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ABSTRACT
In this work, we introduce variational umbrella seeding, a novel technique for computing nucleation barriers. This new method, a refinement
of the original seeding approach, is far less sensitive to the choice of order parameter for measuring the size of a nucleus. Consequently, it
surpasses seeding in accuracy and umbrella sampling in computational speed. We test the method extensively and demonstrate excellent
accuracy for crystal nucleation of nearly hard spheres and two distinct models of water: mW and TIP4P/ICE. This method can easily be
extended to calculate nucleation barriers for homogeneous melting, condensation, and cavitation.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0204540

I. INTRODUCTION
A first-order phase transition from a metastable phase to a more

stable phase often occurs through the formation of a nucleus of
the new phase. This nucleation process is apparent in phase transi-
tions, such as crystallization, melting, condensation, and cavitation.
In crystallization, for example, nucleation determines the crystal
polymorph and thus the material properties of the crystalline phase.
More generally, the time required for the phase transition to start
is determined by the nucleation rate. Simulations enable us to gain
insight in the nucleation mechanisms and the factors influencing the
nucleation rate. This insight can then be used to understand, predict,
or even control nucleation in natural and industrial processes.

However, nucleation is a rare event, meaning that nucleation
takes a very long time to occur spontaneously in simulations.
Except for the simplest model systems, direct measurements of
nucleation rates are thus not feasible in simulations. To over-
come this rare-event challenge, several enhanced sampling tech-
niques have been introduced, such as forward flux sampling,1
transition path sampling,2–4 metadynamics,5,6 lattice mold,7 and
umbrella sampling.8,9 Although these techniques are much faster
than brute-force simulations, they still require substantial compu-
tational resources. As a consequence, most nucleation studies focus
on only a few selected state points.

To gain more insights into nucleation trends, it is useful to
combine simulations with classical nucleation theory (CNT).10,11

The seeding technique12 leverages this approach to estimate nucle-
ation rates with much greater efficiency and across wider ranges
of conditions compared to traditional methods. This advancement
has allowed the study of the thermodynamics of curved interfaces,13

polymorph selection,14 and nucleation phase diagrams.15,16 Despite
its approximate nature, the seeding technique has been demon-
strated to accurately capture the trends of nucleation rates across a
wide variety of scenarios, such as Lennard-Jones condensation, crys-
tallization of hard spheres, water, and NaCl,12,17–19 and melting of
hard spheres.20

However, challenges arise in applying the seeding technique.
At its core, this technique relies on CNT approximations for the
nucleation rate J and the nucleation barrier ΔGc, given by

J = J0 exp (−ΔGc
CNT/kBT), (1)

ΔGc
CNT =

1
2

nc∣Δμ∣. (2)

Here, J0 denotes the kinetic prefactor, kB represents Boltzmann’s
constant, T denotes the temperature, nc represents the size of the
critical nucleus, and ∣Δμ∣ is the supersaturation, i.e., the difference
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in chemical potential between the solid and liquid phases. From the
CNT approximation, Eq. (2), it is evident that the nucleation barrier
is directly determined by the critical nucleus size nc. To calculate
this size, an order parameter (or criterion) is required to distinguish
between the nucleus and the surrounding parent phase. Different
order parameter choices yield different nucleus sizes and, conse-
quently, different nucleation barriers. Thus, the results of seeding
simulations depend on the order parameter choice. In contrast, the
barrier heights obtained with more rigorous rare-event methods,
such as umbrella sampling and metadynamics, have been shown to
depend less sensitively on the chosen criterion for measuring the
nucleus size.21,22

In this article, we introduce a computational method that
addresses the limitations of the seeding technique. Like seeding, it
relies on classical nucleation theory to estimate the nucleation bar-
rier. However, it borrows ideas from umbrella sampling to improve
this estimate. This combination results in variational umbrella seed-
ing, a method for estimating the barrier that is faster than umbrella
sampling, while being more accurate than seeding.

II. SEEDING AND UMBRELLA SAMPLING
Before explaining our new method, we will first review two

well-established popular methods for calculating nucleation barri-
ers: seeding12 and umbrella sampling.8 In Fig. 1, we show schematic
representations of seeding and umbrella sampling.

In the seeding approach, the initial configuration consists of
a nucleus—the “seed”—which is embedded within the metastable
parent phase. Subsequently, simulations are performed to deter-
mine whether this seed grows or shrinks. By varying the tempera-
ture or the pressure, seeding identifies the conditions under which
the seed grows and shrinks with equal probability. This seed defines
the critical nucleus under these conditions. Using the CNT approxi-
mation, Eq. (2), we can calculate the height of the nucleation barrier
ΔGc

CNT = nc∣Δμ∣/2. This approximation has been demonstrated to
yield results for the nucleation barrier and nucleation rate that are

consistent with more rigorous methods, such as forward flux sam-
pling and umbrella sampling, and even with completely unbiased
“brute-force” simulations for condensation, freezing, and melting
of various systems, such as Lennard-Jones, hard spheres, water, and
NaCl.12–20 With a reasonable choice of order parameter, the typical
error of seeding is around 3–5 orders of magnitude in the nucleation
rate. Moreover, by relying on CNT, seeding requires only one piece
of information from simulation: the critical nucleus size. This fact
makes seeding very efficient since it can provide reasonably accurate
estimates of the nucleation rate for wide ranges of conditions while
being simple to implement and computationally inexpensive.

Seeding efficiently identifies a nucleus that grows or shrinks
with equal probability, unequivocally establishing its critical nature.
However, the CNT approximation, Eq. (2), depends on the criterion
selected to measure the size of this critical nucleus. In Fig. 1, the two
red dots represent the same critical nucleus measured with two dif-
ferent criteria. A looser criterion will classify more particles as part of
the nucleus. This is visualized by the light red layer of particles on the
surface of the nucleus. Consequently, employing a looser criterion
results in a larger critical nucleus size and, therefore, a higher barrier
height. In summary, using two different criteria will yield estimates
of different critical nucleus sizes and, as a result, different barrier
heights.

In contrast, umbrella sampling does not rely on CNT and
depends far less sensitively on the chosen criterion for measuring
the nucleus size.21,22 Note that umbrella sampling is not com-
pletely independent of this choice, a topic that we discuss further
in Sec. IV E. Umbrella sampling uses a large number of biased sim-
ulations to measure the free-energy profile. Typically, parabolic bias
potentials, depicted as gray overlapping parabolas in Fig. 1, are used.
Each parabola represents a separate biased simulation, where the
bias potential serves to constrain the nucleus size. Essentially, the
biased simulations yield a large number of barrier segments, which
are subsequently “stitched” together to construct the complete free-
energy profile. Although umbrella sampling does not rely on CNT,
the requirement to use a substantial number of biased simulations
makes umbrella sampling considerably slower than seeding.

FIG. 1. Schematic comparison of seeding, umbrella sampling, and variational umbrella seeding, illustrating how they estimate the nucleation barrier ΔG as a function of
nucleus size. Seeding employs the CNT approximation, ΔGc = nc∣Δμ∣/2, based on the number of particles in the critical nucleus, nc , for estimating the barrier height. This
makes seeding significantly dependent on the choice of order parameter for computing the nucleus size. In contrast, umbrella sampling and variational umbrella seeding are
less sensitive to the choice of order parameter. Umbrella sampling does not rely on CNT and uses a large number of biased simulations (gray parabolas) to construct the
nucleation barrier. Variational umbrella seeding relies on an adjusted version of CNT (aCNT) and uses a small number of biased simulations to construct the barrier.
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The idea of variational umbrella seeding is to combine the
strengths of seeding and umbrella sampling. By using an adjusted
classical nucleation theory (aCNT), this approach eliminates the
dependence of seeding on the criterion chosen for measuring the
nucleus size. At the same time, using aCNT also significantly reduces
the number of biased simulations that is required to compute the
barrier. In Fig. 1, we illustrate this by drawing only four parabolas
instead of the many needed for umbrella sampling.

III. ADJUSTED CLASSICAL NUCLEATION THEORY
Before introducing the adjusted classical nucleation theory

(aCNT), we take a step back to the origin of the CNT expression,
Eq. (2). For the purpose of generality, we consider a generic scenario
where a nucleus of a “child” phase forms from a “parent” phase in
the grand canonical (μVT) ensemble. According to CNT, the nucle-
ation barrier is determined by two competing factors: the volume
v of the nucleus and the interface separating the nucleus from the
parent phase. Without assuming a specific shape of the nucleus, we
can write the area of this interface as α′v2/3, where α′ is a dimen-
sionless proportionality constant. Since v1/3 is proportional to the
linear dimension of the nucleus, it follows that the interfacial area
is proportional to the square of the linear dimension.23 The grand
potential of a nucleus with volume v is then given by

ΔΩCNT(v) = α′v2/3γ − v∣ΔP∣, (3)

where γ is the interfacial tension and ΔP is the Laplace pressure, i.e.,
the pressure difference between the child and parent phase at equal
chemical potential. Maximizing ΔΩCNT(v) with respect to v yields
the critical nucleus size vc, which is related to the interfacial tension
γ as

2α′γ = 3v1/3
c ∣ΔP∣. (4)

For a spherical nucleus of radius r, this becomes the familiar Laplace
equation, ∣ΔP∣ = 2γ/r. Substituting Eq. (4) into Eq. (3) yields the
barrier height,

ΔΩc
CNT =

4(α′γ)3

27∣ΔP∣2
= 1

2
vc∣ΔP∣. (5)

Now, the underlying approximations of Eq. (2) become clearer.
Essentially, the interfacial tension is determined by the critical
nucleus size via Eq. (4). This implies that the Laplace equation is
implicitly contained in Eq. (5). Therefore, using Eq. (5), we assume
that the criterion chosen for measuring the size of the nucleus corre-
sponds to the interface of tension.13 If this assumption does not hold,
Eq. (4) will give an incorrect value for the interfacial tension and,
therefore, an inaccurate value for the height of the barrier. From this
discussion, it is also evident that the CNT approximation, Eq. (2),
is not reliant on any specific assumptions about the shape of the
nucleus.23

In simulations of nucleation, it is more common to mea-
sure the Gibbs free-energy barrier ΔG in the isobaric–isothermal
(NPT) ensemble. As Ref. 24 discusses, the free-energy difference
with respect to the homogeneous parent phase remains the same,
i.e., ΔΩ = ΔG. Therefore, the Gibbs free-energy barrier is given by

ΔGCNT(v) = α′v2/3γ − v∣ΔP∣, (6a)

2α′γ = 3v1/3
c ∣ΔP∣, (6b)

ΔGc
CNT =

4(α′γ)3

27∣ΔP∣2
= 1

2
vc∣ΔP∣. (6c)

From now on, we always assume an isobaric–isothermal (NPT)
ensemble, so we focus on the Gibbs free-energy barrier ΔG for
nucleation.

In the context of crystal nucleation, the Gibbs free-energy bar-
rier ΔG(n) is usually measured as a function of the number of
particles n in the nucleus at a fixed pressure. The CNT equations
corresponding to Eqs. (6a)–(6c) become as follows:23

ΔGCNT(n) = αn2/3γ − n∣Δμ∣, (7a)

2αγ = 3n1/3
c ∣Δμ∣, (7b)

ΔGc
CNT =

4(αγ)3

27∣Δμ∣2
= 1

2
nc∣Δμ∣. (7c)

In these equations, ∣Δμ∣ is the difference in chemical potential
between the solid and liquid phases at equal pressure and temper-
ature, and nc denotes the number of particles in the critical nucleus.
The proportionality constant α is now expressed in units of area.
Again, it is important to note that the criterion used to measure the
nucleus size n will influence the value of the interfacial tension γ and,
therefore, the height of the barrier.

To illustrate this issue, we show in Fig. 2 umbrella sampling
simulations of hard-sphere nucleation as described in Ref. 21. These
crystal nucleation barriers were measured at a pressure of Pσ3/kBT
= 17, corresponding to a metastable fluid packing fraction of
η = 0.5352, a supersaturation of ∣Δμ∣ = 0.54kBT, and a barrier height
ΔGc = 19.7 ± 0.3kBT. We show three different barriers, each mea-
sured with a different criterion to distinguish the crystal nucleus
from the surrounding fluid. To be precise, the criteria used in
Ref. 21 were as follows. First, a spherical harmonics expansion,
qlm, of the nearest neighbor density was computed, employing a
cutoff distance of 1.3σ (for ξc = 6, 8) or 1.4σ (for ξc = 7) to iden-
tify nearest neighbors. Subsequently, solid-like bonds were identified
by assessing the inner products, d6(i, j), between the q6m vectors
of neighboring particles. A pair of particles (i, j) were considered
to have a solid-like bond if d6(i, j) > 0.7. A particle was classified
as solid-like if it possessed ξc or more solid-like bonds. Six differ-
ent thresholds ξc were investigated, of which we show ξc = 6, 7, 8
for illustration. Two solid-like particles belong to the same cluster
if their distance is less than 1.3σ (for ξc = 6, 8) or 1.4σ (for ξc = 7).
Finally, the largest cluster of solid-like particles was identified as the
crystal nucleus.

Remarkably, the barrier height ΔGc measured via umbrella
sampling is almost independent of the criterion. In contrast, the crit-
ical nucleus size nc varies significantly. For ξc = 8, the critical nucleus
size is nc = 72, while for ξc = 6, it is nc = 102. Substituting these val-
ues into Eq. (7c), we obtain nucleation barriers varying from 19kBT
to 28kBT. We have plotted these approximations as red dots in Fig. 2.
In this case, ξc = 7 shows the best agreement with umbrella sampling.
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FIG. 2. Gibbs free energy ΔG(n)/kBT for the formation of a crystal nucleus of size n from a fluid of hard spheres at a pressure of Pσ3/kBT = 17.0. The black lines represent
umbrella sampling results from Ref. 21. The blue lines denote aCNT fits of the nucleation barriers, while the red dots and red dotted lines are CNT approximations of the
barrier.

For ξc = 8, the barrier is underestimated due to a too stringent cri-
terion, whereas for ξc = 6, the barrier is overestimated because the
criterion is too loose.

Apart from examining the height of the barrier, we can also
investigate the shape of the barrier. By leveraging the critical nucleus
size nc, we can estimate the interfacial tension γ using Eq. (7b).
In Fig. 2, we plot the CNT nucleation barrier, Eq. (7a), using this
approximation for the interfacial tension as a red dotted line. We
see that these representations deviate significantly from the umbrella
sampling results denoted in black. Even in the best case of ξc = 7, we
see that the CNT expression for the barrier fails to accurately capture
the shape of the barrier. In short, this example of hard-sphere nucle-
ation demonstrates that with an ill-defined nucleus size, the CNT
equations do not capture the height and shape of the nucleation
barrier.

In the literature, numerous efforts have been made to refine
CNT to offer a more precise description of the shape of the nucle-
ation barrier. For instance, Merikanto et al.25 observed deviations
in the initial part of the barrier for condensation. They proposed
that this effect could be accounted for by a vertical shift of the free-
energy barrier, essentially an additive term in Eq. (7a). In addition,
Prestipino, Laio, and Tosatti26 introduced corrections to accom-
modate a non-sharp and thermally fluctuating interface. First, they
added a logarithmic term proportional to log(r), where r denotes
the radius of the nucleus. Second, they replaced the constant interfa-
cial tension γ with a function γ(r) = γ0(1 − 2δ/r + ε/r2), in essence
representing curvature corrections to the interfacial tension. They
noted that the logarithmic correction has a considerably smaller
effect on the quality of the fit than the curvature corrections to the
interfacial tension. Finally, Filion et al.21 suggested that the effect of
different order parameters can be captured by a shift in the radius.
They proposed to replace the measured radius r by r − δ in the CNT
equations.

Rather than selecting one of these modifications, we propose
the following expressions for the shape of the nucleation barrier:

ΔGaCNT(v) = −v∣ΔP∣ + g′2v2/3 + g′1v1/3 + g′0, (8a)

ΔGaCNT(n) = −n∣Δμ∣ + g2n2/3 + g1n1/3 + g0. (8b)

In these expressions, g′i and gi are fitting parameters for the nucle-
ation barrier. Following Ref. 21, we refer to Eqs. (8a) and (8b)
as the adjusted classical nucleation theory (aCNT) expressions for
the nucleation barrier. Given that there are three free parameters,
these equations could alternatively be referred to as “three parameter
CNT” expressions. In contrast to Refs. 21, 25, and 26, we do not
assign a specific physical interpretation to these parameters. How-
ever, we note that all their corrections, except for the logarithmic
term, are captured by these aCNT expressions.

To validate the aCNT expressions, we use Eq. (8b) to fit the
umbrella sampling barriers of hard-sphere crystal nucleation. We
show these fits as blue dashed lines in Fig. 2. During the fitting
procedure, we kept the supersaturation ∣Δμ∣ = 0.54kBT fixed, as
determined by thermodynamic integration of the equation of state.
The remaining three parameters g0, g1, g2 are fitted to the umbrella
sampling data. More specifically, they were fitted to the part of the
nucleation barrier where the nucleus size n obeys 5 < n < nc. In this
regime, the barrier as measured by umbrella sampling deviates less
than 0.4kBT from the aCNT fit. From this comparison, it is evi-
dent that the aCNT expression effectively captures the shape of the
nucleation barrier of hard spheres, as measured with different order
parameters.

As a further illustration, we investigate four different nucle-
ation barriers previously measured using umbrella sampling for
various phase transitions: crystal nucleation,21 crystal melting,20 cav-
itation,28 and condensation.27 In Fig. 3, the measured barriers are
denoted as black solid lines. The CNT approximations of these bar-
riers, Eqs. (6a)–(6c), based on the volume vc of the critical nucleus
are represented as red dots and red dotted lines. We observe that
the freezing and melting barriers are reasonably well described
by the CNT approximation. However, the condensation barrier is
underestimated by CNT, while the cavitation barrier is severely over-
estimated. It is important to stress again that the accuracy of the
CNT approximation depends critically on the criterion used to iden-
tify the nucleus. For instance, for condensation and cavitation, the
“equidensity” criterion has been shown to be a reasonable choice.27

Next, we employ the aCNT expression, Eq. (8a), to fit the barriers.
In this case, the Laplace pressure ∣ΔP∣ is determined by thermody-
namic integration of the equation of state, while the remaining three
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FIG. 3. Gibbs free energy ΔG(v)/kBT for nucleation during freezing21 and melting20 of hard spheres, condensation of Lennard-Jones,27 and cavitation of water.28 The size
of the nucleus v is normalized by the critical nucleus size vc . The black solid lines are the umbrella sampling measurements of Refs. 20, 21, 27, and 28. The blue dashed
lines denote the aCNT fits of the nucleation barriers, while the red dots and red dotted lines are CNT approximations of the barrier.

parameters g′0, g′1, g′2 are fitted to the umbrella sampling data. The
resulting fits are shown with blue dashed lines. We note that not any
functional form with three free parameters will give such good fits as
the aCNT expression. For example, if we use a quadratic fitting func-
tion in the nucleus volume v or a quadratic function in v1/3, we get
worse fits of the barriers in Fig. 3. Overall, it is evident that the shape
of all these nucleation barriers can be well described with aCNT.

IV. METHOD
The effectiveness of aCNT in describing the nucleation

barrier of crystallization, cavitation, condensation, and melting

suggests a strategy for approximating the nucleation barrier height:
By fitting the parameters g0, g1, g2 in Eq. (8), the height of the
barrier can be determined without the need for performing full
umbrella sampling calculations. In this section, we will introduce
variational umbrella seeding as an efficient implementation of this
idea.

Variational umbrella seeding combines ideas from both seeding
and umbrella sampling. In Fig. 4, we provide a schematic overview
of the method. It employs seeding to offer a first estimate of the
critical nucleus size and to provide initial configurations for the
umbrella sampling runs. Starting from these initial configurations,
we use umbrella sampling to measure segments of the nucleation

FIG. 4. Schematic overview of variational umbrella seeding. (a) Initially, seeding is employed to estimate the critical nucleus size and to prepare initial configurations for the
umbrella sampling runs. (b) Subsequently, umbrella sampling is used to measure segments of the nucleation barrier, along with unbiased simulations to measure the initial
part of the barrier. (c) Finally, an adjusted version of CNT (aCNT) is employed to construct the entire nucleation barrier from these barrier fragments.
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barrier. Subsequently, these barrier segments are fitted to an aCNT
expression to approximate the full nucleation barrier.

A. Seeding: Critical nucleus and initial configurations
The first step in variational umbrella seeding is to determine

the critical nucleus size and to generate some initial configurations.
The seeding technique is very efficient for this purpose. The result of
the seeding technique is a configuration of a nucleus under the con-
ditions for which this nucleus is critical. Hence, we already possess
a good estimate of the critical nucleus size nc. By starting simula-
tions from the critical nucleus, we can select those simulations for
which the nucleus shrinks. From these trajectories, we can then read-
ily select initial configurations of nucleus sizes ranging from 0 to
nc. We note that it is not strictly necessary to use seeding for this
first step if the critical nucleus size and initial configurations can be
obtained by other means. However, seeding is a very convenient and
efficient method for this purpose.

B. Measure barrier segments with umbrella sampling
The second step involves measuring segments of the nucleation

barrier using umbrella sampling. As illustrated in Fig. 4, only four of
these barrier fragments are required.

To perform these simulations, we employ the hybrid Monte
Carlo method as a popular way for performing umbrella sam-
pling simulations of nucleation barriers.29–31 The main advantage of
hybrid Monte Carlo over traditional Monte Carlo is that it allows
for the use of highly optimized and parallelized molecular dynamics
codes, such as LAMMPS32 and GROMACS.33

In essence, hybrid Monte Carlo combines Monte Carlo simu-
lation with molecular dynamics (MD) simulations to propose trial
moves for Monte Carlo (MC). Each MC cycle consists of the fol-
lowing steps. First, initial velocities are generated for each particle
according to a Maxwell–Boltzmann distribution. Subsequently, a
short trajectory is simulated using MD. The trajectory is accepted
or rejected according to a Metropolis criterion based on the total
energy of the system.

We constrain the nucleus size by adding an external bias
potential to the total energy in the Metropolis acceptance step. To
elaborate, after each MD trajectory, we accept the trajectory with a
probability pacc given by

pacc = min (1, exp (−ΔH/kBT)), (9)

H = K +Upot +Uext(n), (10)

Uext(n) =
1
2

k(n − n̂)2. (11)

In these equations, ΔH represents the change in the total energy
H of the system, which consists of the kinetic energy K, the potential
energy Upot = ∑i<jϕ(rij), the external bias potential Uext, and ϕ(rij)
represents the pair interaction between particles i and j. The external
bias potential Uext is employed to keep the nucleus size n close to the
target size n̂. The spring constant k determines the stiffness of the
bias potential. The result of such a simulation is a biased time series

of nucleus sizes n(t). This time series is subsequently converted into
a biased nucleus size distribution p(n). From this biased nucleus size
distribution, we can estimate the unbiased free-energy profile,

G(n)/kBT = − ln p(n) −Uext(n)/kBT + constant. (12)

To sample the isobaric–isothermal (NPT) ensemble, we con-
sider two approaches. The first approach is to use an NVE integrator
for the MD trajectories and perform volume moves after each tra-
jectory. Trajectories are accepted according to Eq. (9), and the
volume moves according to standard volume move acceptance crite-
ria, taking the bias potential into account. By using a symplectic and
time-reversible NVE integrator, this scheme guarantees that detailed
balance is obeyed.34

Alternatively, Gonzalez et al.29 showed that an NPT integrator
can also be employed for the MD trajectories. In this case, no sepa-
rate volume moves are performed. Trajectories are accepted with a
probability

pacc = min (1, exp (−ΔUext)/kBT). (13)

Although this scheme does not guarantee detailed balance, Gonzalez
et al.29 showed that this approach provides an excellent approxima-
tion provided that the MD time step is small enough and the MD
trajectories are long enough.

To evaluate our hybrid Monte Carlo methods, we measured the
density and potential energy of the homogeneous liquid phase with-
out an external bias, i.e., Uext = 0 in both Eqs. (9) and (13). In this
way, we can compare the density and potential energy directly with
a standard unbiased MD simulation, where velocities are not resam-
pled. In all cases, we made sure that the relative error in both the
density and potential energy was less than 0.05%.

Variational umbrella seeding relies on a small number of
biased simulations. Similarly to umbrella sampling, these simula-
tions should be evenly distributed across the nucleation barrier. We
found that employing four different simulations, with target sizes
n̂ = n̂c/4, n̂c/2, 3n̂c/4, and n̂c, yields reliable results. This means that
having a rough estimate of the critical nucleus size n̂c before start-
ing the simulations is useful, but this estimate does not need to be
accurate. This estimate of the critical nucleus size aids in select-
ing the spring constant k of the bias potential. In Appendix D,
we describe our approach for optimizing these parameters of vari-
ational umbrella seeding using tests with an idealized nucleation
barrier.

C. Variational aCNT fit of the nucleation barrier
A nucleation barrier is usually constructed from a sequence

of biased simulations by “stitching” together many overlapping
free-energy segments. Common approaches for this task include
the Multistate Bennett Acceptance Ratio (MBAR) method or the
Weighted Histogram Analysis Method (WHAM). In order to take
advantage of the aCNT, we adopt a different approach to process
the simulation data. The key idea is to fit the parameters g0, g1, g2 in
Eq. (8) directly from simulation data. The height of the barrier can
then be determined by extracting the maximum from the resulting
aCNT fit. To perform this fit, we require a scheme that does not rely
on overlapping free-energy segments and can estimate parameters
based on an assumption for the functional form of the free-energy
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profile. In this regard, we drew inspiration from the Variational
Free-Energy Profile (VFEP)35 method proposed within the con-
text of biomolecular reactions. However, rather than employing a
generic spline interpolation function, we take advantage of the aCNT
equation (8) to improve the efficiency of the method. In essence,
we employ a maximum-likelihood approach to fit the parameters
g1 and g2, while employing a separate unbiased simulation to fit g0.

To illustrate the maximum-likelihood approach, we first com-
pute the likelihood of a series of measurements, under the assump-
tion that the aCNT equation (8) holds for certain values of the
parameters gi. In this case, the nucleation barrier and the external
bias potential Uext generate a probability distribution p(n) for the
nucleus size, given by

p(n) = 1
Z

exp [−(ΔGaCNT(n) +Uext(n))/kBT], (14)

Z =∑
n

exp [−(ΔGaCNT(n) +Uext(n))/kBT]. (15)

We note that the normalization factor Z depends on both the aCNT
parameters gi and the bias potential Uext, but Z can easily be com-
puted. The likelihood L of a series of independent measurements
n(t) is given by

L(n(t)) =∏
t

1
Z

exp [−(ΔGaCNT(n(t)) +Uext(n(t)))/kBT], (16)

where t is the simulation time. With a logarithmic transformation,
this becomes the log-likelihood ℓ given by

ℓ(n(t)) = −∑
t
[ln Z + (ΔGaCNT(n(t)) +Uext(n(t)))/kBT]. (17)

Finally, the total log-likelihood of multiple simulations is the sum of
the individual log-likelihood functions,

ℓ(n1(t), . . . ) =∑
i
ℓi(ni(t)). (18)

Here, ℓi represents the likelihood of the series of measurements
ni(t) in simulation i. One subtlety in this derivation is that we
assumed that the measurements n(t) are independent of each other.
However, the measurements n(t) originate from a correlated time
series; thus, this assumption does not automatically hold. To solve
this issue, we estimate the autocorrelation time τ of the time series
n(t) as the time at which its normalized autocorrelation function
has decayed to 1/e. We employ subsampling to obtain independent
samples: rather than using the entire series n(t) to compute the log-
likelihood Eq. (17), we only use a subset t1, t2, . . . with a separation
equal to the autocorrelation time i.e., ti+1 = ti + τ.

In short, for a given set of aCNT parameters gi, we use Eq. (18)
to compute the log-likelihood of our observations ni(t). The max-
imum likelihood estimator for g1, g2 is consequently the set of
parameters ĝ1, ĝ2 that maximizes the log-likelihood.

Because g0 is an additive term in the nucleation barrier, the log-
likelihood equation (18) is independent of g0. To fit g0, we perform
an independent and unbiased simulation of the metastable liquid.
The initial part of the nucleation barrier is then given by

ΔG(n)/kBT = − ln(Nn

N
). (19)

To be precise, when we refer to Nn, we denote the average number
of nuclei of size n in a system of N particles. Equation (19) quantifies
the free energy with the homogeneous liquid serving as the reference
state.36 Subsequently, the unbiased initial part of the barrier ΔG is
“glued” to the aCNT barrier, and this “gluing” process determines
the value of g0. To establish this, we determine the nucleus size n0
for which ΔG(n0) ≈ 10kBT. Subsequently, we determine g0 such that
the equality

ΔGaCNT(n0∣gi) = ΔG(n0) (20)

is satisfied. In this way, we do not rely on aCNT to provide an accu-
rate free energy description of ΔG(n) for values of n smaller than
n0 but rather for larger values, which are the relevant ones for nucle-
ation. Intuitively, g1 and g2 contain information about the gradient
of the free energy profile [i.e., dΔG(n)/dn], whereas g0 contains
information about the absolute value of the free energy with respect
to the homogeneous liquid.

Finally, when we have fitted the aCNT parameters gi, we obtain
the variational umbrella seeding estimate for the nucleation barrier
height simply as the maximum of the aCNT equation (8). From
the location of this maximum, we also estimate the critical nucleus
size nc.

D. Pressure/temperature dependence
of the nucleation barrier

Up to this point, we have described the procedure for employ-
ing variational umbrella seeding to obtain an estimate of the nucle-
ation barrier ΔGc for a single state point. Once the nucleation barrier
is estimated for several state points, we can fit them with a CNT
expression to obtain the pressure or temperature dependence of the
nucleation barrier. This process closely resembles that of the seed-
ing approach, with one notable exception: the approximation of
the interfacial tension. From a variational umbrella seeding estimate
ΔGc

aCNT, we compute the interfacial tension using Eq. (7c) as follows:

αγ = (27ΔGc
aCNT∣Δμ∣2

4
)

1/3

. (21)

Note that the proportionality constant α has units of area, so both
sides of this equation have units of energy. In the seeding approach,
the interfacial tension is directly determined by the critical nucleus
size nc. In contrast, here, we determine the interfacial tension
from the barrier height ΔGc

aCNT. For a spherical nucleus, where
α = (36π/ρ2

s )
1/3

, this can be expressed as

γ = (3ΔGc
aCNT∣Δμ∣2ρ2

s

16π
)

1/3

, (22)

where ρs is the number density of the solid phase. Subsequently, sim-
ilar to the seeding approach, the interfacial tension γ(P, T) is fitted
as a function of pressure or temperature. The fit is usually linear,12

but if the data suggest otherwise, one can fit to another functionality.
The pressure and temperature dependence of the nucleation barrier
is then given by

ΔGc
aCNT(P, T) = 4(αγ(P, T))3

27∣Δμ(P, T)∣2
, (23)
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ΔGc
aCNT(P, T) = 16π(γ(P, T))3

3∣Δμ(P, T)∣2ρs(P, T)2 . (24)

Again, the second equation refers to the case of a spherical nucleus.
We emphasize that both Eqs. (23) and (24) yield identical results for
ΔGc

aCNT(P, T), irrespective of the actual shape of the nucleus. Impos-
ing a specific nucleus shape is only necessary for the interpretation
of the interfacial tension. To calculate the nucleation rate, we also
require the kinetic prefactor. This is exactly the same as in seeding12

and in umbrella sampling.8,36

V. RESULTS AND DISCUSSION
We assess the performance of variational umbrella seeding on

crystal nucleation in three distinct systems: nearly hard spheres
(WCA), monatomic water (mW), and the TIP4P/ICE model of
water.

A. Nearly hard spheres (WCA)
We simulate hard spheres using the

Weeks–Chandler–Andersen (WCA) potential. This potential
is the repulsive part of the Lennard-Jones pair potential and is
widely used in molecular dynamics simulations to model hard
spheres. In Ref. 37, it was demonstrated that an effective hard-
sphere diameter σeff = 1.097σ effectively captures the free energy
and nucleation rates of hard spheres. This effective hard-sphere
diameter is defined such that the freezing density of the WCA
system maps onto the freezing density of the hard-sphere system.
Following Ref. 37, we measure the nucleation barrier at a tem-
perature of kBT/ε = 0.025 and a pressure of Pσ3/kBT = 12.0. We
simulate N = 8 × 103 particles, employing a time step of 0.001τMD,

where τMD =
√

mσ2/kBT represents the molecular dynamics unit
of time. The temperature and pressure are maintained fixed with
a Nosé–Hoover thermostat and barostat with relaxation times of
0.1τMD and 0.5τMD, respectively. To measure the nucleus size,
we use the same order parameter as in Ref. 37. To be precise,
we calculate a spherical harmonics expansion qlm of the nearest
neighbor density, where we use a cutoff of 1.5σ to identify nearest
neighbors. Next, we compute inner products d6(i, j) between the
q6m vectors of neighboring particles and identify a solid-like bond as
a pair of particles (i, j) for which d6(i, j) > 0.7. A particle is solid-like
if it has ξc or more solid-like bonds. We explore different values
of ξc = 6, 7, 8 to investigate the effect of different order parameters.
Two solid-like particles belong to the same cluster if their distance
is less than 1.5σ. Finally, the largest cluster of solid-like particles
is identified as the crystal nucleus. Based on Ref. 37, we use the
following initial estimates for the critical nucleus sizes: n̂c = 185, 155,
and 130 for ξc = 6, 7, and 8, respectively. As described in Sec. III B,
these estimates also determine the target sizes and spring constants
in the hybrid Monte Carlo simulations. In these simulations, we
use short molecular dynamics trajectories with a length of 0.5τMD,
amounting to a total simulation time of 100 000τMD for each target
size. We used the first 10 000τMD for equilibration and the following
90 000τMD for production. We found the autocorrelation time to be
∼100τMD.

With our results for nearly hard spheres, we can illustrate
the order parameter independence of variational umbrella seed-
ing. The nucleation barrier height is nearly independent of the
order parameter threshold ξc that is used to identify the crys-
tal nucleus: while varying ξc from 6 to 8, the nucleation barriers
estimated by variational umbrella seeding vary less than 1kBT. In
contrast, the critical nucleus size nc depends sensitively on the
chosen order parameter. Consequently, the CNT approximation
ΔGc = nc∣Δμ∣/2 also relies heavily on the order parameter. For
nearly hard spheres, the CNT approximation decreases from
ΔGc = 40.8kBT to ΔGc = 30.8kBT when changing the order para-
meter from ξc = 6 to ξc = 8. In Fig. 5, we illustrate the order para-
meter independence of variational umbrella seeding for nearly hard
spheres. The red dotted lines represent the CNT approximations of
the nucleation barrier based on the critical nucleus size, whereas the
blue dashed lines are the aCNT fits from the variational umbrella
seeding simulations. For ξc = 8, these barriers are nearly identical.
However, for ξc = 7 and ξc = 6, the critical nucleus size increases,
and the CNT approximation overestimates the barrier height. In
addition, we observe that the approximate NPT and the rigorous
NVE integrator yield almost identical results for the nucleation bar-
rier. In Fig. 5, we plotted the nucleation barriers from both schemes,
i.e., one blue dashed line corresponds to the NPT and the other
corresponds to the NVE integrator. Since these lines almost exactly
overlap, we conclude that these schemes give almost identical results.

B. Monatomic water (mW)
The second model we investigate is the monatomic model of

water (mW).38 Following Ref. 39, we study three different tem-
peratures: T = 215.1, 225.0, and 235.0 K, while fixing zero pres-
sure. The melting temperature for this model at zero pressure is
Tm = 274.6 K.38 For 215.1 and 225.0 K, we use N = 2 × 103 parti-

FIG. 5. Free-energy barrier ΔG(n)/kBT for the formation of a crystal nucleus
of size n from a fluid of nearly hard spheres (WCA) at a pressure of Pσ3/kBT
= 12.0 and a temperature of kBT/ε = 0.025, for different order parameter thresh-
olds ξc . A particle is classified as solid-like if it has at least ξc solid-like bonds,
with ξc = 6, 7, 8. The red dots and red dotted lines represent CNT approximations,
Eq. (7a), of the barrier based on the critical nucleus size nc . The blue dashed lines
are aCNT approximations of the barrier derived from Variational Umbrella Seeding
(VUS) simulations. Note that two aCNT approximations are shown for each order
parameter threshold ξc : one for the approximate NPT and the other for the rigor-
ous NVE integrator used in the hybrid Monte Carlo simulations. As they are almost
indistinguishable, we do not label them separately.
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cles, and for 235.0 K, we employ N = 4 × 103 particles, following
Ref. 39. The time step is 2 fs, and the temperature and pressure are
fixed using a Nosé–Hoover thermostat and barostat with a relax-
ation time of 0.1 and 0.2 ps, respectively. Following Ref. 12, we
identify the crystal nucleus as follows: we first compute the aver-
aged bond-order parameter q̄6 for each particle.41 Employing a
nearest-neighbor cutoff of 3.51 Å, solid-like particles are identi-
fied as q̄6 > q̄c

6, where the threshold q̄c
6 depends on temperature as

q̄c
6 = 0.5055 − 5.324 × 10−4 T/K. Two solid-like particles belong to

the same cluster if their distance is less than 3.51 Å. Finally, the
largest cluster of solid-like particles is identified as the crystal
nucleus. Based on the seeding simulations of Ref. 12, we use the fol-
lowing initial estimates for the critical nucleus sizes: n̂c = 70, 150,
and 320 for T = 215.1, 225.0, and 235.0 K, respectively. In our hybrid
Monte Carlo scheme, we used short molecular dynamics trajectories
with a length of 0.5 ps amounting to a simulation time of 400 ns
for each target size. We used the first 40 ns for equilibration and the
following 360 ns for production. We determined an autocorrelation
time of ∼0.2 ns, which did not exhibit significant temperature depen-
dence. To compute the nucleation rate from the nucleation barrier,
we use a constant kinetic prefactor J0 = 5 × 1039 m−3 s−1 because,
within the temperature range we consider, it remains approximately
constant. This kinetic prefactor is simply an average of the kinetic
prefactors reported in Ref. 39.

In Fig. 6, we plot our variational umbrella seeding results for
the nucleation barriers of mW. We present both the NPT and
NVE integrator results simultaneously. Again, we observe that these
schemes yield nearly identical results for the shape and height of the
nucleation barrier.

In Fig. 7, we show the critical nucleus size nc, interfacial ten-
sion γ, barrier height ΔGc, and nucleation rate J as a function of
supercooling ΔT = Tm − T for mW. We compare our Variational
Umbrella Seeding (VUS) results with previous Umbrella Sampling
(US) results by Russo, Romano, and Tanaka39 and seeding results
by Espinosa et al.12 Strictly speaking, the seeding simulations12 were
performed at 1 bar, whereas the umbrella sampling simulations39

and our variational umbrella seeding simulations were performed at

FIG. 6. Free-energy barriers ΔG(n)/kBT for the formation of a crystal nucleus of
size n from an mW liquid at zero pressure for different temperatures T . The blue
lines are aCNT approximations of the barrier based on Variational Umbrella Seed-
ing (VUS) simulations. Note that two aCNT approximations are shown for each
temperature: one for the approximate NPT and the other for the rigorous NVE inte-
grator for the hybrid Monte Carlo simulations. As they are almost indistinguishable,
we do not label them separately.

FIG. 7. Critical nucleus size nc , interfacial tension γ, nucleation barrier ΔGc/kBT ,
and decimal logarithm of the nucleation rate Jm3s as a function of supercooling
ΔT at zero pressure for the mW model of water. The black dots and solid lines are
umbrella sampling (US) results from Ref. 39, the red dots and red dotted lines are
seeding results from Ref. 12, and the blue dots and dashed lines are our Variational
Umbrella Seeding (VUS) results.

zero pressure. Since the slope of the melting curve of ice Ih is on the
order of −(100 − 200) bar/K,45 from 1 to 0 bar, the melting temper-
ature changes less than 0.01 K. In the following analysis, we ignore
this very minor difference.

At a supercooling of ΔT = 40 K, one can see that the critical
nucleus size nc reported in Ref. 39 (black dot) differs slightly from
our value (blue dot). As discussed before, this is simply a result of
using different criteria to estimate the nucleus size. Using the CNT
approximation, these different critical nucleus sizes automatically
lead to different nucleation barriers and nucleation rates. The red
shaded regions in Fig. 7 show the associated uncertainty in the nucle-
ation barriers and rates. Espinosa et al.12 estimate that, in this case,
the dependence of seeding on the choice of order parameter leads to
an uncertainty of about four orders of magnitude in the nucleation
rate.

As observed in the case of nearly hard spheres, variational
umbrella seeding exhibits no such order parameter dependence.
In Fig. 7, we plot the variational umbrella seeding estimates of
the nucleation barrier and nucleation rate with blue dots and blue
dashed lines. In addition, we plot the umbrella sampling results of
Ref. 39 in this figure using black dots and solid lines. Comparing
umbrella sampling, seeding, and variational umbrella seeding, we
see that they all show good agreement. As previously found, the
mislabeling criterion is a very reasonable choice of order parameter
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for seeding simulations. Notably, our variational umbrella seeding
results are almost indistinguishable from umbrella sampling.

C. TIP4P/ICE
The final model we investigate is the TIP4P/ICE model of water

at T = 230 K and P = 1 bar, for which the melting temperature is
Tm = 270 K.42 We simulate N = 6 × 103 molecules using a time step
of 2 fs, while both the Nosé–Hoover thermostat and barostat have
a relaxation time of 2 ps. Pair interactions are truncated at 9.0 Å.
For long-range Coulombic interactions, we use the pppm/tip4p
particle–particle particle–mesh (PPPM) solver in LAMMPS46 with
a relative error in forces of 10−5. Long range corrections to energy
and pressure were included for the Lennard-Jones part of the poten-
tial. In addition, we employ the Shake algorithm47 to constrain the
O–H bond lengths and H–O–H angles. As the Shake algorithm is not
reversible, the NVE integrator does not guarantee detailed balance.
Hence, we solely performed simulations using the approximate NPT
integrator. Again, we use the averaged bond-order parameter q̄6 as
an order parameter. We compute q̄6 for each oxygen atom using
only the positions of the oxygen atoms, with a nearest-neighbor cut-
off distance of 3.51 Å. By employing a linear extrapolation of the
thresholds in Ref. 42, we selected the threshold q̄c

6 = 0.378, so an
oxygen atom is considered solid-like if q̄6 > 0.378. Two solid-like
particles belong to the same cluster if their distance is less than
3.51 Å. Finally, the largest cluster of solid-like particles is identi-
fied as the crystal nucleus. Based on the seeding simulations of Ref.
42, we use n̂c = 240 as an initial estimate for the critical nucleus
size. We used short molecular dynamics trajectories with a length
of 20 ps amounting to a simulation time of 650 ns for each target
size. We used the first 200 ns for equilibration and the following
450 ns for production. We found an autocorrelation time
of ∼20 ns.

In Fig. 8, we show our results for TIP4P/ICE. In Fig. 8(a), we
visualize a crystal nucleus of size n ≈ 240, where we can see clearly
its hexagonal structure. In Fig. 8(b), we show the nucleation bar-
rier ΔG(n) as a function of nucleus size n for T = 230 K. The blue
line is the aCNT fit of the nucleation barrier. Most importantly, we

find a barrier height of 50.4kBT with a statistical error of around
6kBT. Previous Metadynamics simulations43 found a barrier height
of 52.8kBT with a similar statistical error of around 6kBT. There-
fore, we conclude that our variational umbrella seeding result for
the barrier height agrees well with the metadynamics simulations.

In Fig. 8(c), we compare the nucleation rate J of TIP4P/ICE as
a function of supercooling, obtained with seeding,42 metadynam-
ics,43 lattice mold,44,48 and our variational umbrella seeding. To
compute the nucleation rate from our nucleation barrier, we use
the same kinetic prefactor of J0 = 1037 m−3 s−1 as was used in pre-
vious seeding simulations.49 Seeding has an uncertainty of around
five orders of magnitude represented by the red shaded region.
We observe that our result for the nucleation rate with variational
umbrella seeding (blue dot) agrees very well with previous results
from metadynamics43 and lattice mold44 simulations.

D. Summary of barriers
In Table I, we summarize our variational umbrella seeding

results for the nucleation barriers. In addition, Table I presents refer-
ence results obtained with umbrella sampling for WCA37 and mW39

or metadynamics for TIP4P/ICE.43 The barrier height varies from
ΔGc = 22kBT to 72kBT, and the critical nucleus size ranges from
nc = 72 to 453. Across this wide variety of barriers and models, we
observe that variational umbrella seeding agrees well with the refer-
ence results within 2–3kBT in all cases. In general, we obtain slightly
lower values for the barrier height. Both the NPT and the NVE inte-
grator schemes give consistent results, indicating that they can both
be used to obtain approximations of the barrier height.

E. Comparison with existing methods
Now that we have demonstrated that variational umbrella seed-

ing successfully reproduces nucleation barriers obtained by umbrella
sampling and metadynamics, it is useful to discuss the advantages
of variational umbrella seeding compared to these and other exist-
ing methods. In short, we argue that variational umbrella seeding
is faster than rigorous methods, while being more accurate than
seeding.

FIG. 8. Crystal nucleation of the TIP4P/ICE model of water at P = 1 bar. (a) Cut-through image of a crystal nucleus of size n ≈ 240 at T = 230 K. The nucleus is identified
as the largest cluster of particles that have an averaged bond-order parameter q̄6 > 0.378. The surrounding particles are reduced in size for clarity. (b) Free-energy barrier
ΔG(n)/kBT for the formation of a crystal nucleus of size n at T = 230 K. The blue line is the aCNT approximation of the barrier based on our Variational Umbrella Seeding
(VUS) simulations. The blue dot marks the top of the barrier. (c) Decimal logarithm of the nucleation rate Jm3s as a function of supercooling ΔT . The red dashed line and red
shaded region are seeding results from Ref. 42, while the black solid line is from Metadynamics (MTD) simulations from Ref. 43. The purple diamond is from Lattice Mold
(LM) simulations of Ref. 44. The blue dot is the Variational Umbrella Seeding (VUS) result of this work.
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TABLE I. Results from Variational Umbrella Seeding (VUS) for the nucleation barriers ΔGc/kBT of nearly hard spheres (WCA), a monatomic model of water (mW), and the
TIP4P/ICE model of water are compared with reference results from umbrella sampling for WCA37 and mW,39 or metadynamics for TIP4P/ICE.43 For WCA, the pressure
Pσ3/kBT = 12.0 and the temperature T = 0.025 ε/kB are fixed, while varying the order parameter for identifying the crystal nucleus, leading to different critical nucleus sizes nc
and, therefore, different Classical Nucleation Theory (CNT) approximations ΔGc

CNT = nc∣Δμ∣/2. For mW and TIP4P/ICE, the temperature T is varied, but the order parameter
threshold is fixed using the mislabeling technique. The pressure is 0 and 1 bar, respectively, for mW and TIP4P/ICE. The system size N refers to the total number of particles
in the simulation for WCA and mW and to the total number of molecules for TIP4P/ICE. The barriers ΔGc/kBT shown in the Variational Umbrella Seeding (VUS) and reference
columns were all measured in the NPT ensemble. For variational umbrella seeding, we explore two different choices for the integrator in our hybrid Monte Carlo/molecular
dynamics scheme: the approximate NPT and the rigorous NVE integrator. All values shown in the columns from “∣Δμ∣” to “reference” are in units of kBT . The statistical error in nc
is around five particles for WCA and mW and around 60 particles for TIP4P/ICE. The critical nucleus size nc is obtained from the maximum of the adjusted Classical Nucleation
Theory (aCNT) fit of the barrier. The statistical error in our VUS barriers is around 0.5kBT for WCA and mW and around 6kBT for TIP4P/ICE.

ΔGc/kBT

VUS

Label Model T Order parameter N nc ∣Δμ∣ nc∣Δμ∣/2 NPT NVE Reference

I WCA 0.025ε/kB ξc = 6 8 × 103 203 0.4137 41.6 30.6 31.1 32.537

II WCA 0.025ε/kB ξc = 7 8 × 103 170 0.4137 34.9 30.6 30.8 32.537

III WCA 0.025ε/kB ξc = 8 8 × 103 147 0.4137 30.1 29.9 31.1 32.537

IV mW 215.1 K q̄c
6 = 0.391 2 × 103 72 0.6249 22.3 22.4 23.1 23.539

V mW 225.0 K q̄c
6 = 0.386 2 × 103 148 0.5049 37.0 40.0 39.5 40.139

VI mW 235.0 K q̄c
6 = 0.380 4 × 103 336 0.3849 63.8 73.4 73.7 72.039

VII TIP4P/ICE 230.0 K q̄c
6 = 0.378 6 × 103 453 0.3242 72.5 50.4 ⋅ ⋅ ⋅ 52.843

First, we have shown that variational umbrella seeding is less
sensitive to the choice of order parameter. We have already dis-
cussed how this improves upon the original seeding approach, but
this argument also applies to other methods such as the nucleus size
pinning method23 and the persistent embryo approach,50 since these
methods also rely on the CNT approximation, Eq. (2).

Second, using the aCNT equation (8) for the nucleation bar-
rier reduces the problem to fitting three parameters. In standard
umbrella sampling, one parameter must be estimated per win-
dow to stitch the windows together. Because standard umbrella
sampling requires overlapping windows, the number of windows
quickly increases with the size of the critical nucleus. In variational
umbrella seeding, there is no need for overlap between different
windows as there is no need to stitch these together. Therefore, vari-
ational umbrella seeding only requires four windows, independent
of the critical nucleus size, much less than standard umbrella sam-
pling. This advantage of variational umbrella seeding with respect
to standard umbrella sampling will be more pronounced for smaller
supersaturations and larger critical nucleus sizes. To further quantify
this advantage, we can estimate the number of windows required for
standard umbrella sampling. Typically, the first 10kBT of a nucle-
ation barrier can be explored with an unbiased simulation. With
our choice of spring constants (see Appendix D), windows should
be positioned in 2kBT intervals to ensure ample overlap between
them. Hence, the approximate number of windows for standard
umbrella sampling is ((ΔGc/kBT) − 10)/2. For our barriers, this
translates to 11 windows for WCA, 7, 15, and 31 for mW at tem-
peratures T = 215.1, 225.0, and 235.0 K, respectively, and roughly
21 for TIP4P/ICE. Consequently, using variational umbrella seeding,
the number of windows can be reduced by a factor 2–8 compared to

standard umbrella sampling, with this reduction factor increasing
further for higher barriers.

We expect that the choice of order parameter will also influ-
ence the efficiency of the CNT-US method by Russo et al.39 and
the method of McCarty et al.51 Both of these methods rely on a
bias potential of the CNT form, Eq. (6a). We have seen, for exam-
ple, in Fig. 2 that this CNT approximation can be less appropriate,
especially for the initial part of the barrier. This may be problem-
atic in the initial part of the barrier where it is very steep. In these
higher gradient regions, stronger biases are needed, resulting in
lower acceptance ratios for Monte Carlo schemes. This decreases
the efficiency of biased simulations. In contrast, in variational
umbrella seeding, there is no need to perform biased simulations
of the initial part of the barrier. The metastable liquid is simulated
without any bias, and all the biased simulations are performed at
higher nucleus sizes, where the gradient of the nucleation barrier is
less steep.

Although we have observed that variational umbrella seed-
ing is significantly less sensitive to the choice of order parameter
than seeding, it is not entirely independent of this choice. Sim-
ilar to standard umbrella sampling and metadynamics calcula-
tions, the “collective variable”—the coordinate biased with the bias
potential—should serve as a reasonable “reaction coordinate.” If
this is not the case, then calculations of the barrier height and
nucleation rate may become unreliable. In this work, the collec-
tive variable is the size of the nucleus. As discussed in Refs. 52
and 53, the quality of a collective variable can be assessed through
committor analyses. Alternatively, accuracy can be tested by com-
paring nucleation rates with brute-force measurements. Empirical
evidence for nucleation of hard spheres,20,21,37,54 mW,12 Lennard-
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Jones,12,55 and NaCl12 suggests that the size of the nucleus serves
as a reasonable collective variable for these systems. However, cau-
tion should always be taken to ensure that the collective variable
does not miss alternative reaction pathways. For example, to exam-
ine the competition between different crystal polymorphs during
nucleation, it is necessary to adapt the collective variable to each
individual polymorph.14,15,52,56–58 As another example, to examine
the competition between amorphous and crystalline solid phases
during nucleation, it may be necessary to employ two collective vari-
ables: the size of the largest amorphous cluster and the size of the
largest crystalline cluster.52

Similar to the nucleus size pinning method,23 the persistent
embryo method,50 and NVT-seeding,59 an advantage of variational
umbrella seeding over seeding is that the nuclei can equilibrate
their interface with the surrounding parent phase. Consequently, as
explained in Ref. 23, nuclei have the potential to alter their shape
during a simulation. It is important to note that while seeding does
not inherently assume a spherical shape, as seeds of various shapes
can be used, variational umbrella seeding is generally less sensi-
tive to the preparation method of the initial configuration than
seeding.

An advantage with respect to metadynamics is that there is no
need to compute bias forces in variational umbrella seeding. This
advantage has several aspects. First, this makes the choice of order
parameter much more flexible. In variational umbrella seeding, the
order parameter does not need to be differentiable. For instance,
when the number of particles in the nucleus is employed as an order
parameter, the order parameter takes only integer values. There-
fore, the bias potential is not a continuous function of the order
parameter and one cannot compute the derivative that is needed to
evaluate the force. Even when order parameters are differentiable,
it can be inconvenient or computationally expensive to calculate
their derivatives. Second, order parameters do not have to be com-
puted for every simulation time step. Depending on the complexity
of the model and the order parameter, this can lead to a significant
speedup. Third, variational umbrella seeding is compatible with con-
ventional molecular dynamics or Monte Carlo codes by coupling
them to an external hybrid Monte Carlo scheme. There is no need to
modify the molecular dynamics or Monte Carlo codes themselves,
eliminating the need to “patch” a program with additional software
such as PLUMED.60

For a quantitative comparison, we can compare the simulation
time required to estimate the nucleation rate of TIP4P/ICE at 230 K.
Seeding simulations required around 1.5 × 105 central processing
unit (CPU) hours.49 With lattice mold simulations, this increased
to around 1 × 106 CPU hours.7 Forward flux sampling calculations
needed ∼2 × 107 CPU hours.61 For our variational umbrella seeding
simulations, we used around 2 × 105 CPU hours. This comparison
suggests that variational umbrella seeding is more efficient than lat-
tice mold, significantly more efficient than forward flux sampling,
and only slightly less efficient than seeding.

VI. CONCLUSION
In conclusion, we introduced variational umbrella seeding, a

novel computational technique for estimating nucleation barriers.
The theoretical basis of this method is adjusted classical nucleation
theory. Hybrid molecular dynamics—Monte Carlo simulations are

used to obtain segments of the nucleation barrier. We then fit the
free parameters in the adjusted classical nucleation theory using a
variational approach. Our results demonstrate good agreement with
previous methods for estimating crystal nucleation barriers of nearly
hard spheres (WCA), monatomic water (mW), and the TIP4P/ICE
model of water. The nucleation barrier values ranged from 20kBT
to 72kBT. Variational umbrella seeding matched all these previous
results within 3kBT, which is the typical uncertainty range for these
calculations.

Given its low computational cost, we believe that variational
umbrella seeding can serve as a valuable tool for investigating
nucleation rates across wide ranges of temperatures, pressures, and
particle interactions. Moreover, we anticipate that this technique
can be extended to explore other nucleation processes, such as
condensation, cavitation, and melting.

SUPPLEMENTARY MATERIAL

The supplementary material contains the code used to gen-
erate and analyze the results of this paper, initial configurations
used for the simulations, nucleus size distributions from the unbi-
ased liquid phase, and nucleus size distributions from the biased
simulations.
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APPENDIX A: CODE

The code used to generate and analyze the results of this
paper is freely available at https://github.com/MarjoleinDijkstra
GroupUU/VariationalUmbrellaSeeding and in the supplementary
material of this paper. The implementation is based on the hybrid
Monte Carlo code by Guo et al.30 and uses the LAMMPS code for
molecular dynamics32 and the freud library for calculating bond
order parameters.62

APPENDIX B: BARRIERS AND FITTING PARAMETERS

In Table II, we present the values of the parameters of the
aCNT expression, Eq. (8b), that we use to fit the nucleation bar-
riers of WCA, mW, and TIP4P/ICE. In this table, we also present
the nucleus size n0 where the unbiased initial part of the barrier is
“glued” to the aCNT barrier; see Eq. (20).

APPENDIX C: CONFIDENCE INTERVAL

In addition to obtaining a maximum-likelihood estimate for the
nucleation barrier ΔGc, we can compute a confidence interval for
the critical nucleus size and the barrier height using the likelihood
function, Eq. (17). To do this, we follow the procedure outlined in
Ref. 63. To determine an approximate 95% confidence interval
for the nucleation barrier ΔGc, we vary the parameters ĝ2 + dg2
and ĝ1 + dg1 and compute the likelihood L relative to the likeli-
hood of the maximum likelihood estimate, i.e., Lrel = L(ĝ2 + dg2, ĝ1
+ dg1)/L(ĝ2, ĝ1). The values dg2, dg1 for which this relative like-
lihood Lrel = 0.05 represent the boundaries of the 95% confidence
region. Note that this criterion is specific to our case of two para-
meters, and a different threshold should be used to convert the
relative likelihood to a confidence region if a different number of
parameters are estimated. Once the boundaries of the confidence

region are estimated, we can determine the critical nucleus size
nc and barrier height ΔGc for all values of g2 and g1 within the
95% confidence region. In this way, we also obtain a 95% confi-
dence interval for nc and ΔGc. Although these confidence intervals
should always be treated with care, they can provide insights into
the minimum simulation time needed to fit the aCNT parameters.

APPENDIX D: OPTIMIZING FITTING STRATEGIES
WITH AN IDEALIZED NUCLEATION BARRIER

To optimize our fitting strategy, we performed tests with an
idealized nucleation barrier. To be more precise, we assumed an
idealized nucleation barrier ΔG(n) that is exactly described by the
aCNT with exactly known parameter values gi. That is, we selected
values for gi and constructed ΔG(n) accordingly. Recall that both
the nucleation barrier and the external bias potential Uext induce a
probability distribution p(n) for the nucleus size, given by

p(n) = 1
Z

exp [−(ΔGaCNT(n) +Uext(n))/kBT].

Therefore, we can numerically generate independent samples from
this probability distribution, akin to conducting a biased simulation.
Subsequently, we employed our maximum-likelihood approach to
test how well we can recover our idealized nucleation barrier using a
limited number of independent samples.

Constructing and fitting an idealized nucleation barrier in this
way is relatively quick. We iteratively constructed and fitted nucle-
ation barriers of varying heights using different fitting strategies. In
this manner, we optimized the fitting strategy that we used for our
simulations.

First, we roughly estimate the critical nucleus size n̂c. This can
be efficiently obtained using the seeding technique or estimated from
the previous literature. We use four different windows, positioned at
target sizes n̂ = n̂c/4, n̂c/2, 3n̂c/4, and n̂c. From the critical nucleus
size estimate n̂c, we can calculate a first estimate of the interfacial
tension γ. This is enough to have an idea of the nucleation barrier
using Eq. (7a). From Eq. (7a), we approximate the local curvature
of the nucleation barrier. In order to constrain the nucleus size, the

TABLE II. Fitting parameters of the aCNT expression given by Eq. (8b) for the nucleation barriers of WCA, mW, and
TIP4P/ICE. The labels correspond to the labels shown in Table I. The values for the supersaturation ∣Δμ∣ are from Refs.
37, 49, and 42 for WCA, mW, and TIP4P/ICE, respectively. The fitting parameters gi are shown in units of kBT . The last
column shows the nucleus size n0 where the unbiased initial part of the barrier is “glued” to the aCNT barrier; see Eq. (20).

g2 g1 g0

Label Model ∣Δμ∣ NPT NVE NPT NVE NPT NVE n0

I WCA 0.4137 4.32 4.31 −8.35 −8.21 13.79 13.56 5
II WCA 0.4137 3.92 3.90 −5.56 −5.33 10.78 10.50 3
III WCA 0.4137 3.64 3.50 −3.91 −2.75 9.51 8.26 2

IV mW 0.6249 4.29 4.25 −3.47 −2.98 7.54 6.86 4
V mW 0.5049 3.95 3.99 −0.06 −0.45 3.42 3.90 3
VI mW 0.3849 3.77 3.77 2.69 2.75 0.32 0.23 3

VII TIP4P/ICE 0.3242 4.32 ⋅ ⋅ ⋅ −9.89 ⋅ ⋅ ⋅ 16.02 ⋅ ⋅ ⋅ 5
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TABLE III. Bias potentials employed for the nucleation barriers of WCA, mW, and
TIP4P/ICE. The labels correspond to the labels shown in Table I. The initial estimate
n̂c of the critical nucleus size determines the target sizes n̂ = n̂c/4, n̂c/2, 3n̂c/4, n̂c
as well as the spring constants k of the bias potentials; see Appendix D. The spring
constants k are shown in units of kBT .

Label Model n̂c k(n̂c/4) k(n̂c/2) k(3n̂c/4) k(n̂c)

I WCA 185 0.0284 0.0113 0.0065 0.0044
II WCA 155 0.0333 0.0132 0.0078 0.0053
III WCA 130 0.0409 0.0159 0.0093 0.0063

IV mW 70 0.1144 0.0437 0.0257 0.0173
V mW 150 0.0416 0.0162 0.0095 0.0064
VI mW 320 0.0147 0.0058 0.0034 0.0023

VII TIP4P/ICE 240 0.0169 0.0067 0.0039 0.0027

spring constant should be larger than the local curvature. To be on
the safe side, the spring constant k of the bias potential is chosen to
be six times64 the local curvature, i.e.,

k(n̂) = 6
d2ΔGCNT

dn2 ∣
n̂
.

This means that a different spring constant k is chosen for each target
size n̂. The idea to base the spring constant on the curvature is from
Ref. 64. In Table III, we present the values of the spring constants
k that we use for the bias potentials in our simulations.
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