et al., 2015), but
equilibrating these conventional colloidal systems past the
MCT crossover, where such compaction is expected (Berthier
and Biroli, 2011), is difficult. Smaller colloids have since
confirmed the compaction of CRRs more convincingly
(Ortlieb et al., 2023). The particular scaling properties of
CRR surfaces (Biroli and Cammarota, 2017) have also been
measured in colloidal systems for P≲ PMCT (or Z ≲ ZMCT)
and found to be consistent with predictions (Ganapathi
et al., 2018).
Obtaining a clear understanding of the actual relaxation

dynamics in this regime nevertheless remains fraught with
theoretical and experimental challenges. Whichever way this
problem moves forward, hard-sphere models and experiments
will be involved in advancing our comprehension.

E. The hard-sphere glass transition under confinement

In molecular glass-forming systems, the effect of confine-
ment has long been a challenge to understand because
contradictory effects on the relaxation time have been reported
(Richert, 2011). Corresponding experimental studies are
limited and lie in the weakly supercooled P≲ PMCT (or
Z ≲ ZMCT) regime. Confinement has nevertheless been shown
to robustly induce layering (see Sec. X), which has a profound
effect upon dynamical heterogeneity, and markedly increases
the overall relaxation time (Nugent et al., 2007; Edmond,
Nugent, and Weeks, 2012).
Using walls at which the mobility can be controlled,

boundary mobility has been shown to play an important role
in the relaxation of confined hard spheres (Hunter, Edmond,
and Weeks, 2014). Gradients in dynamics with respect to the

boundary appear for more mobile boundaries, whereas for less
mobile boundaries gradients are almost entirely suppressed.
One quasi-2D system using adaptive confinement (see Sec. X)
revealed the emergence of a faster relaxation mechanism at
high area fraction, leading to “negative fragility,” that is, the
relaxation time increasing in a “sub-Arrhenius-like” manner
(Williams et al., 2015), which, due to the curvature of the
bounary, could be related to void-induced relaxation that has
been observed in the bulk (Yip et al., 2020). For a moderately
polydisperse, densely packed hard-sphere fluid confined
between two smooth hard walls, EDMD simulations showed
the emergence of reentrant glass transitions depending on the
wall separation, which was in agreement with MCT predic-
tions (Mandal et al., 2014).

F. The glass transition in 2D hard spheres

Two-dimensional glass-forming systems differ significantly
from their 3D counterparts. First, the traditional geometrical
frustration argument is turned on its head. For hard disks,
the local liquid structure is hexagonal, as is the crystal, and
therefore no geometrical frustration is expected. As a result,
simulations have revealed (Kawasaki, Araki, and Tanaka,
2007; Tanaka et al., 2010) and experiments have confirmed
(Tamborini, Royall, and Cicuta, 2015) that structural corre-
lations are more long-range than in the 3D systems mentioned
in Sec. XII.A. Second, Mermin-Wagner-like fluctuations
result in dynamical correlations that are profoundly different
from those in three dimensions (Flenner and Szamel, 2015),
as confirmed in an experiment (Vivek et al., 2017).

G. Vibrational properties of hard-sphere glasses

Molecular (rather than colloidal) glasses exhibit unusual
vibrational properties. Among these is the boson peak, an
excess density of states with respect to the Debye scaling of
specific heat found in crystalline materials (Berthier and
Biroli, 2011). Colloids exhibit overdamped dynamics and
therefore do not have a proper vibrational spectrum. It is
nevertheless possible to imagine a shadow system with
Newtonian interactions that features the same set of configu-
rations (K. Chen et al., 2010). A number of studies have
thereby deduced an effective density of states of soft vibra-
tional modes (Ghosh, Chikkadi et al., 2010; Ghosh, Mari
et al., 2010; Kaya et al., 2010). This approach has led to
experimental evidence for such a boson peak in hard-sphere
colloidal systems (K. Chen et al., 2010; Ghosh, Chikkadi
et al., 2010; Ghosh, Mari et al., 2010).
The vibrational properties of a hard-sphere glass are also

related to the free volume available for each particle. This free
volume can be interpreted using a cell-theory-like analysis
(Sec. VI.B) on the real-space Voronoi volumes obtained in
hard-sphere colloidal glasses. This analysis has demonstrated
a decrease in the effective vibrational free energy during aging
(Zargar et al., 2013). The local free energy has further been
shown to display strong spatial and temporal heterogeneity,
and changes in free energy between consecutive snapshots
have been correlated algebraically with particle rearrange-
ments. The vibrational properties of the glass have further
been shown to correlate with its local free energy, displaying a
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large excess of low-frequency modes (Zargar et al., 2014;
Dang et al., 2022), despite the limitations of cell theory in the
context of disordered materials; see Sec. VI.B.

H. Colloidal hard spheres and the jamming transition

As noted in Sec. II.A, in their pioneering work Bernal et al.
constructed out-of-equilibrium disordered (or glasslike) solids
out of compressed ball bearings. While investigating the
structural properties of the liquid state, they also obtained a
first controlled model of hard-sphere jamming (Bernal and
Mason, 1960; Finney, 2013), and of the so-called random
close-packing (RCP) volume fraction ϕRCP ≈ 0.64 (Scott and
Kilgour, 1969). In its purest sense, jamming pertains to
crunching hard particles up to infinite pressure such that no
thermal motion remains. Rigidity then emerges from particles
being immobilized by each other.
A putative relationship between equilibrium and nonequi-

librium crunching was first proposed by Angell et al. who
considered that singularities of the resummed hard-sphere
virial expansion might be related to the jamming singularity
(Woodcock and Angell, 1981; Song, Stratt, andMason, 1988).
The simplicity of this thermodynamics-based approach was
appealing, which probably explains why similar schemes were
still considered decades later. Dedicated numerical efforts,
however, clearly distinguished the equilibrium liquid branch
from the continuum of out-of-equilibrium glass branch(es)
(Speedy, 1994; Rintoul and Torquato, 1996; Robles et al.,
1998). Particularly telling (and model-free) evidence against
the virial-series scheme is the nonuniqueness of the amor-
phous close-packed density. Depending on the preparation
protocol, a wide range of possible densities can indeed be
reached (Brambilla et al., 2009; Chaudhuri, Berthier, and
Sastry, 2010; Hermes and Dijkstra, 2010a, 2010b; Ozawa
et al., 2012; Charbonneau and Morse, 2021).
Edwards and Oakeshott (1989) formulated another influ-

ential proposal for dealing with jamming using an equilibrium
statistical-mechanics-like description. Despite the approxi-
mate nature of this description for any actual jamming
protocol (Charbonneau et al., 2017), it turned out to be a
versatile and influential framework for granular experiments
over the following decades (Baule et al., 2018). Analyses of
jamming based on this scheme, however, also suffered from
identifying a unique terminal density.
Yet another proposal for unifying glass formation and

jamming has been less quantitatively fruitful but more con-
ceptually productive. In the late 1990s, Liu and Nagel (1998)
presented a framework for relating glass formation and
jamming, commonly known as the jamming phase diagram,
that relates volume fraction, temperature, and shear stress.
Perhaps one of the most physically stunning features of
jamming is that its criticality is largely independent of
physical dimension (Donev, Torquato, and Stillinger, 2005b;
Skoge et al., 2006; Goodrich, Liu, and Nagel, 2012;
Charbonneau, Corwin et al., 2021). Certain critical features
remain robustly invariant in going from the exactly solvable
limit of d → ∞, obtained through a full replica symmetry
breaking calculation, down to amorphous packings of 2D
disks (Charbonneau et al., 2015; Charbonneau, Corwin et al.,
2021). The corrections that do appear are largely localized,

such as rattlers (floaters) and bucklers (Charbonneau et al.,
2017), and can be geometrically identified through simple
criteria. Low-energy excitations around jammed configura-
tions, however, remain largely universal (Charbonneau et al.,
2016; Kapteijns, Bouchbinder, and Lerner, 2018; Shimada
et al., 2020). As many thorough and complementary reviews
are available on this topic (Liu and Nagel, 2010; Torquato and
Stillinger, 2010; van Hecke, 2010; Charbonneau et al., 2017;
Arceri, Corwin, and O’Hern, 2023; Morse and Charbonneau,
2024), here we specifically consider aspects pertinent to hard-
sphere colloids.
Since experimental systems of colloids are neither perfectly

hard nor at infinite pressure nor perfectly frictionless, one line
of enquiry has been to probe how much these differ from
purely jammed hard spheres, without thermal motion. Jenkins
et al. (2011) found that the statistics of load-bearing bridges
of colloids in a high volume fraction sediment (i.e., under
gravity) were the same as those predicted for granular
particles. This work is notable at a technical level, as the
coordinates of the particles needed to be determined with
exceptionally high precision; see Sec. IV.B. Other examples
include the interplay between compression rate (i.e., the
rotation rate of the centrifuge in which the sample is placed)
and the volume fraction of the final sediment. This was found
to vary between random loose packing (RLP) volume fraction
ϕRLP ≈ 0.55 for rapidly compressed dilute samples and ϕRCP
for samples with an initially high volume fraction that were
slowly compressed. This result suggests the presence of some
degree of friction, which is particularly important if the
timescale of compression is comparable to or less than the
Brownian time (Liber et al., 2013).
An interesting connection between systems with thermal

motion and the zero-temperature jamming limit has been
made with the discovery of a Gardner transition, intermediate
between the two, in mean-field treatments (Charbonneau
et al., 2014). For equilibrium hard-sphere configurations well
beyond the MCT crossover, a quasistatic compression analy-
sis that neglects activated processes predicts the existence of
an intermediate Gardner transition at which marginal stability
emerges and then persists. By marginal stability it is meant
that the system can be perturbed by the smallest external force;
that is, its susceptibility diverges (see Fig. 42). Various
features of this transition have been reported in hard-sphere
simulations, including the growth of structural and dynamical
correlations (Charbonneau et al., 2014, 2017). A similar
phenomenology was predicted and reported under shear
(Jin and Yoshino, 2017, 2021; Jin et al., 2018). In all cases,
however, the thermodynamic character of this transition
remains an open area of research (Berthier, Ozawa, and
Scalliet, 2019; Li et al., 2021). Experimental validation of
many of these findings using colloids is also an open
challenge. Although inventive detection schemes have been
devised (Hammond and Corwin, 2020), identifying signatures
of the Gardner transition using particle-resolved studies
requires a high precision of coordinate tracking with respect
to the particle diameter that can be achieved in vibrated
granular systems (Seguin and Dauchot, 2016; Kool,
Charbonneau, and Daniels, 2022; Xiao, Liu, and Durian,
2022) but is challenging with colloids; see Sec. IV.B.
Given the 2D nature of these granular systems, however,
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whatever unusual behavior is reported for these systems is
expected to wash out in the thermodynamic limit (Berthier,
Biroli, Charbonneau et al., 2019).

I. Aging in hard-sphere glasses

Another important out-of-equilibrium phenomenon in
glasses is their aging, which refers to the physical proper-
ties of a material displaying a slow time evolution after a
sudden quench into the glass regime. In other words,
aging is observed when the relaxation time of the system
exceeds the experimental observation time, thus breaking
time translation invariance. To describe aging, an explicit
dependence on the waiting time (the time elapsed since
the initial quench) tw is introduced to all structural and
dynamical properties.
A large body of theoretical work on aging has focused

on mean-field models (Cugliandolo and Kurchan, 1993;
Cugliandolo, Kurchan, and Ritort, 1994), which describe a
system that is trapped in an energy landscape in which barriers
of all possible heights are present and time-correlation
functions never completely decay. Trap models, which
describe phase space as a large collection of metastable
states, thus resulting in a broad distribution of trapping times,
provide a physically intuitive picture (Bouchaud, 1992;
Denny, Reichman, and Bouchaud, 2003). These theoretical
approaches make interesting predictions of universal behavior,
such as the existence of a long-time stationary regime where
time-correlation functions decay as power laws of t=tw and the
possibility of defining an effective temperature Teff (or, for
hard spheres, Zeff ), to describe the downhill motion of the
system in the free-energy landscape (Crisanti and Ritort,

2003). Recent advances, however, have revealed that these
broad universality claims are unwarranted. Even simple mean-
field models can exhibit aging processes that are much richer
(Folena et al., 2022; Folena and Zamponi, 2023). As a result,
the theoretical framework for describing aging remains some-
what fragile. Various studies have nevertheless explored this
regime using the canonical framework of Cugliandolo and
Kurchan (1993).
Although the time window over which colloidal hard-

sphere relaxation can be observed is limited, key insight
can be obtained by accounting for the nonergodic state of the
glass phase. In this context, optical techniques are key (Pusey
and van Megen, 1989). A single DLS experiment measures
the time-averaged time-correlation function of the intensity of
a single speckle. While for an ergodic system this function is
equal to the ensemble-averaged one, in the glass state the
sample explores only a limited region of phase space, even
over long times. It is therefore nonergodic. Early studies have
resolved this issue by repeating the measurements over a large
number of observations (Pusey and van Megen, 1987), but
Pusey and van Megen (1989) developed a procedure, based on
approximating the fluctuating component of the density
fluctuations with a Gaussian field of zero mean, to extract
the intermediate scattering function from a single measure-
ment of the time-averaged correlation function and a meas-
urement of the ensemble-averaged intensity (obtained by
quickly scanning the system through the laser beam). To
measure slow decays, other methods have been introduced,
such as the method of echoes (for which the sample is
continuously rotated during the measurement) (Pham et al.,
2004), as well as the multispeckle (Bartsch et al., 1997;
Cipelletti and Weitz, 1999; El Masri et al., 2005), and time-
resolved correlation techniques (Cipelletti et al., 2003; El
Masri et al., 2005).
The first observation of aging in a hard-sphere colloidal

glass was reported by van Megen et al. (1998), who measured
the self-intermediate scattering function via DLS by tuning
the refractive index of a mixture of optically different (but
equally sized) PMMA particles. These experiments showed
the waiting-time dependence of the long-time decay of the
relaxation functions. These studies were followed by multi-
speckle and time-resolved correlation studies (El Masri et al.,
2005) that confirmed the observation of aging in measure-
ments of the intensity of the correlation function, with
relaxation times also showing aging at early times, with a
possible plateau at later times. The decay of the intermediate
scattering function was shown (Martinez, Bryant, and van
Megen, 2008) to change from a simple exponential depend-
ence at short waiting times to an algebraic dependence on time
at long waiting times, thus agreeing with the aging time
superposition principle that was deduced from mean-field
models (Bouchaud, 1992).
In real-space experiments, the dynamics was found to slow

upon aging, which is consistent with expectations and with
the previously noted reciprocal-space work (Courtland and
Weeks, 2003). Studies on binary hard-sphere glass formers
have revealed that relaxation can be dominated by the smaller
species and that these can facilitate the relaxation of larger
particles (Lynch, Cianci, and Weeks, 2008).

FIG. 42. Road map to the Gardner transition. The inverse
pressure 1=P is shown as a function of the volume fraction ϕ,
with the pink (dark gray) line corresponding to the equilibrium
equation of state. At low volume fraction, the system is a fluid,
but for ϕ > ϕMCT the system supports many metastable states
within a range of pressures, which may be either stable glasses
(gray shaded region marked SG) or marginal glasses [yellow
(pale gray) shaded region]. These states are distinguished by the
anomalous elastic response of the marginal glass; see the main
text. The particles are hard, so jammed states correspond to
1=P ¼ 0 (on the horizontal axis), which are all marginal glasses.
The dashed lines describe compressions that are fast relative to τα
on the equilibrium line.
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Computational studies of aging in hard-sphere systems,
which can access up to six decades of relaxation times, have
managed to access the decay of time-correlation functions for
longer waiting times. In particular, El Masri, Berthier, and
Cipelletti (2010) investigated nearly hard spheres with a
polydispersity of s ∼ 11.5% at packing fractions in the range
ϕ∈ ½0.553; 0.662� and for different waiting times. Aging of
the structural quantities was shown to be compatible with
either a power law or a slow logarithmic decay. The self-
intermediate scattering function, as shown in Fig. 43, dis-
played at least two distinct decay regimes, depending on the
waiting time, with the decay at long waiting times following
a power law with time fs ∼ τ−a, with a ∼ 0.15, suggesting
that relaxations occur over a broad time window. The time τa
after which the asymptotic stationary state is observed
increases with packing fraction and, for higher volume
fractions, is often outside of what is accessible in experi-
ments. The relaxation time is found to change from a
superaging exponential behavior in the waiting time before
τa to the linear dependence in waiting time after τa. The
asymptotic regime is also characterized by a subdiffusive
behavior of the single-particle dynamics, with the Van Hove
functions displaying fat tails at large and small particle
displacements. Particles with fast displacements are found to
be around 4% to 5% of the system and to have correlated
motions limited in space, with the overall displacement of the
particles during the aging regime being almost negligible.
Despite the subdiffusive dynamics during the aging regime,
simulations of weakly polydisperse hard spheres have shown
that crystallization can still occur in the bulk (Zaccarelli
et al., 2009). Such crystallization without diffusion (Sanz
et al., 2011, 2014; Russo and Tanaka, 2012; Yanagishima,
Russo, and Tanaka, 2017; Yanagishima et al., 2021) is
connected to avalanche-like processes, as discussed in
Sec. XIII.I.

J. Hard-sphere glasses far from equilibrium

Steady-state shear. Bulk-rheology experiments (Sec. XI.B)
have also been used to study the far-from-equilibrium
response of hard-sphere glasses (Ballesta et al., 2008;
Koumakis, Schofield, and Petekidis, 2008; Koumakis et al.,
2012; Koumakis, Brady, and Petekidis, 2013; Ballesta and
Petekidis, 2016). (Phenomena specifically associated with
hard-sphere fluids, including shear thinning and thickening,
are covered in Sec. XI.B.) At steady state these experiments
provide flow curves τðγ̇Þ similar to Fig. 34(b). Because
relating microscopic structure and dynamics often requires
theoretical and computational insights, this approach has
provided a fertile ground to test theoretical predictions
including, inter alia, the extension of MCT to treat shear
in the “integration through transients” approach (Fuchs and
Cates, 2005; Brader, Cates, and Fuchs, 2008, 2012) and the
effective model of soft glassy rheology (Sollich et al., 1997;
Fielding, 2014). MCT predictions of flow curves have been
found to be consistent with rheology experiments on emul-
sions (Mason and Weitz, 1995a), microgels, save for some
hydrodynamic effects that can be taken into account with
rescaling (Fuchs and Ballauff, 2005). Steady-state shear is
amenable to confocal microscopy provided that the frame rate
is fast enough (Besseling et al., 2007, 2009). Particle-resolved
data reveal local displacements, and the effect of shear can
reveal details of shear bands such as shear-concentration
coupling (Besseling et al., 2010; Chikkadi et al., 2014) and
Bingham-like slip behavior (Ballesta et al., 2008, 2012).
Strongly confined, quasi-2D systems also offer insight into

flow behavior. By animating optical traps confining a circular
assembly of particles, the flow field that defines the viscosity
has been resolved at the single-particle level. Hard-disk
systems have notably been shown not to exhibit any massive
increase in viscosity under confinement down to a few
diameters (unlike many molecular systems) (Williams et al.,
2022). This effect was attributed to the absence of van der
Waals interactions. In the same system, particle-resolved
data have identified the mechanism of slip between layers
(Williams et al., 2016).
Yielding. Upon applying a load to an amorphous solid,

yielding occurs at a reasonably characteristic yield stress τy
(Bonn et al., 2017); see Fig. 44. Prior to yielding, the
otherwise elastic response is punctuated by stress release in
discrete plastic events known as shear transformation zones
(STZs) (Falk and Langer, 1998). Under certain conditions
(typically a slow shear rate), as characterized by the
Weissenberg number (see Table I), a stress overshoot is found
where the steady stress is less than the yield stress τsteady < τy.
With confocal microscopy STZs may be directly visualized.
Figure 45 demonstrates how tracking single particles in a
dense suspension of hard spheres allows one to build local
strain maps and identify STZs (Schall, Weitz, and Spaepen,
2007). Long-range strain correlations may also be investigated
(Chikkadi et al., 2011, 2012; Mandal et al., 2013). Further
work using confocal microscopy has revealed a microstruc-
tural anisotropy in the extension axis, where the maximum of
the pair distribution function exhibits a minimum at the stress
overshoot (Koumakis et al., 2012, 2016). Related work by
some of the same researchers found superdiffusive dynamics

FIG. 43. Aging behavior in structural relaxation. Upon increas-
ing the waiting time (different symbols correspond to different
waiting times), the intermediate scattering function decays more
slowly as a function of time (here τ in microscopic units for hard
spheres). This corresponds to the system “sinking lower in its
energy landscape.” From El Masri, Berthier, and Cipelletti, 2010.
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approaching yielding that is akin to (albeit underestimated by)
that predicted by MCT. The stress overshoot was also weak,
likely due to the measurements having been made in the
supercooled liquid (ϕ ≈ 0.56) (Zausch et al., 2008; Laurati
et al., 2012; Sentjabrskaja et al., 2014). MCT and BD
simulations of 2D hard disks qualitatively capture yielding
predictions from the theory (Henrich et al., 2009). Binary
hard-sphere glasses have also been studied, and for the size
ratio q ¼ 0.2 some weakening of the system upon inclusion of
the smaller species has been reported (Sentjabrskaja et al.,
2013), a phenomenon likely related to the fluidization of
quiescent systems with depletion attraction (Pham, 2002;
Royall, Williams, and Tanaka, 2018).
Creep describes the slow flow that is observed at stresses

below the yield stress τy. The phenomenon is commonly
rationalized using a bulk-rheology-based generalized Maxwell
model (Siebenbürger, Ballauff, and Voightmann, 2012), but
particle-based descriptions are also rich. For instance, ava-
lanche stress relaxation behavior has been detected in creep

(Jacob, Moghimi, and Petekidis, 2019). Using rheology and
light-scattering echo, particle trajectories were further found
to be partly reversible under strains that significantly exceed
the yield strain (Petekidis, Vlassopoulos, and Pusey, 2003).
Confocal microscopy has additionally revealed dynamically
heterogeneous regions as a means to link creep and steady-state
flow behavior (Sentjabrskaja et al., 2015).
Another means of probing the far-from-equilibrium behav-

ior of a hard-sphere glass is to drag a particle through it using
optical tweezers, i.e., microrheology (Sec. XI.C). There it was
found that the threshold force for movement of the dragged
particle varies strongly with volume fraction, and its velocity
fluctuations do not change near the glass transition (Habdas
et al., 2004; Gazuz et al., 2009; Gruber et al., 2016). Unlike
particle-resolved studies where all imaged particles are
tracked through the use of a tweezed probe particle, the latter
method can in principle be applied to smaller particles, thus
opening the door to deeper supercooling; see Secs. IV.C
and XII.D. Finally, flow in channels of colloidal glasses has
received relatively little attention, but a surprising oscillatory
flow behavior has been reported (Isa, Besseling, and Poon,
2007; Isa et al., 2009).

XIII. NUCLEATION AND GROWTH

Although the thermodynamic phase transition between the
fluid and crystal phase of hard spheres is fairly well under-
stood (see Sec. VII), the kinetics of the transformation
from one to the other is an active area of research. Many
fundamental questions about the process are still largely open,
such as the regime of validity of classical nucleation theory
(CNT), the discrepancy between numerically computed
homogeneous nucleation rates and experimentally measured
values, and the glass-forming ability of (quasi)monodisperse
hard spheres. This section describes our current understanding
of the phase transformation process and further details of some
of the associated challenges.

A. A primer on classical nucleation theory

One hundred and fifty years ago Gibbs (1878) suggested
that a first-order phase transition should proceed through the
formation of a nucleus of the thermodynamically stable phase
embedded in the metastable phase. Some of the spatial and
temporal crystal-like fluctuations that spontaneously form in
the fluid can then give rise to the macroscopic phase trans-
formation. Gibbs proposed that this process may be viewed as
two coupled homogeneous systems with a sharp interface,
whereby the reversible work required to grow the nucleus
determines its probability. The thermodynamic aspects of
nucleus cluster formation were later expanded through mod-
eling the dynamics of cluster growth by Volmer and Weber
(1926) and Becker and Döring (1935), who formulated CNT
(Kelton, 1991; Debenedetti, 1996). In particular, Becker and
Döring proposed an infinite set of coupled equations that
describe in general terms the coagulation and fragmentation of
clusters of different sizes. From this perspective, the basic
assumptions of CNT are (i) a single order parameter describes
the size evolution of the different clusters and (ii) the
nucleation process is Markovian; i.e., the time evolution does

FIG. 45. Response of a 3D colloidal glass to linear shear strain.
Cumulative strain γ after 50 min with the particle color denoting
the degree of strain. The arrow points to a shear transformation
zone, which subsequently relaxed. From Schall, Weitz, and
Spaepen, 2007.

FIG. 44. Stress overshoot in colloidal hard spheres. The stress
normalized by the peak stress τPK at different volume fractions ϕ
is as indicated. Inset: the stress peak height scaled by its steady-
state value τPK=τsteady − 1. The lines correspond to the Weissen-
berg numbers Pew ¼ γ̇τα indicated. From Koumakis et al., 2012.
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not depend on the state of the system at previous times and
clusters can change their size only by gaining or losing a
single free component.
For hard-sphere crystallization, in particular, CNT trans-

lates as follows. The fluid becomes thermodynamically
metastable with respect to the stable solid phase by over-
compressing it beyond the fluid-crystal coexistence pressure.
Assuming that the nucleus is not strained and occupies a well-
defined volume Vs with area A and, when working isother-
mally in the grand-canonical ensemble with grand potentials
ΩαðT; VÞ ¼ −PαV, where α ¼ f; s for the fluid and solid
phases, respectively, the presence of a nucleus results in a
change of grand potential

ΔΩ¼ΩfðVfÞþΩsðVsÞþ γ̄A−ΩfðVÞ¼−ΔPVsþ γ̄A; ð38Þ
with Vs þ Vf ¼ V and ΔP ¼ Ps − Pf . The penalty for bring-
ing two systems into contact is governed by the interfacial free
energy γ discussed in Sec. VIII.B. While γ depends on the
interface’s crystal orientation and lattice spacing, here we
employ a scalar effective γ̄, which amounts to assuming that
the stochastic nucleus dynamics averages over orientation-
dependent features. Consequently, we consider spherical
droplets with volume Vs ¼ ð4π=3ÞR3 and area A ¼ 4πR2,
thus leaving the radius R as the sole order parameter. The
thermodynamic driving force behind nucleation is then the
pressure difference ΔP ¼ Ps − Pf > 0 between the pressure
Ps inside the nucleus compared to the pressure Pf of the
surrounding metastable fluid.
For the nucleus to grow into the equilibrium phase, it has to

overcome a nucleation free-energy barrier at the critical radius
R�, as determined through ∂ΔΩ=∂RjR� ¼ 0. We then find the
well-known Laplace equation ΔP ¼ 2γ̄�=R� provided that
∂γðRÞ=∂RjR� ¼ 0, which defines the surface of tension
γ̄� ¼ γ̄ðR�Þ. Eliminating the critical radius R� yields the
barrier height

ΔΩ� ¼ 16πðγ̄�Þ3
3ðΔPÞ2 ¼ 1

2
ΔPV�

s : ð39Þ

The capillary approximation substitutes for γ̄� the interfacial
free energy γ of an infinite planar interface (often taken to be
under bulk fluid-crystal coexistence conditions) averaged over
all orientations.
In practice, computer simulations are performed at constant

volume or constant fluid pressure counting the number of
solid particles n in the nucleus. We can relate the aforemen-
tioned framework to these simulations through the isothermal
Gibbs-Duhem equation

∂μs
∂p

¼ 1

ρs
¼ Vs

n
; ð40Þ

with μs the chemical potential of the solid. Assuming the solid
density to be independent of pressure (i.e., an incompressible
solid), integration of both sides gives

Δμ ¼ μsðPsÞ − μsðPfÞ ¼
Vs

n
ΔP; ð41Þ

and hence the nucleation barrier ΔG� ¼ ð1=2ÞΔμn�, with n�

the number of solid particles in the critical nucleus. Using the

fact that the chemical potential μsðPsÞ ¼ μfðPfÞ is uniform,
Δμ ¼ μfðPfÞ − μsðPfÞ > 0 compares the chemical potentials
of the fluid and solid at the same pressure Pf . Note that in
reality the presence of a curved fluid-crystal interface leads to
strain inside the crystal nucleus (Mullins, 1984). As a result,
Montero de Hijes et al. (2020) showed that the mechanical
pressure inside hard-sphere crystal nuclei can in fact be lower
than that of the surrounding fluid and argued that ΔP in
the Laplace equation should be interpreted as the pressure
difference between the two bulk phases at equal chemical
potential μf , as we did here.
Figure 46(d) depicts free-energy barriers as a function of

the nucleus size n, which were obtained from numerical
simulations of a hard-sphere fluid at different supersaturated
pressures (or, equivalently, metastable fluid volume fractions
ϕ) by Auer and Frenkel (2001a). Typical snapshots of the
critical nucleus from numerical simulation results are shown
in Figs. 46(a)–46(c).
As the nucleation barrier ΔG� increases, spontaneous

fluctuations that might give rise to a cluster of a size n� grow
rarer. These rare events are activated processes for which the

(a)

(d)

(b) (c)

FIG. 46. Nuclei in metastable hard-sphere fluids: detection and
free-energy measurement. (a) Nucleus detected in nearly hard
spheres by confocal microscopy. The red particles are identified
as crystal and blue particles having at least one crystal-like bond
according to BOO parameters. The experimental detection of a
critical nucleus is particularly challenging (see the text). From
Gasser, 2001. (b),(c) Critical nuclei obtained from umbrella
sampling simulations. (b) A critical crystal nucleus embedded
in a metastable hard-sphere fluid at ϕ ¼ 0.5207. From Auer and
Frenkel, 2004a. (c) Critical cluster in a metastable fluid (smaller
particles) at ϕ ¼ 0.5355. Different colors are used for different
criteria to detect crystalline particles. From Filion et al., 2010.
(d) Free-energy barriers (symbols) as a function of the largest
crystalline cluster size n from umbrella sampling simulations at
different ϕ. The solid lines are fits to the CNT functional form.
From Auer and Frenkel, 2004a.
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average waiting time between events is orders of magnitude
longer than the time needed for the event itself to take place.
Rare events are therefore intrinsically difficult to investigate.
The most valuable observable to study nucleation, accessible
both experimentally and numerically, is the nucleation rate J,
i.e., the number of independent critical nuclei that give rise to
crystal formation formed per unit time and volume. In the rare-
event regime (Turnbull and Fisher, 1949), the CNT steady-
state nucleation rate can be estimated from the product of
two terms: the probability of forming the critical nucleus
expð−βΔG�Þ and the kinetic prefactor κ, which describes the
frequency at which the Gibbs free-energy barrier is crossed.
By accounting for the number of critical nuclei whose size
fluctuates at the top of the free-energy barrier, we obtain
(Kelton, 1991)

J ¼ κe−βΔG
� ¼

�
ρfluid

24DLn�2=3

λ2
Zcorr

�
e−βΔG

�
; ð42Þ

where κ expresses the attempt frequency of attaching or
detaching a particle from the critical nucleus (or jump
frequency) per unit volume and depends on (i) the metastable
fluid density ρfluid, (ii) the long-time diffusivity DL and jump
distance λ, 6DL=λ2, and (iii) the number of available attach-
ment sites on a spherical critical nucleus of a size n�, 4ðn�Þ2=3.
The Zeldovich correction factor Zcorr accounts for the con-
centration of critical nuclei not truly being an equilibrium
concentration during the steady-state nucleation process
(Zeldovich, 1942).
As one can deduce from Eq. (42), the larger the driving

force Δμ for nucleation to occur, the lower the free-energy
barrier height ΔG�, the smaller the critical nucleus size n�,

and the higher the nucleation rate J. Figure 47 reports several
nucleation rates J as a function of ϕ taken from both experi-
ments and numerical simulations. As shown in Fig. 47,
while the experimental and numerical nucleation rates agree
at high ϕ (or large Δμ), marked discrepancies are observed
when ϕ ≲ 0.525. The possible origins of this discrepancy have
been extensively discussed in the literature and are here
reviewed in Sec. XIII.D. Before doing so, however, we first
revisit the experimental context for these measurements.

B. Early nucleation experiments

Light-scattering techniques have long been a mainstay
of nucleation rate measurements in colloidal suspensions
(Schätzel and Ackerson, 1992, 1993; Harland et al., 1995);
see Sec. IV.A. The approach, which tracks the time evolution
of the static structure factor of the crystallizing suspension
Sðk; tÞ, detects contributions from both the crystal SðkÞxtal and
the fluid SðkÞfluid,

Sðk; tÞ ¼ XðtÞSxtalðkÞ þ ½1 − XðtÞ�SfluidðkÞ; ð43Þ

where XðtÞ is the crystalline fraction. Given that the small size
of the crystallites results in broadening of the signal, the
average linear size can be estimated according to

LnuclðtÞ ¼
2πK
wqðtÞ

; ð44Þ

where wqðtÞ is the width of the peak at half maximum and
K is the Scherrer constant. [For a cubic crystal, K ¼ 1.155

�
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FIG. 47. Reduced nucleation rates Jσ5=DL for hard spheres as a function of the supersaturated fluid volume fraction ϕ comparing
experiments (colored symbols) with simulations (black symbols). Simulations are further divided into simulations with (full triangles)
and without (open symbols) hydrodynamic interactions. Experiments are approximately divided into nearly density matched (open
symbols) and not density matched (full symbols). The method used in each case is umbrella sampling (US), forward-flux sampling
(FFS), molecular dynamics (MD), Monte Carlo (MC), seeding (seed), Brownian dynamics (BD), and hydrodynamic interactions (HI)
for the simulations, light scattering (scat) and confocal microscopy (conf) for the experiments. The fluid volume fractions are taken as
those quoted in the original papers. Gray shading pertains to the dynamical regime accessible to experiments with relatively large
colloids; see Sec. IV.C. The regime accessible to experiments using smaller colloids is shaded blue (pale gray).
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(Langford and Wilson, 1978).] The number density of
average-sized crystals is therefore

nðtÞ ¼ XðtÞ
L3
nuclðtÞ

: ð45Þ

Harland et al. (1995) carried out experiments before density
matching of colloids was widely used, using particles with
σ ¼ 800 nm. By determining the number density of colloidal
crystals as a function of time nðtÞ, a nucleation rate could then
be extracted; see Fig. 47. Later experiments performed in the
same lab (Harland and van Megen, 1997) with smaller
particles (σ ¼ 400 nm) showed similar trends. The physical
interpretation of the results, however, was not altogether
robust. On the one hand, the results successfully agreed with
classical nucleation theory in that they could be fitted by
Eq. (42) (using the theoretical equations of state of the fluid
and crystal to determine Δμ) to extract a reasonable value of
the fluid-crystal interfacial free energy γ̄. On the other hand,
compared to the earlier results of Schätzel and Ackerson
(1992, 1993), the adimensional nucleation rate Jσ5=DL
seemed to depend on particle size, with larger particles
nucleating faster than smaller ones (He et al., 1996), which
it should not.
These early experiments sought to probe the physics of

nucleation using colloidal systems as test beds, given the
experimentally tractable timescales and length scales then at
hand. While at low supersaturation most of the CNT assump-
tions appear to be reasonable, beyond the rare-event (or
activated) regime the situation is more complex. In particular,
the fluctuations in crystallizing systems at ϕ ≳ 0.54 appear to
reach a kinetic spinodal limit (Schätzel and Ackerson, 1992,
1993) at which the nucleation barrier for the fluid to crystallize
becomes so small that nucleation is no longer rare but takes
place on the same timescale as that of the structural relaxation
of the fluid; see Sec. XIII.I.

C. Light-scattering versus real-space experiments

Light-scattering measurements remain the state of the art in
the weak supersaturation (or rare-event nucleation) regime
(Palberg, 2014). The technique is perfectly suited for the
relatively small colloids, with σ ¼ 200–500 nm, then used to
keep the long timescale associated with nucleation experi-
mentally tractable; see Secs. IV.C and VII.D. It provides,
however, only limited microscopic information about the
structure of the nucleus.
Particle-resolved studies allow measurements of the critical

nucleus shape and size distribution, along with the detailed
structure and dynamics of the surrounding colloidal fluid
shown in Fig. 46(a) (Elliot, Haddon, and Poon, 2001; Gasser,
2001, 2009; Ivlev et al., 2012; Taffs et al., 2013; Wood et al.,
2018). It can therefore be used to test some of the CNT
assumptions, such as whether the solid phase has a density
close to its bulk value and whether crystalline defects play a
role during the formation of the critical nucleus. However,
real-space information comes at a high experimental price. As
reflected in Fig. 47, conventional real-space analyses require
larger colloids of 2 to 3 μm (Ivlev et al., 2012), which diffuse
much slower than those commonly used in light-scattering

experiments; see Sec. IV.C. Even at fairly high supersaturation
(ϕ ≈ 0.53), crystallization can take days (Taffs et al., 2013). In
addition, the analysis is laborious, so obtaining a statistically
meaningful number of nuclei of different sizes and shapes is
challenging.

D. The nucleation rate discrepancy

As mentioned in Sec. XIII.B, early nucleation experiments
followed the expected physical trend, namely, a low nucle-
ation rate at weak supersaturation that increases with volume
fraction and eventually decreases with increasing viscosity
(upon approaching the glass transition; see Sec. XII) (Palberg,
1999). Note that this decrease is not visible in Fig. 47, due to
the rescaling of the nucleation rate with the diffusion constant
DL, which decreases sharply with increasing volume fraction.
However, upon comparing experimental rates (Palberg, 2014)
with numerical predictions obtained using rare-event sampling
methods developed since the mid-1990s, marked discrepan-
cies have been observed.
The computations of Auer and Frenkel (2001a), in par-

ticular, uncovered a pronounced difference in the slope of
the nucleation rate curve; see Fig. 47. Since then, different
numerical approaches have been used to assess these pre-
dictions. From the middle of the fluid-crystal coexistence
region and as long as the nucleation barrier is at least a few
times larger than the thermal energy, i.e., 0.52≲ ϕ≲ 0.54,
biasing methods such as seeding (Espinosa et al., 2016),
umbrella sampling (Auer and Frenkel, 2001a; Filion et al.,
2010; Filion, Ni et al., 2011), and forward-flux sampling
(Filion et al., 2010; Richard and Speck, 2018a, 2018b) can be
used. For ϕ≳ 0.528, nucleation is even accessible through
direct numerical simulations (Kawasaki and Tanaka, 2010a;
Filion, Ni et al., 2011; Gispen and Dijkstra, 2023) and first-
passage time methods (Richard and Speck, 2018a). In the
density regimes where these methods overlap they provide
consistent estimates, thus confirming a 15 order of magnitude
increase of the nucleation rate in going from ϕ ¼ 0.52 to 0.55.
By contrast, experiments at best display a variation of 5 orders
of magnitude of the nucleation rate over the same volume
fraction range; see Fig. 47.
This staggering gap between simulations and experiments

of well over 10 orders of magnitude has been called “the
second-worst discrepancy in physics” (Russo et al., 2013),
with the first being the 120 orders of magnitude discrepancy
between the value of the cosmological constant and the
quantum energy of the vacuum. Accounting for this mismatch
largely remains an open problem, but given the strong
consistency between different simulation approaches it is
certainly tempting to conclude that some experimental effects
are not properly taken into consideration. Potential explan-
ations are plentiful, from experimental details that are not
accounted for in simulations to experimental errors in deter-
mining the true homogeneous nucleation rate or volume
fraction. Claims of a more fundamental lack of understanding
of the nucleation process are dubious, as the discrepancy is
more pronounced in the low supersaturation regime where the
CNT description is most justified. Notably, while the dis-
crepancy in the nucleation rate is significant, that in the
volume fraction is rather less. Indeed, a shift of δϕ ¼ 0.01,
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which is akin to the uncertainty on ϕ (see Sec. III.E), would
largely alleviate the discrepancy. What it would not explain is
why the error in volume fraction is apparently consistently
underestimated in experiments.
Here we first review efforts made to address the discrep-

ancy between simulations and experiments before returning
to the accuracy of the phase boundaries. For the former, we
consider the dependence of the nucleation rate on poly-
dispersity (Auer and Frenkel, 2001b; Pusey et al., 2009),
electrostatic interactions (Auer and Frenkel, 2002), hydro-
dynamics (Radu and Schilling, 2014; Tateno et al., 2019;
Fiorucci et al., 2020), sedimentation (Russo et al., 2013;
Ketzetzi, Russo, and Bonn, 2018; Wood et al., 2018), and
external walls (Espinosa et al., 2019).
Polydispersity. Experimental colloidal systems inevitably

exhibit size polydispersity s (see Secs. VII and IX), which can
considerably alter the crystallization transition (Fasolo and
Sollich, 2003). For moderate polydispersity (s ≲ 5% to 6%),
even though diffusivity is only negligibly affected (Zaccarelli
et al., 2009), the coexistence curves shift to significantly
higher ϕ (Sollich and Wilding, 2010). The impact of this shift
on nucleation rates was considered in the early paper of Auer
and Frenkel (2001b). For s ¼ 5%, the shift of the nucleation
curve makes ϕ about 0.015 higher than that for the equivalent
nucleation rate in the monodisperse case. However, this shift
essentially disappears when the volume fraction is rescaled
based on the freezing density of the system (Filion et al.,
2010). Note that polydispersity does not alter the slope of the
nucleation rate curve. In other words, the rate curves for
different s are roughly parallel. Although the shape of the
particle size distribution (and not only s) affects both the
nucleation and growth kinetics, as shown experimentally
by Schöpe, Bryant, and van Megen (2006a, 2007), colloid
syntheses that deliver significantly different polydispersity
distributions (due to secondary nucleation) give relatively
similar experimental nucleation rates (Fig. 47). It therefore
seems reasonable to conclude that polydispersity does not
contribute significantly to the nucleation rate discrepancy.
Electrostatic charge. The possibility of residual charges on

the colloids was also considered early on (Auer and Frenkel,
2002) and modeled through a hard-core Yukawa or Debye-
Hückel potential as in Eq. (5). Because systems of interest
typically use nonaqueous solvents with low dielectric con-
stants (see Sec. III.C), the degree of electrostatic charging is
tiny (especially compared to aqueous systems), and hence
linear Poisson-Boltzmann theory should hold (Royall et al.,
2006). Some work where no salt was added may exhibit
density-dependent interactions due to counterion condensa-
tion as a function of volume fraction (Royall et al., 2006). The
effective charge drops with increasing ϕ, thus affecting the
mapping to an effective hard-sphere volume fraction in a
direction that is qualitatively similar to the observed discrep-
ancy. Evidence for some deviation from centrosymmetric
interactions between the colloids implicit in linear Poisson-
Boltzmann theory in these nonaqueous systems has been
detected in crystals (Reinke et al., 2007). Since such effects
are highly parameter specific (Royall et al., 2006), it seems
rather unlikely that all experiments in this regime, which have
used different conditions (solvent dielectric constant, ionic
strength, and chemical composition of colloids and solvent),

would exhibit a quantitatively consistent behavior. In any
case, these experiments concern confocal microscopy studies
using larger colloids in a density-matched solvent. As Fig. 47
shows, it is the experiments that used smaller colloids that are
featured in the regime of marked discrepancy (the blue shaded
region in Fig. 47). Our analysis in Sec. III.C and the dashed
blue line in Fig. 5(a), in particular, suggest that interactions in
these systems are close to hard-sphere-like and exhibit little
density dependence compared to those of Royall et al. (2006).
The dominant contribution is therefore expected to be the

softening of the interaction potential due to residual charges.
Using the hard-core Yukawa or Debye-Hückel model, the
effects of residual charges on the nucleation rate were
considered by Auer and Frenkel (2002). They showed that,
compared to hard spheres, introducing a small charge
increases the nucleation rate via two mechanisms: (i) at
constant density because the supersaturation increases (given
the shift in fluid-crystal phase boundaries to lower packing
fractions) and (ii) at constant supersaturation (i.e., the chemi-
cal potential difference μ − μcoex) because of a considerable
reduction of the fluid-crystal interfacial free energy. However,
note that Auer and Frenkel (2002) did not consider the weak,
longer-ranged electrostatic interactions pertinent to the studies
using smaller PMMA particles in low dielectric constant
solvents [Sec. III.C and Fig. 5(a), blue dashed line].
A recent numerical study (de Jager and Filion, 2022)

showed that for highly screened electrostatic interactions
the phase behavior depends nearly completely on the screen-
ing length, with the nucleation barrier increasing with screen-
ing length at fixed supersaturation [i.e., measuring the barriers
at constant ϕ=ϕfðκσÞ, where κσ is the inverse screening length
and ϕf is the freezing volume fraction]. This trend does not
explain the nucleation rate discrepancy between simulations
and experiments, as it suggests that the effect of electrostatic
charge would be a slowdown in the nucleation rate with
respect to hard-sphere simulations rather than a speedup,
which might address the discrepancy. Moreover, as the dashed
blue line in Fig. 5(a) and the discussion in Sec. III.C indicate,
the smaller particles used in the experiments that reached the
discrepancy regime had large Debye lengths, i.e., a different
interaction than those considered here.
In short, without some new interpretation, electrostatic

interactions shift but do not change the density dependence
of the nucleation rate. It is therefore hard to see how the
observed discrepancy between simulations and experiments
could be explained through residual charges alone.
Hydrodynamics. The nucleation rate discrepancy between

simulations and experiments hints at possible unexpected
nucleation pathways that lead to the efficient formation of
large nuclei at small supersaturation in experiments. A careful
consideration of long-range hydrodynamic interactions, which
can alter the aggregation kinetics of colloidal particles, is
therefore in order.
Properly accounting for hydrodynamics in numerical sim-

ulations requires specialized techniques that couple the
dynamics of hard spheres with either a continuum or a
coarse-grained representation of the surrounding fluid solvent;
see Sec. V.D. The high numerical cost of these methods
considerably shortens the observable timescales compared to
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standard BD (or similar) simulations, thus restricting the
consideration of nucleation for an even smaller range of fairly
high volume fractions. Because this regime is typically where
nucleation rates from simulations and experiments agree,
these numerical efforts offer only limited physical insight.
Several groups have nevertheless tried to quantify the

relevance of hydrodynamics. Radu and Schilling (2014) first
considered the effect of hydrodynamics in simulations via the
stochastic rotational dynamics approach. Surprisingly, an
increase of the nucleation rate with increasing solvent viscosity
at high volume fractions was then observed. However, these
results are caused by the way the hydrodynamic interactions
were implemented (Fiorucci et al., 2020). In particular, their
implementation ignored the excluded-volume interactions and
the mass difference between the solvent and the colloidal
particles, both of which impact the resulting hydrodynamic
interactions. To examine the effect of hydrodynamics on hard-
sphere nucleation, Fiorucci et al. (2020) computed nucleation
rates at high volume fractions using brute-force MD simula-
tions with hydrodynamics implemented through stochastic
rotational dynamics. The results, however, agreed well with
studies that neglect hydrodynamic interactions.
Seeding has been considered to evaluate the importance of

hydrodynamics on crystal nucleation at low volume fractions.
Tateno et al. (2019) directly solved the Navier-Stokes equa-
tions with the fluid particle dynamics method, while Fiorucci
et al. (2020) used stochastic rotational dynamics. Both
approaches demonstrated that mass transport was consider-
ably slowed down by hydrodynamic lubrication effects and
that, if the nucleation rate were rescaled by the long-time
diffusion coefficient, it would be practically unaffected by
hydrodynamics; see the solid color symbols in Fig. 47.
Existing results therefore suggest that hydrodynamics is not
likely to be the main origin for the observed discrepancy.
Sedimentation. Another effect that is frequently neglected

in simulations is gravity. As introduced in Sec. XI, the strength
of gravity is measured by the gravitational Péclet number Peg
[Eq. (34)]. The nucleation rates reported in Fig. 47 can be
grouped according to the sedimentation strength (Russo et al.,
2013; Palberg, 2014; Wood et al., 2018): those that pertain to
weak (Peg ≲ 0.01) and strong sedimentation (0.1≲ Peg ≲ 1)
differ, with the latter nucleating much faster. Schätzel and
Ackerson (1993) and Sinn et al. (2001), who studied sus-
pensions of colloidal particles in the regime of relatively
strong sedimentation, with 10−1 ≲ Peg ≲ 1, both obtained
comparably high nucleation rates. By contrast, work that
considered the case of weaker sedimentation colloidal sus-
pensions with ξ=σ ∼ 100 and Peg ∼ 10−2 (either by employing
small particles or using swelling microgels) reported nucle-
ation rates that cluster at lower values and are therefore a few
decades closer to the simulation results (Harland and van
Megen, 1997; Iacopini, Palberg, and Schöpe, 2009; Franke,
Lederer, and Schöpe, 2011).
An assessment of the relative importance of the sedimen-

tation timescale with respect to that of crystallization was
carried out with BD simulations (Russo et al., 2013). Relative
to experiments, Russo et al. considered small system sizes and
timescales (compared to experiments) for Peg ≲ 1 and found
that the nucleation events are the same as in a gravity-free

environment for ϕ≳ 0.525, whereas for ϕ ≲ 0.525 sedimen-
tation occurs on shorter timescales than nucleation.
Significant deviations therefore have to be expected with
respect to the zero gravity case. While gravitational effects can
induce density fluctuations that significantly enhance the
nucleation rate, the precise mechanism by which this occurs
is still unknown. In addition, for experimental system sizes
(where the sample height can be ∼104σ or 105σ, compared to
∼102σ in simulation), nucleation typically proceeds faster
than sedimentation (Paulin and Ackerson, 1990); see
Sec. VII.A. One possibility could be that hydrodynamic
interactions affect the structure of hard-sphere systems under-
going sedimentation, as has been shown in the case of strong
confinement (Wysocki et al., 2009); see Sec. XI.A. It is
therefore tempting to imagine that the higher-order fluid
structure might somehow be affected by the hydrodynamic
interactions associated with out-of-equilibrium sedimentation,
thus influencing the nucleation rate.
Wood et al. (2018) used particle-resolved experiments to

investigate the population of fivefold symmetric structures
that, as originally postulated by Frank (1952), suppress
nucleation by increasing the interfacial free energy between
the crystal and the fluid (Taffs and Royall, 2016). Wood et al.
measured the population of fivefold symmetric structures in
sedimenting hard-sphere systems with Peg ≈ 1 and found that
the population of such structures drops by a factor of 2 with
respect to the nonsedimenting density-matched case (Fig. 48).
However, simulations that considered hydrodynamic inter-
actions showed insignificant differences in the quantity of
clusters exhibiting fivefold symmetry in hard-sphere fluids
when exposed to a gravitational field with Peg ≤ 2 (Fiorucci
et al., 2020). It is possible that this difference may be
explained by the way the boundary conditions are imple-
mented (periodic in the case of the simulations, and hard walls
for the experiments). Yet, given that only one direct

10μm

(a)

(b)

(c) (d)

FIG. 48. (a) A single slice through a 3D confocal image stack.
Three five-membered rings are circled. (b) Rendering of the
defective icosahedron (10B). Five-membered rings are indicated
with yellow, red, and dark red bonds. Visualization of the effect of
sedimentation upon the structure of the hard-sphere fluid at an
average ϕ ¼ 0.45 for (c) a sedimenting system (Peg ≃ 1.5), and
(d) a density-matched system. Experimental data are rendered
after all particle centers have been located with particle tracking.
Particles in defective icosahedra are shown in green (to scale),
while particles not in defective icosahedra are rendered as gray
points. From Wood et al., 2018.
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comparison of higher-order structure in sedimenting hard
spheres shows a significant discrepancy between simulations
and experiments, the effect of sedimentation surely merits
further investigation. After all, crystal nuclei themselves
originate from higher-order fluid structures.
Wood et al. (2018) then carried out computer simulations to

mimic the impact of sedimentation. Using umbrella sampling,
they negatively biased the population of fivefold symmetric
structures so as to match these experimental observations.
A drop in fivefold symmetry was then found to reduce the
nucleation barrier considerably (by 11kBT at ϕ ¼ 0.52,
corresponding to a nucleation rate increase of approximately
5 orders of magnitude), but still insufficiently to account for
the discrepancy; see Fig. 47. Furthermore, Wood et al. (2018)
used Peg ¼ 1.5, which is at the top end of those experiments
that sediment strongly. Further investigation is required to
determine whether other aspects of the sedimentation process,
such as the impact of shear flows and other hydrodynamic
effects that couple to gravity, could explain the discrepancy.
Nonhomogeneous nucleation rates. Some have also chal-

lenged the assumption that the nucleation rate measured in
experiments is that of a homogeneous nucleation process
(Gasser, 2001; Espinosa et al., 2019; Wöhler and Schilling,
2022), pointing to the fact that other nucleation and growth
channels could be responsible for the discrepancy. For one
thing, colloidal fluids are unavoidably in contact with the
walls of the sample cell, which can be a source of nucleation
sites. Heterogeneous nucleation is presented in a more general
context in Sec. XIII.F, but for now we consider its putative
contribution to the discrepancy.
To elucidate the effect of different possible surfaces that

could lead to heterogeneous nucleation, Espinosa et al. (2019)
numerically studied the competition between homogeneous
and heterogeneous crystallization as a function of wall type,
fluid density, and system size. For flat walls and surfaces
randomly coated with nonoverlapping spheres of a diameter 3
times larger than those in the fluid [as used in some experiments
(Ziese, Maret, and Gasser, 2013)], heterogeneous nucleation
overwhelmed homogeneous nucleation for ϕ < 0.535. By
contrast, when the coating was done with nonoverlapping
spheres with the same diameter as those of the fluid [as done in
other experiments (Taffs et al., 2013)], nucleation was more
likely to occur in the bulk given how suppressed heterogeneous
nucleation was. However, to our knowledge the older experi-
ments, which used light scattering (Schätzel and Ackerson,
1992, 1993; Harland et al., 1995; He et al., 1996; Harland and
van Megen, 1997) to obtain nucleation rates in the discrepancy
regime, did not coat surfaces. [“Sintering” of polydisperse
particles onto the sample cell walls was typically done in more
recent, real-space experiments (Gasser, 2001; Taffs et al., 2013;
Ziese, Maret, and Gasser, 2013).] In any case, in the earlier
light-scattering experiments, the data were then taken in the
center of the sample cell, far from the wall, and it is unlikely
that macroscopic iridescent crystals could have migrated from
the walls to the center of the cell without those carrying out the
experiments noticing. Furthermore, how such a large crystal of
hard spheres could sustain the gravitational stresses in these
systems, which were not density matched (see Sec. XIII.D), is
entirely unclear. Any heterogeneous nucleation effects would

then likely arise from impurities or from colloid clusters that
were not completely dispersed in the sample preparation.
Although the resulting nucleation rate estimates that account
for crystallite formation both in the bulk and at the walls have
been argued to coincide with the experimental results, the
aforementioned discussion suggests that this coincidence is
likely fortuitous.
It was recently proposed that Bragg scattering signals

measure polycrystalline growth from different nuclei whose
size is described by the Avrami law and therefore cannot
access the true homogeneous nucleation rate (Wöhler and
Schilling, 2022). Correcting the rate by adding secondary
nucleation events occurring at the interface of the already-
formed crystals would lead to a considerable increase in
the measured number of nuclei. Whether this could really
address the large discrepancy indicated in Fig. 47 given the
size of the individual colloids, the number of colloids in the
nuclei, and the size of the region probed in the experiments
remains unclear.
Despite these putative leads, a definitive understanding of

the origin of the nucleation rate discrepancy between simu-
lations and experiments remains an outstanding challenge,
possibly explained by one or more of the previously described
mechanisms or by effects yet to be considered. This leads us
back to the question of the accuracy with which phase
boundaries have been determined. Our discussions in
Secs. III.E and VII.A suggest that an error of δϕ ¼ 0.01
is reasonable. In light of this observation and the failure to
find a clear-cut physical explanation, one may inquire
whether there really is a discrepancy at all, given that one
could largely make it disappear by shifting the experimental
data by adding δϕ ¼ 0.01 to them.
One argument that has been made is that the slope of the

experimental data is different from that of the simulations. With
the current (perhaps erroneous) determination of ϕ, then the
statement that the slope is different need not hold. Moreover,
the lowest nucleation rates measured in experiments of around
Jmin
exp ∼ 10−5σ5D−1

L are more than 25 orders of magnitude higher
than the lowest rates determined in simulations (Fig. 47). Thus,
while it may be possible to reconcile the rates from simulations
and experiments, what is clear is that massively slower rates
have been determined in simulations.
Experimental measurements at lower nucleation rates are

desirable and it would seem that using smaller colloids or
nanoparticles could be a way forward here; see Sec. IV.C. It
may still be possible to achieve some reduction in size using
light scattering, but perhaps neutron or x-ray scattering, in
particular, the recent developments noted in Sec. XII.C
(Wochner et al., 2009; Lehmkühler et al., 2020; Liu et al.,
2022), could be approaches of choice in this case. Before
leaving this topic, we emphasize one remaining mystery:
While the accuracy of the phase boundary measurement could
account for the magnitude of the change in volume fraction
required to address the discrepancy, why do experiments
systematically underestimate the effective volume fraction?

E. Homogeneous nucleation in binary hard-sphere mixtures

In principle, when dealing with a multicomponent
suspension such as a binary mixture, CNT cannot be
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straightforwardly generalized. [See Ni et al. (2011) and
references therein, where several attempts are discussed.]
When crystal nucleation takes place, fractionation indeed
comes into play. The composition of the metastable fluid
phase and that of the nucleating crystal phase then differ from
the compositions of the coexisting bulk phases, which has
repercussions on how to apply the capillary approximation
and how to define the interfacial free energy (Oxtoby and
Kashchiev, 1994; Laaksonen, McGraw, and Vehkamaki,
1999; Ni et al., 2011).
Ni et al. (2011) numerically studied crystal nucleation in

varying binary mixtures of hard spheres. They investigated the
effect of the order parameter on the cluster composition for
nucleation of a substitutional solid solution of identical hard
spheres but tagged with different colors and concluded that
(i) the composition of noncritical clusters depends on the order
parameter choice but can nevertheless be explained by the
predictions from CNT, and that (ii) the properties of the
critical cluster do not depend on the choice of order parameter.
In addition, they studied the nucleation of an interstitial solid
solution in a binary hard-sphere mixture with a size ratio
q ¼ 0.3. For a suitable choice of order parameter, it was found
that the composition of noncritical clusters is determined by
the chemical equilibrium condition of the small spheres in the
crystal nucleus and the fluid phase. One might expect to
observe such a chemical equilibrium of the small species in
the case of a highly asymmetric binary hard-sphere mixture,
where the small spheres can diffuse throughout the entire
system, including the nucleated crystal. For less asymmetric
binary hard-sphere mixtures, in which the small spheres
cannot diffuse freely within the solid cluster, chemical
equilibrium of the smaller species is harder to maintain,
especially when the nucleated crystal phase has long-range
crystalline order for both species, as in the case of a super-
lattice structure (Filion, Hermes et al., 2011; Rios de Anda
et al., 2017). It would be interesting to investigate what other
mechanisms the system resorts to in order to maintain equal
chemical potentials of the two species between the fluid and
the crystal nucleus.
An enticing application of binary hard-sphere mixtures is

their putative role in synthesizing colloidal crystals with
diamond and pyrochlore structures, which are characterized
by wide photonic band gaps at low refractive index contrasts
(Hynninen et al., 2007). Direct assembly is not deemed
possible, but given a self-assembled binary mixture of
colloidal spheres in a close-packed MgCu2 Laves phase,
one could selectively remove one of the sublattices to obtain
these low-coordinated crystalline structures. Laves phases are
proven to be thermodynamically stable in binary hard-sphere
systems with q ≈ 0.8, and clusters of Laves phases have been
reported to form spontaneously in simulations (Bommineni,
Klement, and Engel, 2020; Marín-Aguilar et al., 2020). In
addition, it was shown using the seeding approach (see
Fig. 49) that the barrier heights coincide for all three Laves
phases, which is to be expected given that the bulk free-energy
differences are small (Dasgupta, Coli, and Dijkstra, 2020).
Softened spheres have further been shown to enhance crys-
tallization of Laves phases by suppressing the degree of
fivefold symmetry in the binary fluid phase (Dasgupta, Coli,
and Dijkstra, 2020). These structures have nevertheless been

observed to spontaneously crystallize only in hard-sphere
experiments with sub-micron-sized colloids (Schaertl et al.,
2018). We posit that the slow assembly dynamics may be the
culprit, which could be addressed using smaller colloids, or
even nanoparticles.
For more asymmetric hard-sphere mixtures, the AB13

crystal structure, which is analogous to the NaZn13 phase,
was predicted to be stable 30 years ago (Eldridge, Madden,
and Frenkel, 1993b). The kinetic pathway for homogeneous
nucleation of the icosahedral AB13 crystal from a binary
fluid phase of nearly hard spheres has further been numeri-
cally studied by Coli and Dijkstra (2021), who made use of
an artificial neural network to identify the AB13 phase from
the binary fluid phase and the competing fcc crystal phase.
Note that AB13 crystal nucleation proceeds via a coassembly
process with large spheres and icosahedral small-sphere
clusters simultaneously attaching to the nucleus. Even
though the binary fluid phase is highly structured and
exhibits local regions of high BOO parameter,16 the kinetic
pathway follows CNT.

F. Heterogeneous and seeded nucleation

Homogeneous nucleation of a metastable suspension of
hard spheres has been extensively studied using numerical
methods. Because such nucleation events are rare, and
because the critical nucleus could form anywhere in the

FIG. 49. (a) Largest cluster size NCL with Laves phase
symmetry as a function of time t using the seeding approach
in MD simulations of a binary mixture of nearly hard spheres in
the NPT ensemble at a composition xL ¼ NL=ðNS þ NLÞ ¼
1=3 and a diameter ratio q ¼ 0.78 for varying pressures. The
initial seed size is 2205 particles of the MgZn2 Laves phase.
(b) Snapshots showing the melting of the seed at pressure
βPσ3L ¼ 22.6 (bottom box), growth of the seed at βPσ3L ¼ 25

(top box), and a stable seed at the critical pressure βPσ3L ¼ 23

(middle box). The large (small) spheres are colored blue (pale
gray) [red (darker grey)]. The fluid particles (particles with a
disordered neighborhood) are reduced in size for clarity. From
Dasgupta, Coli, and Dijkstra, 2020.

16Three-dimensional BOO parameters detect regions of local
crystal-like order. They generalize the 2DBOO introduced in Sec. VII
to quantify hexagonal ordering.
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system and at any time, experimental detection is particularly
challenging. Heterogeneous nucleation, by contrast, happens
whenever the phase transition is assisted by inhomogene-
ities, such as walls [either flat (Cacciuto and Frenkel, 2005;
Wette et al., 2009) or structured (Heni and Löwen, 2000; van
Teeffelen, Likos, and Lowen, 2008; Xu, Sun, and An, 2010;
Hermes et al., 2011)] and impurities (Cacciuto, Auer, and
Frenkel, 2004; de Villeneuve, Dullens et al., 2005; de
Villeneuve, Verboekend et al., 2005; Sandomirski et al.,
2011). Nuclei of the stable phase then form at the surface of
these exogenous bodies, thus facilitating their detection. As a
result, for hard-sphere colloids the process has been studied
extensively by means of both simulations and experiments.
In general, heterogeneous crystallization is controlled by

the size, structure, and composition of the seed as well as its
inhomogeneities. For simplicity, however, standard seed
models consider mostly flat and curved walls. Flat, unstruc-
tured walls, in particular, maximize the nucleation and crystal
growth rates (Kose and Hachisu, 1976; Espinosa et al., 2019).
Because flat walls do not strain the growing crystal, they also
minimize the concentration of defects within the structure.
Figure 50 shows two snapshots of crystal domains formed
after sedimentation on a flat wall, for both (a) experiments
with confocal microscopy and (b) BD simulations
(Sandomirski et al., 2011). For heterogeneous nucleation
on a flat wall, the free-energy cost of forming a critical
nucleus can be orders of magnitude smaller than for homo-
geneous nucleation. Auer and Frenkel (2003) showed that at
βPσ3 ¼ 12.1 (ϕ ≃ 0.497) the free-energy barrier to nucleation
goes from ΔG�

hom ¼ 1334kBT in the homogeneous case to
ΔG�

het ¼ 17kBT for heterogeneous nucleation of a crystal
growing with the ð111Þ plane parallel to the flat wall, thus
increasing the nucleation rate by roughly 570 orders of

magnitude over that of homogeneous nucleation under the
same thermodynamic conditions. The reduction of the free-
energy barrier is predicted from CNT to be

ΔG�
het ¼ ΔG�

hom
ð2þ cos θÞð1 − cos θÞ2

4
; ð46Þ

where θ is the contact angle between the fluid and solid phases
with the wall and is given by γfs cos θ ¼ γwf − γws, where γ is
the interfacial free energy and the subscripts w, s, and f refer to
the wall, solid, and fluid phases, respectively. The condition
for which γws þ γfs − γwf ≤ 0 corresponds to complete
wetting of the crystalline surface on the wall. Using the
values γwf ¼ 1.99kBT=σ2 (Heni and Löwen, 1999) and, for
the ð111Þ plane, γws ¼ 1.42kBT=σ2 (Heni and Löwen, 1999)
and γfs ¼ 0.55kBT=σ2 (Benjamin and Horbach, 2015), we
obtain γws þ γfs − γwf ¼ −0.02kBT=σ2, i.e., complete wet-
ting, as discussed in Sec. VIII. The presence of a barrier
ΔG�

het ¼ 17kBT (Auer and Frenkel, 2003) significantly
higher than the thermal energy is thus at odds with CNT
predictions. These differences can be adjusted if the con-
tribution from the wall-crystal-melt line tension (with a
further correction to include its curvature dependence)
(Auer and Frenkel, 2003) is taken into account, and if the
value of γwf is allowed to deviate from its bulk value.
Analysis of the simulation trajectories (Auer and Frenkel,
2003) showed that the crystal grows first laterally on the wall
rather than extending into the bulk, indicating that hetero-
geneous nucleation happens close to the wetting threshold.
The effectiveness of a templated wall to induce epitaxial

growth has been considered in experiments (Hoogenboom
et al., 2003), simulations (Cacciuto and Frenkel, 2005), and
theory (Heni and Löwen, 2000). In experiments, the structure
and size of the seed cluster can be controlled at will by fixing
colloidal particles with laser tweezers or/and by putting a
prescribed structure to the undercooled or overcompressed
colloidal fluid. In the epitaxial growth of colloidal hard-sphere
crystals (Hoogenboom et al., 2003), a structured wall (favor-
ing hcp crystallization) was offered as a template for the
colloidal solution. Perfect hcp-crystal growth was achieved for
template unit cells that are isotropically stretched compared
to the bulk unit cell dimensions. By contrast, isotropically
compressed templates give rise to the growth of a perfect fcc.
Large mismatches, however, suppress crystallization. The
computational study of Cacciuto and Frenkel (2005) showed
that disorder in the template can also suppress nucleation if the
displacement of the template particles from their lattice sites
is comparable to that specified by the Lindemann criterion
(10% of the nearest-neighbor distance), while the template
retains its full effectiveness for smaller displacements.
Hermes et al. (2011) experimentally studied crystal nucle-

ation while initiating the phenomenon by means of a seed
structure using optical tweezers. They showed that the
nucleation barrier can be lowered by introducing a 2D seed
structure into the bulk of a supersaturated fluid, resulting in
large crystallites like that shown in Fig. 51. Unlike Cacciuto,
Auer, and Frenkel (2004), they did not find hexagonal seeds to
be good nucleating agents. However, the square seed worked
well, inducing nucleation at low supersaturation, although the

FIG. 50. Heterogeneous crystallization induced by a flat wall.
Crystal domains found after sedimentation on a flat substrate are
obtained from (a) confocal microscopy and (b) BD simulations.
For both snapshots, the overall packing fraction is ϕ ¼ 0.52, the
snapshots are taken after a waiting time of t ¼ 62τB, and only the
crystalline particles are shown. From Sandomirski et al., 2011.
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resulting fcc crystals had significantly more defects than
crystals obtained using hexagonal seeds.
Spherical seeds are but a specific case of heterogeneous

nucleation promoted by curved walls. And as shown in
Fig. 52, just as the crystal growth rate increases with the
radius of spherical impurities (de Villeneuve, 2005), strongly
curved walls suppress nucleation by straining the growing
crystal (Cacciuto, Auer, and Frenkel, 2004; de Villeneuve,
2005). Further, crystals that form on small spherical seeds
have a hexagonal structure with the ð111Þ plane bending
around the surface of the seed. Seed curvature is accommo-
dated through grain boundaries and defects, and the crystal
accumulates elastic energy. These small spherical seeds then
accumulate at grain boundaries of nuclei that are nucleated
homogeneously in the sample as impurities (Dullens et al.,
2008; de Villeneuve et al., 2009). As a function of the seed
diameter, one therefore observes a transition from a regime
where heterogeneous nucleation is suppressed compared to
homogeneous nucleation to one where it dominates.
Simulations suggest that the barrier for heterogeneous nucle-
ation is lower than that for homogeneous nucleation for seeds
with a radius larger than five particle diameters (Cacciuto,
Auer, and Frenkel, 2004). This value is not far from the value
found for a flat wall with the randomly absorbed spheres
discussed earlier, i.e., 3σ (Espinosa et al., 2019).
Both simulations (Cacciuto, Auer, and Frenkel, 2004) and

experiments (Sandomirski et al., 2014; Allahyarov et al.,
2015) have reported that an interesting phenomenon occurs
once the elastic stress balances the interfacial energy gained
through the heterogeneous nucleation on the seed. The crystal
nucleus then detaches from the seed before reaching its critical
size but continues to grow, eventually reaching the seed,
which then acts as an impurity that hinders further growth.
This process also prevents the spherical seed from acting as a
crystallization catalyst (the catalyst becomes poisoned), as
heterogeneous nucleation is inhibited by the detached nucleus
nearby. For hard spheres, the phenomenon takes place for
seeds of about 30σ (Allahyarov et al., 2015), but this multistep
nucleation scenario is expected to occur in all situations in
which the seed induces a structural mismatch compared to the
equilibrium crystal lattice. Because a perfect match is impos-
sible to achieve, this mechanism is expected to be general and

important for the control of crystal morphology. All of these
phenomena are also observed for hard spheres assembling in
spherical confinement, i.e., a negative curvature or concave
surface, as demonstrated by simulations and discussed in
Sec. X (de Nijs et al., 2015). Also in this case, heterogeneous
nucleation is favored over homogeneous nucleation, and
crystallization begins at the boundary of the spherical confine-
ment, forming a polycrystalline system consisting of 20
tetrahedral fcc domains. When the inward-growing fcc
domains cannot accommodate the strain induced by the
curvature of the spherical confinement, the crystalline layers
at the spherical boundary melt and later recrystallize, forming
an anti-Mackay cluster. Cylindrical seeds have also been
considered (Auer and Frenkel, 2004b; Cacciuto, Auer, and
Frenkel, 2004; Sandomirski et al., 2014). Qualitatively the
situation is similar to what is observed with spherical seeds,
although with larger nucleation rates (Cacciuto, Auer, and
Frenkel, 2004). The presence of only one principal curvature
direction (compared to two for spheres) indeed reduces the
strain on the growing crystal.

G. Crystal growth

Following nucleation, crystallization proceeds through
crystal growth, which is dynamically well separated from
the formation of the initial activated process. The growth
process is characterized by a crystal-fluid interface with a
thickness that ranges from 8 to 16 layers, as confirmed in
experiments (Dullens, Aarts, and Kegel, 2006b), simulations
(Auer and Frenkel, 2003; Zykova-Timan, Horbach, and
Binder, 2010), and theory (Härtel et al., 2012; Oettel et al.,
2012). At this stage, the number of crystalline layers grows
linearly with time (Ackerson and Schätzel, 1995; Derber et al.,
1997; Sandomirski et al., 2011) at a rate that is maximal
around ϕ ¼ 0.52 in simulations and ϕ ¼ 0.53 in experiments
(Sandomirski et al., 2011). The nonmonotonicity is ascribed
to the competition between the increasing driving force to
crystallize and the decreasing diffusivityDL of hard spheres as
ϕ increases (Sandomirski et al., 2011). Crystal growth is
indeed so rapid compared to particle diffusion that a depletion
front in the fluid in contact with the crystal has been observed
in experiments and simulations (Ackerson and Schätzel, 1995;
Derber et al., 1997; Sandomirski et al., 2011). At later times,
crystal growth slows down, crystal layers expand slightly, and
the depletion zone vanishes.
Light-scattering experiments by Palberg, Schöpe, van

Megen, and collaborators studied in detail the process of
crystal growth in polydisperse hard spheres (Schöpe, Bryant,
and van Megen, 2007; Iacopini, Palberg, and Schöpe, 2009).
At volume fractions slightly above melting, it was found that
crystal growth is ripening dominated, with the average crystal
growth scaling as a power law in time. Upon increasing ϕ,
growth gets increasingly hindered, and the initiation of
ripeninglike growth is further delayed. Therefore, while
samples close to coexistence conditions tend to achieve the
highest possible crystal structure quality, samples above
melting form crystals with many defects that are later annealed
over the entire crystallization process, and with particle
rearrangements occurring mostly at grain boundaries.

FIG. 51. Seeding a hard-sphere crystal from a square seed in
(a) simulations at ϕ ¼ 0.51 and (b) experiments with optical
tweezers. In (a), the colors correspond to different crystal grains.
Crystalline particles are drawn at their normal size, while fluid
particles are drawn as dots. In (b), the scale bar is 10 μm. From
Hermes et al., 2011.
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Experiments of crystal growth in microgravity (Cheng,
Chaikin et al., 2001) have observed dendritic growth, which is
absent in normal gravity. Here the growth is observed to
proceed with a dramatic increase of crystallinity (as measured
from the intensity of the scattered light), but without large
changes in the average linear dimension of the crystals. The
root of this difference, however, remains largely unexplained.

H. Challenges to the fundamental assumptions of CNT

As discussed in Sec. XIII.A, CNT provides a simple yet
powerful framework to understand and analyze nucleation
data for a large variety of processes. The theory nevertheless
depends on several assumptions and approximations, and
deviations from these have led to nonclassical versions of
the theory.
A fundamental assumption of CNT is its reliance on a single

order parameter for describing first-order phase transitions
(Prestipino, Laio, and Tosatti, 2014; Jungblut and Dellago,
2016; Russo and Tanaka, 2016a; Lutsko, 2019). This sim-
plification is often appropriate for transitions between phases
with the same symmetry, such as the gas-to-liquid phase
transition, but the liquid-to-crystal phase transition is different
in the sense that both the translational and orientational
symmetries of the liquid are then broken. In 2D hard disks
at equilibrium, this distinction results in orientational sym-
metry being broken separately from the translational sym-
metry, as discussed in Sec. VII. Even though both translational
and orientational orders share a same equilibrium phase
transition in 3D hard spheres, the two features can evolve
differently during the out-of-equilibrium nucleation process
(Russo and Tanaka, 2016b; Durán-Olivencia et al., 2018;
Lutsko, 2019; Rogal and Leines, 2023). Experiments
(Schätzel and Ackerson, 1993; Schöpe, Bryant, and van
Megen, 2006a, 2006b, 2007; Iacopini, Palberg, and
Schöpe, 2009; Franke, Golde, and Schöpe, 2014; Tan, Xu,
and Xu, 2014) and simulations (Schilling et al., 2010, 2011;
Russo and Tanaka, 2012, 2016a; Leocmach, Russo, and
Tanaka, 2013; Berryman et al., 2016) on precursors, i.e., in
the regions where small precritical nuclei are formed, evince
that more than one reaction coordinate is involved in hard-
sphere nucleation.
Another central assumption of CNT is that the order

parameter is taken to be a slow variable with Markovian
dynamics (Richard and Speck, 2018a), an assumption that
has been challenged (Kuhnhold et al., 2019). These two
effects, however, could be argued to be fairly mild deviations
from CNT. The rest of Sec. XIII.H describes two more
significant effects.
Polymorph selection. During the crystal nucleation process,

hard spheres can assemble in one of the infinitely many
Barlow packings. As in Sec. VII, we distinguish here three
different polymorphs (or rather polytypes): the fcc, hcp, and
rhcp crystals. Because these polymorphs have nearly equal
free energies, with only ∼10−3kBT per particle favoring fcc
(Bolhuis et al., 1997) (see Sec. VII), one might expect that the
early stages of nucleation should produce an equal amount of
fcc and hcp (often in the form of rhcp), with the fcc becoming
the stable crystalline structure only for large crystallites. Some
computational studies have reported large deviations from

these predictions; the proportion between fcc and hcp within
the nucleus during the later stage of nucleation varies from 2 to
1 up to 3 to 1 (Filion et al., 2010; Russo and Tanaka, 2012).
However, experimental work using light-scattering powder
crystallography found the initial crystal to be highly random
(rhcp) with no preference for one polytype or another,
although a preference for fcc was detected at long times;
see Sec. VII (Kegel and Dhont, 2000; Martelozzo et al., 2002).
Recent simulation work (Leoni and Russo, 2021) on

hard-sphere nucleation has considered the sensitivity of the
fcc-to-hcp ratio on the choice of order parameter. While low-
dimensional order parameters built on simple BOO parame-
ters found an excess of the fcc phase, high-dimensional order
parameters built from a complete set of atomic descriptors for
the local environment surrounding each sphere found that the
total ratio between fcc and hcp is close to unity for sufficiently
large nuclei. The radial composition of the nuclei was also
found to be inhomogeneous, with a relative preference for fcc
in the core compared to the shell. This preference for fcc was
attributed to its small entropic gain in that it allows for
stacking disorder to appear along four different directions,
compared to a single direction for both hcp and rhcp crystals
(namely, the direction perpendicular to the basal plane),
although other mechanisms have since been proposed;
see Fig. 53. Stacking in multiple directions is accompanied
by the formation of a coherent fivefold grain boundary at the
intersection of the different stacking directions, as shown in
Fig. 54(c). The formation of this fivefold coherent grain
boundary was found to be abundant in the early stages of
nucleation (O’Malley and Snook, 2003; Leoni and Russo,
2021), as shown in Fig. 54, thus resulting in more compact
nuclei with an fcc core that emerges from the more diffuse

FIG. 52. Experimental work showing crystallization in the
presence of curved walls. (a) Grain boundaries connect impu-
rities. (b) Voronoi representation of (a) shows that defects capture
the grain boundary. (c) In a sample without impurities, grain
boundaries anneal. (d) The mobile layer of single-particle thick-
ness around an impurity with a diameter ratio α ¼ 0.13 appears to
be fluidlike. From de Villeneuve, 2005.
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precritical nuclei. This mechanism provides a microscopic
explanation for the abundance of fcc in the cores. It is also an
example of two-step nucleation governed by finite-size effects
in that the relative abundance of the different phases changes
with the nucleus size. Two-step nucleation mechanisms had
previously often been invoked to explain such onionlike
structures (Santra, Singh, and Bagchi, 2013; Tan, Xu, and
Xu, 2014; Kratzer and Arnold, 2015; Guo et al., 2016; Eslami,
Khanjari, and Müller-Plathe, 2017; Adorf et al., 2019).
It was also recently shown that the polymorph selection

leading to an abundance of fcc at the core of hard-sphere
nuclei is already hidden in the metastable fluid phase, as
shown in Fig. 53 (Gispen et al., 2023). Application of the
topological cluster classification method of analyzing higher-
order fluid structure (Sec. VII.D) (Malins et al., 2013) to both
simulation and experimental data revealed that two geometric
motifs, or clusters, siamese dodecahedra (SD) and pentagonal
bipyramids (PBs), play particularly important roles. PBs are
known to suppress nucleation (Taffs and Royall, 2016), while
siamese dodecahedra form a crucial link between fcc crystals
and the fivefold symmetric fluid in that they feature elements
of both in their structure. Siamese dodecahedra are therefore
able to fit an fcc nucleus into the hard-sphere fluid. This
finding presents a geometric mechanism for polymorph
selection of fcc over hcp (Gispen et al., 2023).
Capillarity approximation. Another central tenet of CNT is

that crystalline nuclei are governed by the same bulk values as
the flat fluid-crystal interface. Although this assumption is
violated in the small nucleus regime, CNT can still be
considered an effective theory that provides the correct scaling
for different thermodynamic quantities, albeit with renormal-
ized constants. For example, an artificially high value of the
interfacial free energy needs to be introduced to match
computed nucleation rates with CNT predictions. Compared
to the flat-interface (equilibrium) value of βγ∞σ

2 ≃ 0.56
(Espinosa et al., 2016; Bültmann and Schilling, 2020) (see

Sec. V.E), a fit of the nucleation data typically requires values
of βγσ2 ≃ 0.76 (Richard and Speck, 2018a) for the quasie-
quilibrium nucleation process. Gispen and Dijkstra (2024)
recently demonstrated that simulation data, acquired from
seeding, umbrella sampling, and brute-force molecular
dynamics simulations, align well with CNT predictions when
a density-dependent (or curvature-corrected) interfacial ten-
sion was used.
Note that the nucleation theorem (Hill, 1962)

ΔG�ðμfÞ ¼ ΔG�ðμ0Þ −
Z

μf

μ0

dμΔN�ðμÞ ð47Þ

provides a route for calculating the nucleation work from
density profiles of critical nuclei, which can be precisely
obtained (for example, through seeding; cf. Sec. V). In
Eq. (47) μ0 denotes a reference state point and ΔN� is the
average number of additional particles in critical nuclei
compared to the bulk fluid with chemical potential μf . This
quantity does not suffer from the ambiguities associated with
order parameters used to identify solidlike particles. Figure 55
shows that the prediction from Eq. (47) agrees well with other
estimates of the nucleation work. More importantly it shows
that the CNT prediction employing the bulk values γ∞ for the
interfacial tension (and pressure difference) severely under-
estimates the actual nucleation work.

FIG. 53. The mechanism of polymorph selection in hard-sphere
nucleation. (a),(c) Pentagonal bipyramid (PB) and (b),(d) siamese
dodecahedron (SD) clusters during crystal nucleation in hard
spheres around ϕ ¼ 0.54. (a),(b) PMMA spheres imaged with
confocal microscopy. (c),(d) Simulations of nearly hard spheres.
Shown are cut-through images of crystal nuclei. The fcc nucleus
is in dark blue (dark gray), while the rest of the particles are
colored according to the scale bar (a),(c) on the left or (b),(d) right
depending on the number of (a),(c) PB or (b),(d) SD clusters that
each particle belongs to. Adapted from Gispen et al., 2023. FIG. 54. Typical grain boundaries formed during hard-sphere

nucleation (light spheres are fcc, dark spheres are hcp). (a) Stack-
ing faults. (b) Tetrahedrally shaped fcc domains bounded by
stacking faults. (c) Fivefold coherent grain boundary. (a)–(c) From
O’Malley and Snook, 2003. (d) The average radial fractional
composition of nuclei calculated with respect to the center of
mass for different cluster sizes. The section of a typical nucleus
with 400 particles is represented. fcc and hcp particles are in blue
(dark gray) and green (pale gray), respectively. From Leoni and
Russo, 2021.
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I. Beyond the CNT regime: Crystallization at high volume
fractions

Up to ϕ ≈ 0.55, the CNT description qualitatively captures
the homogeneous nucleation of a monodisperse suspension of
hard spheres; see Sec. XIII.A. Auer and Frenkel (2001a) and
Filion et al. (2010) calculated the nucleation free-energy
barrier height for ϕ∈ ½0.521; 0.534� and found it to drop
rapidly upon further increasing ϕ. An approximate extrapo-
lation (Pusey et al., 2009) suggested that the nucleation barrier
height becomes of the order of kBT around ϕ ¼ 0.55–0.56. In
other words, the barrier can then be easily crossed and crystal
nucleation is no longer a rare event (in the thermodynamic
sense). The lifetime of the metastable liquid is then so short
that nucleation can be studied only following rapid density
quenches. Depending on the supersaturation of this quench,
crystallization proceeds via two distinct mechanisms. For
0.55 ≤ ϕ ≤ 0.58, the metastable fluid crystallizes via a spi-
nodal-like mechanism. For ϕ ≥ 0.58, the fluid forms an out-
of-equilibrium glasslike state and crystallization then proceeds
via an avalanche-mediated mechanism.
Spinodal-like crystallization. General phase transforma-

tions in the binodal region proceed via a nucleation mecha-
nism, a process initiated by finite-amplitude, localized
fluctuations in the metastable fluid. By contrast, phase trans-
formations in the unstable region occur via a spinodal

decomposition mechanism (Gunton, San Miguel, and
Sahni, 1983), identified by nonlocal fluctuations with an
infinitesimal amplitude. At the mean-field spinodal point
(Gunton, San Miguel, and Sahni, 1983), the nucleation barrier
vanishes and the stable phase spontaneously grows. The
deterministic nonlinear amplification of order parameter
fluctuations (Bray, 1994) is then governed by the Cahn-
Hilliard equation (Cahn and Hilliard, 1958).
An analogous mechanism has been proposed to explain

crystallization for deeply supersaturated (ϕ ≳ 0.55) hard-
sphere fluids, where the nucleation barrier becomes negligible
(Pusey et al., 2009). Crystallization then proceeds via spatially
diffuse collective motion, analogous to spinodal decomposi-
tion (Yang, Gould, and Klein, 1988; Trudu, Donadio, and
Parrinello, 2006; Cavagna, 2009).
When comparing the crystallization time (the time at which

crystallinity reaches 20% of the sample, for example) to the
time needed for a particle to diffuse one diameter in the fluid,
different behaviors have indeed been detected, depending on
the degree of metastability (Pusey et al., 2009). Numerical
results (Pusey et al., 2009; Taffs et al., 2013) have been shown
to agree with experiments (Harland and van Megen, 1997;
Taffs et al., 2013). As shown in Fig. 56, at low metastability
the system crystallizes via a nucleation and growth process.
Particles freely diffuse before crystal nucleation takes place; a
crystalline nucleus has to grow large enough to overcome the
nucleation barrier before macroscopic crystallization takes
place. By contrast, for ϕ≳ 0.55, nucleation proceeds without
particles moving beyond their own diameter. A local rear-
rangement of particle positions suffices for crystallization to
proceed (Kelton, 1991; Zanotto, 2013). This spinodal nucle-
ation regime is characterized by a large driving force for
crystallization and a vanishing free-energy barrier (Klein
and Leyvraz, 1986; Trudu, Donadio, and Parrinello, 2006;
Cavagna, 2009; Pusey et al., 2009), thus resulting in a large
density of small crystal nuclei (Pusey and van Megen, 1986;
Schätzel and Ackerson, 1993; van Megen and Underwood,
1993a). At even higher supersaturations (ϕ≳ 0.56), clusters
of crystalline particles (Fig. 57) heterogeneously percolate,
following many small nuclei coming into contact. Clusters
do not grow completely at random; particles become solidlike
in the vicinity of solid regions (Sanz et al., 2011; Valeriani
et al., 2012).
A similar behavior was reported in the experimental

work of Schätzel and Ackerson (1993) and van Megen and
Underwood (1993a). In this work, the crystallite size was
found to markedly decrease with increasing concentration.
Their picture is coherent with the idea of a spinodal nucleation
regime, in which increasing supersaturation leads to nuclea-
tion on an ever-decreasing spatial scale.
Crystallization in the glassy regime. At higher volume

fractions still, hard spheres exhibit glassy dynamics; see
Sec. XII. Particle size polydispersity is then key to controlling
crystallization. As described in Sec. VII.B, when s > 5 to 6%,
crystallization is suppressed because the system cannot form a
stable crystal with the same composition as the fluid. Crystal
formation then requires either size fractionation (Fasolo
and Sollich, 2003; Martin, Bryant, and van Megen, 2003)
or the assembly of Laves phases (Bommineni et al., 2019),
both necessitating transport over larger distances; see
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FIG. 55. Nucleation work ΔG� as a function of the supersatu-
ration obtained from unbiased MD simulations (down and right
triangles), forward-flux sampling (circles), and umbrella sam-
pling (squares). The black solid line is the CNT prediction based
on the bulk values of the pressure difference and surface tension.
The thick solid red line is obtained from the nucleation theorem.
The data are plotted as a function of chemical potential with
respect to phase coexistence (lower axis), from which the volume
fraction is determined using the Carnahan-Starling relation in
Eq. (24). The plotted simulation data were obtained in the NPT
(Filion, Ni et al., 2011; Espinosa et al., 2016) and NVT
ensembles (Richard and Speck, 2018b). From Richard and
Speck, 2018b.
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Sec. VII.A. For s < 5%, however, neither the structural
relaxation times of a dense colloidal suspension (Henderson
et al., 1996; Sear, 2000; Foffi et al., 2003) nor its dynamics
(Zaccarelli et al., 2009) are significantly affected by s.
For ϕ ≈ 0.57–0.58, the crystallization time becomes

smaller than the structural relaxation time of the fluid
[Figs. 56(a) and 56(b)] (Pusey et al., 2009; Taffs et al.,
2013). For ϕ > 0.58, even though particles move on
average less than one particle diameter, crystallization can
still proceed (Pusey et al., 2009). Numerical results have
shown that a suspension of monodisperse hard spheres
(Rintoul and Torquato, 1996; Williams, Snook, and van
Megen, 2001) could crystallize even for supersaturations of
out-of-equilibrium systems approaching random close pack-
ing ϕrcp ≈ 0.64; see Sec. XII.H. It even proceeds on numerical
timescales short compared to the aging time of the amorphous
hard-sphere system (Zaccarelli et al., 2009); see Sec. XII.I. In
this glassy regime, crystalline clusters percolate as they do in
the spinodal regime, even as the relaxation dynamics slows
down by several orders of magnitude. In other words, the
structure of the growing crystals appears to be unaffected by
particle dynamics (Valeriani et al., 2012).

As in computer simulations, the experimental findings of
van Megen and Underwood (1993a) in normal gravity
demonstrated the presence of a change in the crystallization
mechanism at a packing fraction ϕ ¼ 0.58. They detected
homogeneous nucleation of compact nuclei for ϕ < 0.58 and
asymmetric nuclei for ϕ > 0.58. At a high volume fraction,
crystallization happened without particle diffusion. Possibly,
nucleation was heterogeneously induced by preformed nuclei,
which may not have been fully shear melted prior to the
experiment. By contrast, experiments in microgravity showed
that slightly polydisperse colloidal suspensions of PMMA
hard spheres rapidly crystallize in bulk when ϕ > 0.58
(Zhu et al., 1997; Chen et al., 2001).
Avalanche-mediated devitrification. Crystallization from a

deeply overcompressed suspension occurs without the need
of macroscopic diffusion (Sanz et al., 2011) and instead
through the gradual formation of crystalline patches (Sanz
et al., 2011, 2014). The crystallization mechanism has been
related to a series of discrete avalanche-like dynamical events
(Kwasniewski, Fluerasu, and Madsen, 2014) characterized
by a spatiotemporal burst of particle displacements on a
subdiameter scale (Kwasniewski, Fluerasu, and Madsen,
2014; Sanz et al., 2014; Montero de Hijes et al., 2017).
As shown in Fig. 58, during a quiescent interval (Δt1) most

particles rattle locally in their cages and less than 1% undergo
significant displacements. At Δt2 a burst of displacements
is recorded, with around 25% of all particles moving more
than 3σ. After that, the system returns to quiescence (Δt3).
Such a sequence of events corresponds to an avalanche, and
particles that move more than 3σ during the jump are deemed
avalanche particles. The particle dynamics was thus shown
to be intermittent: quiescent periods of motion within the
cage of neighbors are punctuated by avalanches in which a
correlated subset of particles undergo cage-breaking displace-
ments (Sanz et al., 2014). Note that crystallinity (in black
in Fig. 58) and mean squared displacement (in red) jump
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FIG. 56. Spinodal nucleation. (a) Crystallization times τX scaled by a time τD for a particle to diffuse one diameter as a function of
ϕ − ϕf . (Recall that a monodisperse system freezes at ϕf ¼ 0.492.) The different points represent polydispersities ranging from s ¼ 0 to
6%. The monodisperse system is reported with filled circles. From Pusey et al., 2009. (b) Crystal nucleation times scaled by the
relaxation time τα. Circles are experimental data obtained via particle-resolved studies, while light and dark squares are simulation data
for s ¼ 4% polydisperse systems with N ¼ 2048 and 10 976, respectively. The unfilled square is for a monodisperse system with
N ¼ 10 976. The dashed lines indicated melting estimated as described in Sec. VII.A. The solid line is a guide for the eye. Error bars
extending upward are lower bounds for crystallization times determined from simulations (dark lines) and experiments (light lines) that
did not crystallize. From Taffs et al., 2013.

FIG. 57. Snapshots of typical largest crystalline clusters as a
function of ϕ at a fixed cluster size (Nc ¼ 5000). This size is
achieved when ðϕ; XÞ are, respectively, ð0.54; 0.08Þ, ð0.55; 0.15Þ,
ð0.56; 0.15Þ, ð0.58; 0.14Þ, and ð0.61; 0.12Þ. X is the fraction of
crystalline particles. Periodic boundary conditions are taken into
account and clusters are centered in the simulation box. From
Valeriani et al., 2012.
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simultaneously, suggesting that the avalanches responsible for
particle displacement are also responsible for crystallization.
The structural propensity to locally crystallize in a medium-

range crystalline-order region (Kawasaki and Tanaka, 2010a)
is converted into actual crystallinity by the small random
disturbances provided by the displacement avalanche. Given
that the crystal is locally denser than the glass, the avalanche-
mediated crystallization process leads to an increase of the
local free volume, thus facilitating a higher mobility of
particles next to the newly formed crystalline region.
Therefore, crystallization proceeds by a sequence of stochastic
events leading to an increased number of crystalline particles,
correlated in space by emergent local avalanches (Valeriani
et al., 2011).
Yanagishima, Russo, and Tanaka (2017) explored the

mechanism behind avalanches, arguing that aging and devit-
rification are both triggered by a small number of particles that
are driven to rearrange in regions of low density and BOO
parameter. In particular, avalanches are accompanied by a
transient loss of mechanical equilibrium that facilitates a large
cascade of motion. The connection between mechanical
rigidity and glassy dynamics was explored by Yanagishima
et al. (2021). By artificially minimizing the heterogeneities in
the force network between particles, glasses that are free
from aging and crystallization on the simulation timescale
were obtained.
Further avalanches (Sanz et al., 2014) have been related

to dynamical heterogeneity in that clusters of particles with
high and low mobility evolve similarly in space and time.
(A description of dynamical heterogeneity in the context of
overcompressed hard-sphere fluids is given in Sec. XII.C.)
While direct visualization of avalanches has yet to be
performed in an experiment, measurements of dynamical
heterogeneity (Fig. 38) indicate that this is possible. In these
systems, avalanches and dynamical heterogeneity might
share a more general tendency to develop in regions of the
system akin to soft spots regions of high displacement in

low-frequency quasilocalized phonon modes (Brito and
Wyart, 2009). A deeper analysis, however, would be needed
to better understand this issue.
In a glassy hard-sphere suspension (see Sec. XII.C) Weeks

et al. (2000), using confocal microscopy, observed small local
rearrangements, detecting avalanches, although smaller ones
than those found in simulations (Sanz et al., 2014). Whereas
Kwasniewski, Fluerasu, and Madsen (2014) reported inter-
mittent dynamics due to avalanches by means of x-ray photon
correlation spectroscopy. It is still an open question as to
whether these differences are due to different experimental
protocols or to some other effect.

J. Nucleation in external fields

Nucleation under gravity. As discussed in Secs. VII.A
and XIII.D, colloidal hard-sphere crystallization usually
occurs under gravity. (The equilibrium case of a system
confined by a wall is considered in Sec. VIII.A.) To begin
with, we consider crystal growth for sedimenting particles on
flat surfaces. Hilhorst, Wolters, and Petukhov (2010) showed
that in sedimentary colloidal crystals obtained from disper-
sions with high initial volume, persistent fcc crystals are
favored by the presence of slanted stacking faults, while
regions devoid of those defects tend to grow as an rhcp
structure. Simulations by Marechal, Hermes, and Dijkstra
(2011) instead attributed the formation of fcc to the free-
energy difference between fcc and hcp, and not to the presence
of those slanted stacking faults. They also showed that the
fraction of fcc increases upon lowering the sedimentation rate
or decreasing the initial volume fraction.
Compared to the case of crystal growth on a flat wall,

crystal growth from a templated surface has shown that it is
possible to obtain surprisingly large defect-free crystals.
Jensen et al. (2013) controlled the growth of fcc crystal by
centrifugation (up to 3000 g) on fcc ð100Þ templates, in
contrast to what is observed for ð111Þ and ð110Þ faces (and flat
walls), where high centrifugation rates result in defective or
amorphous crystals. These results were confirmed in the
simulation work of Dasgupta, Edison, and Dijkstra (2017),
which also verified the growth of large defect-free crystals
from the ð100Þ fcc face.
Out of equilibrium, a limiting Péclet number has been

identified for crystallization to occur that depends upon the
volume fraction (Ackerson et al., 1999). Gravity has also been
found to broaden the interface between crystal and fluid with
respect to the equilibrium case. Here the largest value of the
gravitational Péclet number used was Peg ¼ 0.7 (Dullens,
Aarts, and Kegel, 2006b).
Nucleation under confinement. A more complex scenario is

that of confinement between two hard walls. In equilibrium a
range of structures is obtained (Sec. X). By means of single-
particle resolution video microscopy of colloidal films, Peng
et al. (2015) demonstrated that transitions between square and
triangular lattices occurred via a two-step diffusive nucleation
pathway involving liquid nuclei (due to the low fluid-crystal
interfacial energy). Such a two-step nucleation process has
also been observed in the case of a system confined by two
parallel walls separated by four diameters (Peng et al., 2015;
Qi et al., 2015). Here a solid-solid phase transition was

FIG. 58. Development of intermittent, heterogeneous dynamics
in concentrated hard-sphere suspensions. Crystallinity X (in
black) and mean squared displacement [msd, in red (top line)]
vs time around the steplike crystallization event shown at
t ¼ 2.2 × 105. The green curve (bottom line) Xavl is the fraction
of avalanche particles that are solidlike. From Sanz et al., 2014.
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considered in MD and MC simulations. The transition from a
solid consisting of five crystalline layers with square sym-
metry (□) to a solid consisting of four layers with triangular
symmetry (4△) was shown to occur through a nonclassical
nucleation mechanism: a precritical fluid cluster within which
a cluster of the stable 4△ phase then grows with one step
(Qi et al., 2015). As discussed in Sec. XIII, crystallization of
nanoparticles in spherical confinement proceeds via hetero-
geneous nucleation (de Nijs et al., 2015), and recently it was
shown to exhibit a bifurcation to decahedral or icosahedral
structures (Fru Mbah et al., 2023).
Nucleation under shear. Nucleation in the presence of

uniform driving, i.e., sedimentation with Peg < 1, has already
been discussed as a possible cause of the nucleation rate
discrepancy (Sec. XIII.D). Another important geometry for
uniform driving is simple shear flow. One might expect that
steadily shearing a hard-sphere suspension would destroy the
entropic forces that favor the crystal, and thus prevent the
formation of the crystal starting from the supersaturated melt.
Experiments nevertheless show that for weak strain rates
(Peγ̇ ≪ 1) nucleation persists (Wu et al., 2009). The effect,
however, strongly depends on ϕ, with two regimes that
are delineated by the nucleation spinodal (Sec. XIII.I), at
which the free-energy barrier in quiescent suspensions van-
ishes. In the activated regime for ϕ < 0.56, nucleation is
suppressed by shear and the nucleation rate drops as we
decrease ϕ [Fig. 59(a)]. This reduction can be rationalized by
invoking an increase of the effective free-energy barrier17

ΔFðγ̇Þ−ΔF0∝ γ̇2 (Blaak et al., 2004); cf. Fig. 59(a). This
increase is dominated by the additional elastic work to strain
the solid nucleus (Mura and Zaccone, 2016), and a more
careful numerical investigation of the effective parameters (the
elastic modulus and pressure difference) again revealed a
strong dependence on droplet size (Richard and Speck, 2019).

It has been posited that the kinetic prefactor is linearly
enhanced for packing fractions close to the binodal, leading to
nonmonotonic nucleation rates Jðγ̇Þ − J0 ∝ 1 − ðγ̇=γ̇opt − 1Þ2,
with the maximum at strain rate γ̇opt. Figure 59(b) shows the
normalized nucleation rate as a function of strain rate for a
range of model liquids (Goswami, Dalal, and Singh, 2021).
Going to the opposite limit of high packing fractions
(ϕ > 0.56), the quiescent barrier ΔF0 vanishes and the shear
flow again facilitates nucleation by increasing the mobility
of single particles, thus helping the arrested dynamics to be
overcome at high packing fraction (Koumakis, Schofield, and
Petekidis, 2008; Wu et al., 2009; Richard and Speck, 2015).
Binary systems under shear offer the possibility of model-

ing the effects of polydispersity (which appear to be compa-
rable to quiescent systems) (Maßhoff et al., 2020). These
studies also have the potential to explore fractionation in
crystallization, which is predicted from numerical simulation
and theory; see Sec. VII.B.

K. Melting

While hard-sphere crystallization has received most of the
attention, crystal melting is also of physical interest (Löwen,
1994; Dash, 1999). Normally, crystal melting occurs at an
existing fluid-crystal interface, without the need for a nucle-
ation event. However, nucleation can play a role in the bulk
melting of hard-sphere crystals. Even in the early days of
hard-sphere simulations, it was noted that “in the metastable
extension of the crystalline phase […] small finite systems can
resist melting indefinitely” (Bennett and Alder, 1971). Such
crystals are indeed expected to persist up to the Born limit
of mechanical stability, at which the elastic moduli of the
crystal vanish (Born, 1940; Wang et al., 1997). Between that
spinodal-like point and the thermodynamic melting transition,
nucleation is expected to be the pathway through which
equilibrium is attained. Numerical work has shown the
melting to be strongly algorithm dependent (Isobe and
Krauth, 2015). Controlled studies of nucleation are much
more recent. Wang, Wang et al. (2018) revealed that the

(a) (b)

FIG. 59. Nucleation under shear. (a) Nucleation rate J as a function of squared strain rate ⊙ γ2 for several packing fractions decreasing
from top ϕ ¼ 0.56 [blue (dark gray)] to bottom [yellow (pale grey)]. Inset: the slope, which decreases as ϕ increases (faster nucleation).
From Richard and Speck, 2015. (b) Shifted and normalized nucleation rates J as a function of strain rate γ̇=γ̇opt for several model liquids,
including hard spheres at ϕ ¼ 0.503 close to the binodal showing a nonmonotonic behavior. From Goswami, Dalal, and Singh, 2021.

17Although in the driven melt we should think of the reversible
work to form a solid droplet instead of an equilibrium free-energy
difference.
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melting spinodal is found well before the Born instability
criterion, but also that homogeneous nucleation efficiently
melts an fcc crystal. Homogeneous melting has been inves-
tigated using brute-force molecular dynamics, umbrella sam-
pling, and seeding simulations. Gispen and Dijkstra (2024)
showed that CNT, augmented with an elastic strain energy
correction, accurately predicts the homogeneous melting rate.
It was observed that, compared to freezing, melting has a
lower driving force due to the proximity of a spinodal
instability and a strain energy. In addition, the lower interfacial
tension implies opposite signs for the Tolman lengths asso-
ciated with melting and freezing, a phenomenon that was
interpreted with Turnbull’s rule. Despite these asymmetries,
nucleation rates for freezing and melting are comparable.
Experimentally nonequibrium melting is challenging to

explore. To melt a hard-sphere crystal, one needs to reduce the
volume fraction in situ, which is itself typically hard. There
are therefore few examples. One solution is to use microgel
colloids whose effective diameter may be tuned with temper-
ature. These have been shown to melt, providing insight into
local mechanisms (Alsayed et al., 2005). As shown in Fig. 60,
3D melting appears to be initiated at grain boundaries.
An inventive development of this approach is to use laser-

induced localized heating of a microgel system. Here the
system was mildly heated locally using the lens of the
microscope. The appeal of this method is that the melting
is initiated in the middle of the system far from any wall
effects; hence, we can be confident that homogeneous melting
will be observed. Melting precursors were observed in the
form of local particle-exchange loops surrounded by particles

with large displacements rather than defects. The nucleus size,
shape, and time evolution were found to deviate from CNT
(Wang et al., 2012). Another option is to produce an
equilibrium sedimentation profile and then to invert it
(Turci and Royall, 2016). This approach means that melting
is observed in a system with somewhat inhomogenous density
but may be achievable in most experimental hard-sphere
systems without the need for a specialized setup.
An interesting form of reentrant surface melting has been

observed in hard spheres in experiments. Here an increase in
mobility was found in the layer by the wall when the bulk of
the system was crystalline (and exhibited negligible mobility).
This increase in mobility was attributed to a 2D-like behavior
at the wall (Dullens and Kegel, 2004). Other examples of the
role of interfaces include studies of thin films (at the colloidal
scale). Depending on the film thickness, thicker films melted
from grain boundaries, while thin solid films melt in one step
(Peng et al., 2010). In quasi-2D systems, consistent with later
equilibrium work (Sec. VII.E), two-step melting from the
crystal to the hexatic phase and from the hexatic to the fluid
phase has been observed (Han, Ha et al., 2008).

XIV. SUMMARY AND OUTLOOK

We close this review by taking stock of what we have
learned from experiments and related work on colloidal hard
spheres and consider what the future might hold. As one of the
most fundamental model systems in colloidal and statistical
physics, hard spheres have played a key role in shaping our
understanding of a wide range of phenomena. This progress
has been driven partly by the inherent simplicity of the model
and partly by the successful intertwining of theoretical and
simulation approaches with the experimental realization of
hard-sphere colloids. We begin by summarizing the general
areas that are well understood, then move on to what we
regard as outstanding challenges.

A. What have we learned?

As we discussed in Secs. III and IV, a number of reliable
methodologies have been developed to realize hard-
sphere-like colloidal particles over a range of size scales.
Similarly, simulation methods for hard spheres are by now
well established (Sec. V). A key challenge when comparing
these is synthesizing particles with interaction potentials as
close as possible to the hard-sphere ideal and obtaining
reliable quantitative estimates of discrepancies. While up
to six significant figures can be achieved in molecular
systems, at this point the characterization of state points
in colloidal systems in experiments is accurate to at best
three (Sec. III.E). Although improvements will continue to
emerge, many studies highlighted in this review show that in
numerous circumstances good agreement already exists
between experiments and simulations. The impact of even
slight softness should nevertheless continue to be explored
(Taffs et al., 2013; Royall, Williams, and Tanaka, 2018;
Dasgupta, Coli, and Dijkstra, 2020; de Jager and Filion,
2022) and to be carefully considered when interpreting
experimental results (Sec. III.D).

FIG. 60. Premelting of the colloidal crystal at a grain boundary
seen through bright-field images at different temperatures (i.e.,
particle volume fractions) of two crystallites separated by a grain
boundary (crystallites tilted at an angle θ with respect to one
another). (a) Sample at 27.2 °C. The solid and dashed lines show
the grain boundary and a partial dislocation, respectively. The
grain boundary cuts the two crystals along two different planes
(the yellow line has two slopes). It is composed of an array of
dislocations; the two extra planes are indicated by lines in the
inset. (b) Sample at 28.0 °C. The grain boundary starts to premelt;
nearby particles undergo liquidlike diffusion (inset). The partial
dislocation, which is denoted by the dashed line, is not affected.
(c),(d) The same sample at 28.1 and 28.2 °C, respectively. The
width of the premelt region near the grain boundary increases.
Scale bars, 5 μm. From Alsayed et al., 2005.
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In terms of methodological advances, the recent develop-
ment of experimental systems that are truly close to hard
spheres for 3D confocal microscopy work, where the larger
colloids required need more care in producing hard-sphere-
like behavior (Sec. III.C) (Royall, Poon, and Weeks, 2013;
Kodger, Guerra, and Sprakel, 2015; Liu et al., 2016; Kale
et al., 2023). Other experimental developments include
coupling light scattering with rheology (Tamborini and
Cipeletti, 2012), as well as deploying spatially resolved light
scattering (Golde, Palberg, and Schöpe, 2016), with which
one may soon probe dynamical heterogeneity at deeper
experimental supercooling than has been achieved thus far.
In parallel, the techniques used in particle-resolved studies
have been extended to smaller particles that access longer
timescales in terms of their Brownian time (Hallett, Turci, and
Royall, 2018). This may prove useful in probing dynamics at
deeper experimental supercooling. The approach could also
be used to investigate crystal nucleation in the regime of
supersaturation thus far accessed only by light scattering
(with small particles), but with real-space resolution the
approach could be used to probe the hard-sphere nucleation
discrepancy. Other experimental developments that could be
brought to bear to address this discrepancy include seeding
with optical tweezers (Hermes et al., 2011; Curran et al.,
2014), with which a careful study for a range of well-
controlled state points may be expected to yield consid-
erable insight. Experimentally inferring local forces and
stresses (Lin, Bierbaum et al., 2016; Dong et al., 2022) may
also reveal details into failure mechanisms of amorphous
and crystalline solids.
Self-assembly of hard-sphere systems in confinement still

often yields surprises, such as the emergence of crystal
structures that are not favored in bulk systems (Sec. X.D),
and is likely to continue to do so in the future, especially when
coupled with size dispersity. Similarly, the careful exploration
of various ranges of size ratios in binary hard-sphere mixtures
(Sec. IX) has revealed the existence of metastable fluid-fluid
demixing as well as the formation of complex crystals. Self-
assembly of other crystal phases at size ratios that have not
been as carefully explored is expected, given the wealth of
structures known to exist at infinite pressure (Hopkins,
Stillinger, and Torquato, 2012). More generally the consid-
eration of binary mixtures naturally enriches all of the other
phenomena discussed in this review and plays a particularly
important role in the study of glass-forming systems.
How external forces and fields modify the structure and

dynamics of hard spheres was explored in Sec. XI. The
solvent plays an important role in out-of-equilibrium systems
in that it then hydrodynamically couples forces. The careful
treatment of hydrodynamic interactions (Sec. V.D) has there-
fore significantly improved our understanding of phenomena
such as sedimentation and shear thickening. Theoretical
insights have further led to a rather comprehensive picture
connecting deformations of the microstructure to the macro-
scopic material properties probed in rheology experiments.
Hard spheres have played a key role in both computer

simulation and the experimental study of glass physics; see
Sec. XII. As experimental systems and simulation techniques
evolve to probe structure and dynamics at ever deeper
supercooling, one hopes that hard-sphere studies will lead

to an even stronger framework for understanding glass
formation. If it were possible to use still smaller particles
in experiment than those used by Hallett, Turci, and Royall
(2018), then those could be a means to probe the additional
increase of dynamical length scales and the hierarchy in
dynamical behavior in experiments (Scalliet, Guiselin, and
Berthier, 2022; Ortlieb et al., 2023). Related to this would be
the structural relaxation mechanism at deep supercooling.
Failure in amorphous soft materials and, in the context of
hard spheres, glasses is a most promising area for future work.
This brings together multiple challenges of aging nonequili-
brium materials. For example, few studies have addressed
the Gardner transition (Sec. XII.H) with colloids, and it is
tempting to imagine that a combination of shear and force
measurement may be a way to do so. A further interesting
possibility would be to use hard-sphere experiments to
investigate the ductile-brittle transition recently found in
computer simulation (Ozawa et al., 2018). Developments in
x-ray scattering (see Sec. XII.C) that reveal higher-order
structure and dynamical information may be able to play a
key role in equilibrating samples much closer to the glass
transition, and also in annealing samples that might exhibit
brittle behavior (Wochner et al., 2009; Lehmkühler et al.,
2020; Liu et al., 2022).
At high volume fraction, it is still not clear whether

crystallization in experiments results from residual crystals
in the samples arising from their preparation. Indeed, van
Megen and Underwood (1993a) suggested that the shear-
melting process by which amorphous colloid samples were
prepared could leave small shear-aligned nuclei on which a
crystal could grow. Concerning simulations, there is the
possibility that crystals could be formed during compression
of the system to the high concentration regime. These crystals
could later act as seeds for further crystallization.
Another important challenge is the observation of ava-

lanche crystallization in experiments. Because avalanches
are rare events, one might need a large amount of data to
analyze and store in order to find them in confocal micro-
scopy experiments [such as those of Weeks et al. (2000)].
Concerning light or x-ray scattering experiments [such as
those of Kwasniewski, Fluerasu, and Madsen (2014)], one
might vary the size of the scattering volume and use a small
number of particles to be able to clearly detect intermittency
with long quiescent periods. The reason for suggesting
this approach is that in a larger volume containing many
particles avalanches might occur simultaneously in different
regions of the system, and the dynamics would appear to be
much more homogeneous.

B. Open challenges

We now turn to areas in which relatively little work
has been done, or in which major developments are sorely
needed. At the experimental level, a major bottleneck with
particle-resolved studies is the quantity of data produced.
Experimental papers with few coordinate sets analyzed are
common (Dong et al., 2022). Often the technique seems to
promise much, based on the precision of the data, but the
quantity obtained is insufficient for the kind of statistically
meaningful analysis that would be required to fully exploit the
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technique. While great strides have been made in the ability to
handle large datasets, the issue often lies in the acquisition of
the data, which is limited by the scanning of a single lens
across a sample. It therefore is not easy to see how this can be
significantly improved, but if some means can be found to
increase the rate of data acquisition, then many challenges
relating to the quantity of data might be addressed. For
example, imagine being able to compare the shapes of nuclei
of a certain size between experiment and simulation in the
context of the nucleation discrepancy. A further issue is that
the system can evolve during the time taken to scan. One
direction that has been explored is to “freeze” the solvent by
polymerizing it in situ. This enables much larger regions to be
imaged, and images containing in excess of a million particles
have been obtained (with typical values being around 10 000)
(van der Wee, 2019).
In monodisperse hard spheres in equilibrium, interfaces

remain a major challenge. As discussed in Sec. VIII, numeri-
cal and theoretical methods to obtain the interfacial free
energy and stiffness vary by up to 30%. Meanwhile, exper-
imental measurements show even greater discrepancies, often
differing from simulation and theory by a factor of 2 or more.
Given the importance of these quantities in the context of
nucleation, there is an interest in arriving at generally agreed
values for interfacial free energies and stiffness, and for well-
controlled experimental validation. This discrepancy might
stem from a high sensitivity of interfacial properties to
relatively small deviations from hard-sphere behavior.
In other words, if accurate values were established for the
hard-sphere interfacial free energy and stiffness, these results
could prove to be valuable benchmarks for assessing how
close to a hard sphere a given experimental system is.
Another interfacial phenomenon, grain boundaries, remains
largely unexplored in 3D hard spheres. In simulations this
may reflect the need for large system sizes, but in experi-
ments there is much to be done.
Our knowledge of hard-sphere phase behavior becomes

more clouded when more than two particle sizes are mixed.
Owing to the vastness of the resulting parameter space, the
exploration of crystallization in ternary and higher-component
systems has been relatively sparse (Stucke and Crespi, 2003;
Wang et al., 2016; Koshoji and Ozaki, 2021), and hence a
clear overview of the resulting phase behavior is largely
missing. For hard-sphere systems with relatively large poly-
dispersity, the equilibrium phase behavior is essentially
unknown. Simulations suggest the possible stability of
complex crystal structures (Lindquist, Jadrich, and Truskett,
2018; Bommineni et al., 2019), but whether these are indeed
thermodynamically stable or realizable in experiments
remains an open question. Therefore, the possibility of
surprising new physics in mixtures of hard spheres should
not be discounted.
The nucleation process in monodisperse hard-sphere sys-

tems remains a topic of intense debate. As discussed in
Sec. XIII, various reasons have been proposed for the ongoing
discrepancy between experimentally measured and theoreti-
cally predicted nucleation rates of the hard-sphere crystal
phase. However, resolving this issue will remain difficult as
long as real-space experiments have trouble probing the
timescales required to observe nucleation in the low

supersaturation regime where this discrepancy is observed.
One possibility would be to probe precritical nuclei. That
experiments (Wood et al., 2018) and simulations (Fiorucci
et al., 2020) disagree substantially in the measurement of
higher-order structures in sedimenting metastable fluids sug-
gests that this might be a fruitful line of enquiry.
Alternatively, using smaller particles could enable particle-

resolved studies in the discrepancy regime. Such experiments
will have to rely on advances in imaging techniques (Hell,
2007; Hallett, Turci, and Royall, 2018), as well as in possibly
machine-learning-based algorithms for obtaining particle
coordinates from lower-resolution images (Sec. IV.B). As
noted, the potential for the new x-ray scattering methods to
access smaller particles may also be important here (Wochner
et al., 2009; Lehmkühler et al., 2020; Liu et al., 2022).
Perhaps another approach may yield fruit here, and this

would be to determine the volume fraction accurately or
measure the nucleation rate at much lower supersaturations.
Disappointing as it may be, the possibility that the discrepancy
could be resolved by a correct determination of effective
volume fraction absolutely cannot be ruled out. However, if
there is an issue with experimental determination of the
volume fraction, it is systematically underestimated, and
why this is remains a profound mystery. That there are two
lines in the experimental data (Fig. 47) with significantly
differing rates of sedimentation might be seen as a smoking
gun. However, investigations of the effects of sedimentation,
which can change the higher-order structure of the system and
thus reduce the barrier to nucleation, did not fully address the
discrepancy (Wood et al., 2018; Fiorucci et al., 2020).
Experimental investigations of polymorph selection path-

ways remain few and far between [except that of Gispen et al.
(2023); see Sec. XIII.H]. Confocal microscopy experiments
have observed the real-space formation of relatively ordered
precursor structures with different symmetries, but under-
standing their conversion into crystalline nuclei remains a
challenge. Furthermore, observation in simulation of a pref-
erence for fcc (Leoni and Russo, 2021; Gispen et al., 2023)
has not been reproduced in an experiment, which seems to
form rhcp (Kegel and Dhont, 2000; Martelozzo et al., 2002).
A systematic comparison of polymorph selection at well-
matched state points between experiments and simulations
would seem to be in order.
Overall the main lesson learned from the rich history

and broad applicability of the hard-sphere model is the
impressive complexity that emerges from even a simple system.
Depending on their density, size dispersity, and environment,
hard spheres demonstrate that energetic interactions are not a
requirement for the formation of amazingly complex (quasi)
crystal structures, probing the complex and heterogeneous
dynamics of glassy materials, or gaining insight into far-
from-equilibrium phenomena. Investigating these different
processes in hard spheres instead provides a framework for
understanding the same phenomena for systems driven by more
complex interactions, regardless of whether they consist of
atoms, molecules, or more complex colloidal building blocks.
As a result, hard spheres will inevitably continue to function as
a key reference system in statistical physics and colloid science,
and as a testing ground for newly developed theoretical and
computational techniques. Moreover, as we have highlighted in
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this review, hard spheres continue to hold surprises, challenges,
and unresolved questions that will inevitably spark new
research directions in the years and decades to come.

Data relevant to this work have been archived and can be
accessed at the Duke Digital Repository (Royall et al., 2024).

LIST OF SYMBOLS AND ABBREVIATIONS

σ hard-sphere diameter
σeff effective diameter
ϕ volume (packing) fraction
ϕcp close-packing fraction
ρ number density
P (osmotic) pressure
Z compressibility factor βP=ρ
η solvent viscosity
τB Brownian time
τα α-relaxation time
τβ β-relaxation time
β 1=kBT
uðrÞ pair interaction potential
κ Debye length
λB Bjerrum length
DS short-time diffusion
DL long-time diffusion
D0 free diffusion
J nucleation rate
ξg gravitational length
v velocity
q size ratio
k wave vector
SðkÞ structure factor
gðrÞ radial distribution function
gðσþÞ contact value of gðrÞ
γ Interfacial free energy
τ shear stress
γs, γ̇s strain (rate)
s polydispersity
BD Brownian dynamics: a common simulation

method that approximates the motion of
colloids

CHB cyclohexyl bromide: solvent used for density
and refractive index matching of PMMA
particles

PHSA polyhydroxystearic acid: a commonly used
stabilizer for the PMMA system

PMMA polymethyl methacrylate: the most commonly
used experimental system for 3D hard spheres
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