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ABSTRACT
By employing brute-force molecular dynamics, umbrella sampling, and seeding simulations, we investigate homogeneous nucleation during
melting and freezing of hard spheres. We provide insights into these opposing phase transitions from the standpoint of classical nucleation
theory. We observe that melting has both a lower driving force and a lower interfacial tension than freezing. The lower driving force arises
from the vicinity of a spinodal instability in the solid and from a strain energy. The lower interfacial tension implies that the Tolman lengths
associated with melting and freezing have opposite signs, a phenomenon that we interpret with Turnbull’s rule. Despite these asymmetries,
the nucleation rates for freezing and melting are found to be comparable.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0201629

Melting and freezing are opposing pathways by which matter
transitions between solid and liquid phases. These processes have
significant implications across various scientific disciplines, includ-
ing materials science, geophysics, biology, and atmospheric sciences.
Understanding them is crucial in numerous practical applications.
For instance, in metallurgy, knowledge of freezing and melting is
essential for processes such as casting, welding, and shaping. In the
pharmaceutical industry, crystallization and melting play a crucial
role in influencing the solubility and formulation of drugs.

Both melting and freezing most commonly occur through
heterogeneous nucleation on external surfaces or internal defects.
Nonetheless, homogeneous nucleation remains a useful starting
point for understanding the thermodynamics of these first-order
phase transitions. For example, knowledge of the homogeneous
freezing rate can be used to predict the heterogeneous freezing rate.1
Experimentally, the involvement of surfaces and defects makes the
study of homogeneous melting and freezing challenging. However, it
is possible to mitigate these effects, for instance, external surfaces can
be coated,2 and defects can be annealed using heating cycles.3 This
has enabled the experimental observation of homogeneous melting
in a system of thermally responsive microgel colloids.3–5

The key factor in homogeneous nucleation is the nucleation
rate. Classical nucleation theory (CNT) plays a paramount role for
qualitatively understanding this rate. CNT consists of three compo-
nents, the driving force, interfacial tension, and kinetic prefactor.
Notably, the kinetic prefactor and driving force can be accurately
determined using the bulk equations of state. This leaves the inter-
facial tension as the primary unknown in CNT. Phenomenologi-
cal rules exist for predicting trends in the interfacial tension. For
instance, Turnbull’s phenomenological rule6 asserts that the inter-
facial tension is proportional to the melting enthalpy. Additionally,
Tolman7 argued that it varies with the curvature of the interface.

In the past two decades, it has become possible to test these
predictions using computer simulations. These simulations provide
a unique tool for uncovering the mechanisms and thermodynam-
ics of nucleation. For instance, Sanchez-Burgos et al.8 demonstrated
that the Tolman length is equivalent for condensation and cavita-
tion. However, much less is known about the interfacial tension
governing the melting transition and whether a similar symmetry
exists between freezing and melting. One reason for this knowledge
gap is that melting has traditionally been considered a one-sided
instability of the solid phase, with most research focusing on the
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role of various types of defects that lead to catastrophic melting at
the limit of superheating.9–14 Due to the emphasis on the super-
heat limit, numerous unresolved questions persist regarding the
mechanism and thermodynamics of melting prior to reaching the
superheat limit. Furthermore, the focus on defects has cast signifi-
cant doubts on the suitability of CNT for effectively describing the
melting process.9,10,14 For example, it has never been tested whether
CNT can successfully predict the melting rate.

In this Communication, we assess the applicability of CNT
in describing melting and freezing of hard spheres. Using com-
puter simulations, we investigate homogeneous melting and freezing
within the solid–fluid coexistence region. Our findings reveal sev-
eral asymmetries between melting and freezing, offering a unique
perspective on the predictions of Turnbull and Tolman.

We first perform molecular dynamics simulations to elu-
cidate the mechanism of homogeneous melting. We prepare a
surface-free and defect-free face-centered cubic (fcc) crystal con-
sisting of N = 2 × 104 nearly hard spheres that interact with a
Weeks–Chandler–Andersen (WCA) potential. This potential has
been extensively used in previous research for modeling hard
spheres via molecular dynamics. Specifically, prior studies15,16 have
shown that this potential effectively maps freezing rates to hard
spheres when defining an effective hard-sphere diameter σeff such
that the freezing density15 aligns with that of hard spheres.17

In the following, we use this effective hard-sphere diameter to
calculate the effective packing fraction η = Nπσ3

eff/6 V . We perform
all our simulations in the coexistence region between the freezing
point ηfr = 0.492 and melting point ηm = 0.544.17 First, we perform
brute-force canonical ensemble (NVT) simulations of the fcc crystal
from η = 0.503–0.508. In Fig. 1, we show a fluid nucleus at η = 0.508.
For comparison, we also show a crystal nucleus from previous simu-
lations16 at η = 0.528. We differentiate between fluid-like (dark blue)
and solid-like (yellow) particles using the averaged Steinhardt bond
order parameter q̄6.18 Employing the mislabeling scheme,19 we cal-
culate a pressure-dependent threshold q̄∗6 (P) and classify particles
as fluid-like when q̄6 < q̄∗6 (P) and solid-like when q̄6 > q̄∗6 (P). For
additional details, refer to the supplementary material. Similar to
freezing, the fluid nucleus depicted in Fig. 1 has an approximately
spherical shape. We did not observe nuclei with a lentil or oblate
shape, not even in the region close to the melting point where they
are theoretically predicted.25,26 See the supplementary material for
additional illustrations of the shapes of the fluid nuclei. Therefore,
we assume a spherical shape in our subsequent analysis. The forma-
tion of a nucleus can take a long time, but once it reaches a critical

FIG. 1. Cut-through images of nucleation during homogeneous melting (left) and
freezing (right) of hard spheres. The nuclei are identified using the Steinhardt
bond order parameter q̄6. Yellow corresponds to solid-like particles, and dark blue
corresponds to fluid-like particles.

size, it rapidly expands, leading to melting of the entire system. This
observation that melting follows a nucleation and growth scenario
aligns with prior findings9 and reinforces the applicability of CNT.

To quantitatively describe the thermodynamics of melting and
freezing using CNT, we first calculate the driving force for nucle-
ation, which is determined by the difference in chemical potential
∣Δμ∣ between the fluid and solid phase. We calculate this difference
by employing thermodynamic integration of empirical equations
of state9,27 from coexistence.17 In Fig. 2, we present the driving
force ∣Δμ∣ for both the melting and freezing of hard spheres as
a function of packing fraction η. Surprisingly, the driving force
for melting is significantly lower than that for freezing. According
to the Gibbs–Duhem equation ∂∣Δμ∣/∂P = Δ(1/ρ), the derivative
∂∣Δμ∣/∂P should be nearly equal for melting and freezing. How-
ever, within the solid–fluid coexistence region, the pressure of the
solid changes much less than that of the fluid. To illustrate this, we
also plot the pressure difference from coexistence β∣P − Pcoex∣σ3 in
Fig. 2. The reduced pressure variation for the solid phase is asso-
ciated with the spinodal instability occurring at η = 0.494,9 where,
by definition, the derivative ∂P/∂η becomes zero. In summary, the
primary reason for the lower driving force for melting is the pres-
ence of a spinodal instability. However, the driving force for melting
is also reduced by strain energy.28–31 The reduced density within a
fluid nucleus compels the surrounding crystal to deform, incurring
an additional free-energy cost that is proportional to the volume of
the fluid nucleus,

ΔG = γ4πr2
− ∣Δμ∣

4π
3

r3ρf + Estrain
4π
3

r3. (1)

Here, ΔG denotes the Gibbs free energy for nucleation, γ is the
solid–fluid interfacial tension, and r and ρf are the radius and density
of the fluid nucleus, respectively. Additionally, Estrain corresponds to
the strain energy given by

Estrain =
2CsB f

4Cs + 3B f
(

1/η f − 1/ηs

1/ηs
)

2

. (2)

FIG. 2. Top: Pressure difference from coexistence β∣P − Pcoex∣σ3 for the fluid (yel-
low) and solid (dark blue) phase of hard spheres as a function of packing fraction
η. Bottom: Driving force for melting and freezing as a function of packing fraction
η. The yellow line is the difference in chemical potential between the solid and fluid
phase as a function of the packing fraction of the fluid phase. The blue dotted line
is the chemical potential difference as a function of the packing fraction of the solid
phase. The blue solid line is the effective driving force ∣Δμeff∣ = ∣Δμ∣ − Estrain/ρ f
for melting.
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In this expression, Cs represents the shear modulus of the solid,9
B f represents the bulk modulus of the fluid,27 and the term within
brackets denotes the relative volume change due to melting. This
expression for the strain energy is based on a calculation using
the continuum theory of elasticity.28 The strain energy lowers the
effective driving force ∣Δμeff∣ = ∣Δμ∣ − Estrain/ρf . Given the very low
driving force for melting, it is surprising that we have observed spon-
taneous melting at ηeff = 0.508, where the effective driving force is
0.18kBT. In contrast, spontaneous freezing can only be observed at
η ≥ 0.528,16 where the driving force is ≥0.44 kBT.

To understand this surprising asymmetry, we separate ther-
modynamics from kinetics. Starting from a perfect fcc lattice, we
measure the Gibbs free-energy barrier βΔG(n) required to form a
fluid nucleus of size n using the umbrella sampling technique.32 In
Fig. 3, we present these free-energy barriers for three different pres-
sures, corresponding to effective driving forces ∣βΔμeff∣ = 0.14, 0.15,
and 0.18. According to CNT, the barrier height ΔG∗ and critical
nucleus size n∗ are related as ΔG∗ = n∗∣Δμeff∣/2. We plot this CNT
approximation as blue dots in Fig. 3, showing that it is a reason-
able approximation for the height of the barrier, with a maximum
error of 5kBT at the lowest supersaturation. We note that CNT
can be adjusted to describe the shape and height of the nucleation
barrier more accurately.33–36 In Fig. 3, we also display the freezing
barriers computed by Auer and Frenkel.32 When we compare their
freezing barriers with our melting barriers, we observe that the crit-
ical nucleus size for melting is much larger than for freezing. For
instance, the freezing barrier at ∣βΔμ∣ = 0.34 and the melting bar-
rier at ∣βΔμeff∣ = 0.15 both have a height of ∼42kBT, but the critical

FIG. 3. Gibbs free energy βΔG as a function of nucleus size n for melting and
freezing as obtained from umbrella sampling for three different driving forces βΔμ.
The freezing barriers (yellow) are taken from the work of Auer and Frenkel.32 The
melting barriers (blue) are determined in this work. For melting, the blue dots are
the CNT approximations of the barrier height ΔG∗ = n∗∣Δμeff∣/2, with n∗ being
the critical nucleus size.

nucleus size is ∼590 for melting and 230 for freezing. The same com-
parison reveals that melting has a significantly lower effective driving
force for a nucleation barrier of comparable height.

From a CNT perspective, this implies that the interfacial ten-
sion for melting must be lower than for freezing. We calculate the
interfacial tension using CNT based on brute-force,16 seeding,19 and
umbrella sampling34 simulations; see the supplementary material. In
Fig. 4(a), we plot the interfacial tension γ as a function of the inverse
critical radius 1/r∗ for both freezing and melting.

FIG. 4. Interfacial tension γ as a function of (a) inverse critical radius σ/r∗, (b) enthalpy difference βΔH/N between fluid and solid, (c) pressure βpσ3, and (d) difference
in packing fraction η between fluid and solid. The interfacial tension is calculated using CNT from molecular dynamics (MD, crosses), umbrella sampling (US, diamonds),
and seeding (circles). The lines are either linear (a), (b), and (c) or power law (d) fits of the data. For freezing, we used data from the works of Gispen and Dijkstra16 (MD),
Espinosa et al.19 (seeding), and Filion et al.34 (US). Following Turnbull,6 we normalize γ with the density ρn of the nucleating phase for (b).
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We see that the interfacial tension for freezing converges to the
planar limit βγσ2

= 0.5737 as 1/r∗ → 0, whereas it extrapolates to a
lower value for melting, which may be associated with the strain
energy. Clearly, the common assumption of a constant interfacial
tension9,30,38,39 is not suitable for hard spheres since the interfacial
tension increases with 1/r∗ for freezing,40,41 whereas it decreases for
melting. Our results for the interfacial tension for melting deviate
from the experimental value of βγσ2

= 0.84 estimated from homoge-
neous nucleation,5 but align well with the experimental value of βγσ2

= 0.42 estimated from nucleus growth.3 Qualitatively, our observa-
tion of a decreasing interfacial tension for melting is consistent with
previous simulations of a Lennard-Jones system.31,42 Based on linear
fits of the interfacial tension, we can estimate the Tolman lengths as
−0.46σ for freezing and 0.56σ for melting. Interestingly, we observe
that the Tolman length has opposite signs but similar magnitudes
for freezing and melting. In the context of boiling and condensation,
opposite signs of the Tolman length have been attributed to the tran-
sition from a convex to a concave surface, i.e., a shift from positive
to negative curvature.43

To understand the origin of this asymmetry in the interfa-
cial tension, we invoke Turnbull’s phenomenological rule,6 which
states that the interfacial tension is proportional to the difference in
enthalpy between the solid and fluid phases. In Fig. 4(b), we show
the interfacial tension γ as a function of this enthalpy difference
ΔH. Following Turnbull, we normalize γ with the density ρn of the
nucleating phase to the power 2/3. We see that γ is indeed approx-
imately proportional to ΔH. Alternatively, we can understand the
lower interfacial tension by examining how it scales with the pres-
sure βpσ3 or the difference in packing fraction Δη between the solid
and fluid phases. In Fig. 4(c), we show the variation of interfacial
tension with pressure. It is described well by two linear relations,
one for melting and one for freezing, that intersect at the coexis-
tence pressure. The increase of interfacial tension with pressure has
previously been attributed to the pV work that is needed to accom-
modate the less efficient packing of particles near the solid–fluid
interface.44 In Fig. 4(d), we plot the dependence of interfacial tension
on the difference in packing fraction. The best power-law fit of this
dependence yields an exponent of 2.02, which reasonably describes
the interfacial tension. The power-law scaling of the interfacial ten-
sion with the density difference is reminiscent of the scaling laws
for surface tension near a gas–liquid critical point.45 However, it is
important to note that both Turnbull’s rule and the scaling laws near
a critical point are not specifically intended to describe the variation
of fluid–solid interfacial tension with supersaturation. Nevertheless,
they provide some insights into why the interfacial tension is lower
for melting: the differences in density and enthalpy quantify the
extent to which the density and structure of the two phases must
change across the fluid–solid interface. Because these differences are
much smaller for melting, it explains why the interfacial tension is
also lower.

So far, we have interpreted our brute-force and umbrella sam-
pling simulations using CNT and have shown there are significant
asymmetries between freezing and melting concerning driving force
and interfacial tension. However, how does this translate to the
most important quantity, which is also experimentally accessible,
the nucleation rate? Can CNT be employed to predict the nucle-
ation rate as well? To address these questions, we use fluid nuclei
that were equilibrated with umbrella sampling simulations as initial

configurations for seeding simulations.19 For eight different seeds,
ranging in size from n = 800–1200, we determine the driving force
necessary to make these seeds critical. In this way, we obtain the
critical nucleus size n∗ as a function of the driving force. From
the critical nucleus size and the driving force, we can compute the
interfacial tension. The seeding results for the interfacial tension are
fitted linearly as a function of pressure, as illustrated in Fig. 4(c).
In this way, we account for the influence of finite size, curvature,
and pressure on the interfacial tension.19,46 From the fit, we can then
compute the nucleation barrier ΔG∗ as a function of pressure. Sub-
sequently, the CNT prediction for the nucleation rate is expressed as
J = J0 exp(−ΔG∗/kT), where J0 denotes the kinetic prefactor. From
the seeding simulations, we determine that J0 ≈ 50DL, where DL is
the long-time diffusion coefficient of the fluid phase. This kinetic
prefactor is very similar to the kinetic prefactor for freezing, and
we assume it to remain constant within the fluid–solid coexistence
region. Using this knowledge, we can now make CNT predictions
for the nucleation rate within the full fluid–solid coexistence region;
see the supplementary material for additional details.

In Fig. 5, we plot the nucleation rates for freezing and melting,
as evaluated using brute-force molecular dynamics (MD), umbrella
sampling (US), and seeding. The CNT predictions are shown with
solid lines. For freezing, we show previously published results,15,16,19

while the melting rates are all original. It is worth repeating that
CNT has been argued to provide highly inaccurate nucleation rate
predictions, with discrepancies reaching as high as ten orders of
magnitude. Previous observations of the role of defects in the melt-
ing mechanism have also cast significant doubts on the suitability of
CNT.9,10,14 However, we find that the CNT prediction of the melting
rate via seeding agrees very well with our brute-force and umbrella

FIG. 5. Nucleation rate Jσ5
eff/DL of freezing and melting as a function of packing

fraction η, where DL denotes the long-time diffusion coefficient. We show brute-
force molecular dynamics (MD, crosses), umbrella sampling (US, diamonds), and
seeding (circles and lines) predictions for the nucleation rate. The results for
melting are from this work; the results for freezing are taken from the works of
Espinosa et al.19 (seeding), Filion et al.34 (US), and Gispen and Dijkstra16 (MD).
The horizontal solid line is an approximate lower limit Jσ5

eff/DL = 10−12 to what is
accessible to experiments on colloidal hard spheres.37 The inset shows the nucle-
ation rate as a function of packing fraction difference from the freezing point ηfr
and melting point ηm, respectively.
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sampling simulations. This good agreement was previously shown
for freezing as well.16,19

These results indicate that when measuring the dependence
of interfacial tension on curvature and pressure using seeding,19,46

CNT can offer excellent predictions for the nucleation rate for both
melting and freezing of hard spheres. In the inset of Fig. 5, we
compare the nucleation rates at equal packing fraction differences
from the freezing point ηfr = 0.492 and melting point ηm = 0.544,
respectively.17 Despite the differences in driving force and interfa-
cial tension, the nucleation rate exhibits a fairly symmetric behavior.
Particularly within the regime ∣η − ηf/m∣ > 0.034, the freezing and
melting rates are very comparable, with a difference of less than
two orders of magnitude. Conversely, within the regime ∣η − ηf/m∣

< 0.034, the nucleation rate Jσ5
eff/DL for both melting and freez-

ing falls below 10−12. This value serves as an approximate limit for
what can be experimentally observed with colloidal hard spheres.37

Consequently, this region ∣η − ηf/m∣ < 0.034 or equivalently 0.51 < η
< 0.526 represents a ‘forbidden zone’ for homogeneous nucleation
of colloidal hard spheres. Our results suggest that when phase tran-
sitions are observed in this regime, whether it is melting or freezing,
it cannot be homogeneous nucleation, but must be some form of
heterogeneous nucleation.

In conclusion, we have studied homogeneous melting and
freezing of hard spheres, with particular focus on the thermody-
namic factors employed in classical nucleation theory. We have
identified several reasons for the asymmetry between melting and
freezing, such as the vicinity of a spinodal instability in the solid
phase and the strain energy associated with melting. Moreover,
melting exhibits both a lower driving force and a lower interfacial
tension in comparison to freezing. This interfacial tension asymme-
try is characterized by similar-magnitude but opposite-sign Tolman
lengths for freezing and melting. We have interpreted this asym-
metry through Turnbull’s rule and a scaling law. Remarkably, the
asymmetries in driving force and interfacial tension roughly off-
set each other. When comparing the nucleation rates of freezing
and melting at equal packing fraction differences from the freez-
ing and melting lines, respectively, we find that both processes
exhibit roughly similar nucleation rates. It would be interesting to
investigate whether the asymmetries we find between melting and
freezing of hard spheres are also present in more complex systems,
such as water. Our discovery that classical nucleation theory, aug-
mented with an elastic strain energy correction, accurately predicts
the homogeneous melting rate and holds promise for transferring
it to the study of melting phenomena in atomic, molecular, and
colloidal systems.

SUPPLEMENTARY MATERIAL

See the supplementary material for the code, details on
bond orientational order parameters, molecular dynamics simula-
tions, umbrella sampling, and seeding simulations, which includes
Refs. 20–24.
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