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ABSTRACT

The relationship between structure and dynamics in glassy fluids remains an intriguing open question. Recent work has shown impressive
advances in our ability to predict local dynamics using structural features, most notably due to the use of advanced machine learning tech-
niques. Here, we explore whether a simple linear regression algorithm combined with intelligently chosen structural order parameters can
reach the accuracy of the current, most advanced machine learning approaches for predicting dynamic propensity. To achieve this, we intro-
duce a method to pinpoint the cage state of the initial configuration—i.e., the configuration consisting of the average particle positions when
particle rearrangement is forbidden. We find that, in comparison to both the initial state and the inherent state, the structure of the cage state
is highly predictive of the long-time dynamics of the system. Moreover, by combining the cage state information with the initial state, we are
able to predict dynamic propensities with unprecedentedly high accuracy over a broad regime of time scales, including the caging regime.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0144822

I. INTRODUCTION

Understanding the relationship between structure and dynam-
ics in glassy systems has sparked extensive discussion over the last
few decades."* While cooling or compressing a glassy system, we
typically observe little to no change in structure, while at the same
time observing an extreme decrease in dynamics.” This decrease in
dynamics is highly heterogeneous, with increasingly large regions of
slow and fast particles as a function of supercooling.” *

One of the approaches used to probe the apparent discrep-
ancy between structure and dynamics has been the use of machine
learning.” * By capturing the local structure of particles in terms of
parameters and training algorithms to predict the mobility of par-
ticles based on these parameters, the idea is that we can learn what
aspects of the structure influence the heterogeneous dynamics.

Over the last three years, the quest for accurate dynamical
predictions in glassy systems has led to an explosion of papers
introducing new methodologies that compete in predicting the
so-called dynamic propensity of simple glassy models. This propen-
sity is defined as the average expected displacement a particle will
undergo in a certain time interval when starting from a specific

initial configuration.”** Arguably, this explosion started in 2020
with the work of Bapst et al,'” where several machine learn-
ing methods were trained to predict the dynamic propensity of a
Kob-Andersen system,” with a graph neural network (GNN) per-
forming the best. In 2021, a linear-regression-based algorithm with
input parameters that captured structure over several length scales
was shown to be able to rival GNNs in predicting the propensity for
the same system.'® Since then, several works have improved on this
feat, by, for example, using physics-informed parameters as input
for a deep neural network,'” by modifying the loss function of a
GNN to also consider relative displacements between pairs of parti-
cles,' or by designing GNNs that preserve roto-translation equivari-
ance.'” These works clearly demonstrate that careful consideration
of the physics involved can aid in improving the predictive accu-
racy of these advanced methods. However, these neural-network
based approaches still carry the downside of high complexity. In
contrast, due to the simplicity of linear methods, accurately captur-
ing dynamics using linear regression gives a clearer perspective on
what structural aspects most strongly drive glassy dynamics. This
raises the question: can a clever choice of input parameters boost
the performance of linear regression approaches?
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Here, we show that this is, indeed, the case and apply linear
regression to predict the dynamic propensity of three glass-forming
models: hard spheres, harmonic spheres, and the Kob-Andersen
model. The main idea of our method is to consider the structure of
the system during the caging regime, where each particle is confined
by its neighbors in a reasonably well-defined location. By directly
incorporating information about this “cage state,” we show that
it is possible to drastically improve the ability of linear regression
to predict dynamics, to the point where it even exceeds advanced
non-linear machine learning algorithms over a wide range of time
scales.

Il. MODEL, DESCRIPTORS, AND PREDICTION METHOD
A. Model

Each of our three models consists of two species of particles,
labeled A and B, with different particle sizes but equal mass m. We
denote the number of particles of the two species as N4 and N such
that the total number of particles N = N4 + Np. Below, we discuss
each of the models and the state points at which we investigate them
individually.

1. Binary hard-sphere mixture

The first model we consider consists of hard-sphere particles of
two diameters, denoted by 04 and 0. The hard-sphere potential for
two particles i and j is given by

forr < i,
(1)

0 forr > i,

VIS (r) = {‘X’

where 03 = (0; + 0j) /2. Here, we use a size ratio og/oa = 0.85,and a
number ratio Na/N = 0.3. It should be noted that this is the same
model that was used in Refs. 14, 16, 24, and 25. The considered
packing fraction of # = 0.58 leads to a structural relaxation time of
approximately 7, = 10*r, with 7 being the unit of time given by

T=1/ mai /ksT, kg being Boltzmann’s constant, and T being the
temperature.

2. Binary harmonic mixture

The binary harmonic potential”**’ is given by

2
Har 8(1 - L)
V() = 0ij

0 forr > oy,

forr < Oij»

2

where again oy = (0; + 0j)/2. Here, we consider the case where
og/oa =14, Na/N =0.5. Our state point of interest is at num-
ber density poj = 0.82 and temperature kpT/e = 0.0045, where the
structural relaxation time is approximately 7o = 6717.%

3. Binary Kob-Andersen mixture

The Kob-Andersen (KA) mixture consists of two particle types
A and B interacting via the Lennard-Jones potential,”’

VEA (1) :45,7[(%)127(%)6]) (3)
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where €4a:€ap:epp=1:1.5:0.5 and 0aa:04p:0B3=1:0.80:
0.88. It should be noted that (oaa + 08s)/2 # 048, ie., the sys-
tem is non-additive. The composition of the system is Na/N = 0.8.
We investigate this system at number density poj = 1.203 and
temperature kgT/es = 0.44. The relaxation time of the system is
approximately 7, ~ 30757."

B. Generating initial configurations

The HS system is simulated using event-driven molecular
dynamics”‘}“ (EDMD) in the microcanonical ensemble, i.e., at a
fixed number of particles N, volume V, and energy E. In order to
generate snapshots that can serve as initial configurations, we place
N particles in the box at a reduced size and then grow them over
time until the desired packing fraction is reached.’’ Afterward, the
system is equilibrated for 1074.

To simulate both the harmonic and KA systems, we use Large-
scale Atomic/Molecular Massively Parallel Simulator (LAMMPS).*”
First, we initialize the system by performing a simulation in the
canonical ensemble, i.e., at fixed N, V, and T, using a Nose-Hoover
thermostat™ at the desired temperature T. Afterward, we equilibrate
the system in the microcanonical ensemble, for 107,.

For each system, we equilibrate 100 snapshots, where each
snapshot contains 2000 particles.

C. Dynamic propensity

As a measure of the dynamical heterogeneity, we use the
dynamic propensity, which is a quantity that captures the average
mobility of particles.”"”* To measure it, we simulate the dynamical
evolution of each initial configuration 50 times, using distinct ini-
tial velocities drawn from a Maxwell-Boltzmann distribution at the
desired temperature, i.e., we sample the isoconfigurational ensem-
ble.”! Afterward, the dynamic propensity Ar;(t) of each particle i is
obtained by averaging its absolute displacement over the different
runs, i.e.,

Ari(t) = (Iri(t) = xi(0) ) conps )

where the subscript “conf” indicates the isoconfigurational average.
We measure the dynamic propensity at logarithmic time intervals
between ¢/7 = 0.01 and ¢/7 = 107,. The simulations of the all three
systems are performed in a microcanocical ensemble.

D. Structural descriptors

To fit the dynamic propensity, we use standard ridge regression
combined with structural order parameters, as previously carried out
in Refs. 16 and 25. The structural parameters include rotationally
invariant parameters that capture both the local density as well as
the local n-fold symmetry. The local density is measured by using
radial density functions that capture the density in a shell at distance
r and with thickness 26 from the reference particle. They are defined
as

(ij=n)*
Gi(o)(r,&s)= Z e W , (5)

JFEis j=s

where i is the reference particle and r; is the absolute distance
between particles i and j. The sum goes over all other particles j
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in the system that are part of particle species s. In this paper, we
include the radial functions up to the fifth minimum in the radial
distribution.

The other structural descriptors that we use are based on bond
order parameters which express the local structure in terms of spher-
ical harmonics.”**” To compute the parameters, we first compute the
complex coefficient

i)

( )(l m, r,5) = Ze 252 Y] (rzj) (6)

l#]

Here, Y} (1;;) is the Ith spherical harmonic function and m is a func-
tion that runs from —I to I. To normalize the coefficient, we use Z,
which is given by

(rj=n*

Z=Ye¢ 7 . @)

i#j

It should be noted that due to the exponent, just as with the radial
density functions, the particles that contribute are mainly within the
shell » — § to r + & and contribute to q,.(o) (I, m,r,8). The parameters
are made rotationally invariant by summing over all possible values
of m,

4 (br,5) = J A SO amndt.©

It should be noted that qi(o)(l, r,8) will mainly pick-up the I-fold
symmetry of the particle structure in each shell.

In Ref. 16, it was shown that the prediction of the dynamic
propensity via linear regression can be improved when not only the
structural parameters of the reference particle itself are included,
but also structural parameters averaged over nearest neighbors.
These averaged structural parameters are obtained via the following
recursive formula:

(n=1) p=rij 1
(n) _ Z]ru<r"x} /

)]

Zj:r,]<rc _rij/rc
Here, xi(") are the structural parameters (which can be both radial
density or bond order parameters) of order # for particle i. The sum
goes over all particles within a certain radius r. as seen from the
reference particle i. This 7. is chosen to be located at the second min-
imum of the radial distribution function, although it was shown in
Ref. 16 that its exact value has no substantial influence on the order
parameters. Boattini et al. showed that including parameters up
to three generations significantly improves the predictions. Hence,
in this work, we always define the set X of structural parameters
as the collection of all xi(") for n=0,1, and 2 combined. Further
information on the descriptors can be found in the supplementary
material.

Ill. RESULTS

A number of recent studies have made significant progress
in predicting the dynamic propensity of particles in glassy fluids
based on local structural information using a variety of machine
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FIG. 1. Propensity averaged over all A particles in the system and correlation
between the predicted and measured propensity for the same particles, plotted
over time for the binary hard sphere mixture at the state point described in this
paper. The propensity clearly exhibits three different dynamical regimes: In the
ballistic regime, particles have not yet collided with their neighbors and thus fol-
low a straight ballistic trajectory. In the caging regime, particles move around for
an extended period of time in the cage formed by their nearest neighbors. Finally,
after particles have escaped, the system enters the diffusive regime.

learning algorithms.'*'*"" The accuracy of such predictions is typ-

ically evaluated using the Pearson correlation coefficient’ between
the predicted and measured dynamic propensities. A typical exam-
ple of this correlation as a function of time is shown in Fig. 1, where
we used linear regression in combination with structural order para-
meters to predict the propensity in the binary hard-sphere mixture
we consider here.”” Interestingly, the correlation is weak in three dis-
tinct regimes. Two of these regimes are trivial. The first corresponds
to the very short-time regime, where dynamics are dominated by
the random choice of initial velocities. Especially for hard spheres,
the motion of the particles in this regime is entirely unaffected by
the local structure, and hence fully unpredictable. The second trivial
regime that is hard to predict occurs at long time scales ¢ >> 7,, where
the system loses memory of its initial configuration. The intrigu-
ing regime, where the correlations are weak, lies at intermediate
time scales and corresponds to the times where particles are trapped
inside their local cages, as also indicated by the behavior of the aver-
age propensity in Fig. 1. This lower performance of machine-learned
algorithms for predicting propensity in the caging regime is not
unique to the results of Fig. 1, but has been observed in a variety
of studies involving different machine learning methods and dif-
ferent ways to describe the system,'”'®'"** although recent, more
advanced machine learning methods have improved significantly
the correlation in this regime.'*"”

Observing the weak correlations in the caging regime, a natural
question to ask is, then, what structural information do we need to
include in order to make accurate predictions about the dynamics of
our system in this regime? Since during the caging regime, particles
on average move around the so-called cage center, a rather obvious
choice would be to try to measure the average distance between a
particle’s initial position r™* and its typical position while in its cage

r;"®. Since the dynamic propensity measures the averaged absolute
distance traveled by particles, we would expect this distance between
the initial and mean cage position Ar{** = |r{"*° — r]""| to be a good
predictor of the dynamic propensity. While this statement seems
logically trivial, an important question is what is a good estimate of
the cage center of a given particle?
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FIG. 2. (a)-(c) Pearson coefficient between the propensity and absolute difference between the positions of particles in the initial configuration and the inherent state/cage
state (Ar'S'°®) for the A-particles in hard spheres (a), harmonic spheres (b), and Kob-Andersen (c). (d)-(f) The total radial distribution function around A-type particles in
the initial configuration, the inherent state, and the cage state for the same three models.

A common approach in glass literature for predicting dynami-
cal behavior in a glassy system is to quench the system to its inherent
state (IS) (see, e.g., Refs. 12, 17, 37, and 38). The inherent state of a
configuration is defined as the local potential energy minimum that
one obtains via a rapid energy minimization.” It should be noted,
however, that this is not exactly the same as the average position
of a particle in its cage, as the average should include the effects of
thermal fluctuations as well. As such, a natural alternative choice to
estimate the position of the cage center is to simply take the aver-
age position of each particle, under the constraint that no significant
particle rearrangements have occurred. We will refer to this second
option as the cage state (CS). To explore these two definitions of
Ar®, we calculate both the inherent state and cage state positions
for each of our initial configurations.

For the inherent state, we use the FIRE algorithm proposed
by Bitzek et al."’ to minimize the potential energy. In the case
of hard spheres, we apply an effective logarithmic interaction
potential proposed by Arceri et al."' in order to obtain an effec-
tive inherent state. Specifically, we use the effective pair potential
Vei(r) = —kpTlog(r - 0;;), with both the forces and interaction
energy truncated and shifted to zero at a cutoff radius r. = 1.350.
The specific parameters we use for the FIRE algorithm can be found
in the supplementary material.

To obtain the cage state, we use a Monte Carlo (MC) simula-
tion in the canonical ensemble that measures the average positions of

each particle ri™° = (rf), while restricting the movement of each par-
ticle to ensure that it stays inside its initial cage. In order to achieve
this, we reject all MC moves that would move the center of a par-
ticle outside of its original Voronoi cell. Since we consider binary
systems, we use an approximate definition of a Voronoi cell, which
takes into account the particle sizes. In particular, the approximate
Voronoi cell for particle i is defined as the collection of points R for
which

R R
p < v VjeN(i), (10)

where r™ is the position of particle i in the initial configuration and
(i) are the nearest neighbors of particle i determined by the SANN
algorithm.** For the KA mixture, we set 0; = 0j;, since the individual
particle sizes are ill-defined. It should be noted that since the restric-
tions on the particle positions eliminate the possibility of long-time
diffusion, short simulations are sufficient to sample the restricted
phase space. Here, we use MC simulations of 5 x 10° initial steps
and 10° measuring steps.

It should be noted that as an alternative to confining each par-
ticle to its initial Voronoi cell, we have also explored the possibility
of instead confining each particle to a spherical region with a fixed
radius r.. When the size of this sphere is chosen to be close to the
size of the particle (and hence similar to the size of the Voronoi cell),
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FIG. 3. (a)-(c) Pearson correlation coefficient between the dynamic propensity and the prediction of a linear regression model trained on the structural parameters evaluated
for the initial-, the inherent-, and the cage-state coordinates (i.e., XI"t, X'S, X°%) for the A-particles in hard spheres (a), harmonic spheres (b), and Kob—Andersen (c). (d)—(f)
Correlation between the measured propensity and the predicted propen5|ty by a linear regression model trained on either only the structural parameters based on the initial

positions, or the set of input parameters given by {X™, XIS/CS Ar1SCS}

we find essentially the same results (as shown in the supplementary
material).

The inherent state and cage state give us two results for Ar
which we denote as Ar"*(*® for the inherent (cage) state. To compare
how effective these measurements are at capturing the actual cage
center, we plot in Figs. 2(a)-2(c) the Pearson correlation between
the dynamic propensity and both definitions of Ar*#, for all three
glass model systems. It should be noted that since here we consider
only a single parameter at a time, no linear regression is required
to obtain a correlation. As expected, both the inherent state and the
cage state provide significant information about the expected posi-
tion of a particle during the caging regime. However, clearly Ar®®
is a better predictor of the dynamic propensity in all three cases,
reaching correlations stronger than 0.8. This is significantly higher
than the results shown in Fig. 1, despite being based only on a single
variable. Evidently, the simple averaging method we used to obtain
the cage state, indeed, manages to eliminate the thermal fluctuations
that are present in the initial configuration, without losing significant
information about the underlying cage structure. The inherent state
performs less well, in particular, in the case of harmonic spheres.
To shed light on the reason behind this, we measure the radial
distribution function g(r) of the initial, inherent, and cage state con-
figurations and compare them in Figs. 2(d)-2(f). In the harmonic
and KA models, both the inherent state and cage state increase the

cage

degree of local structure in the system, resulting in higher peaks in
g(r), and this degree of additional ordering is stronger for the inher-
ent state than that for the cage state. This implies that the inherent
state quench pushes the system significantly further away from its
local structure than the system would normally sample. This can
also be seen in considering how far particles move away from their
initial state during the quenching or averaging procedure (see the
supplementary material). In contrast, the cage state procedure only
takes into account configurations that the system samples during
(constrained) thermal fluctuations. Hence, it is perhaps not surpris-
ing that the cage state better reflects the expected dynamics of our
systems.

We now examine whether knowledge of the cage structure can
help us make more accurate predictions of the dynamic propen-
sity even outside the caging regime. For this purpose, we start
with the structural order parameters and linear regression approach
described in Refs. 16 and 25. In particular, for each particle in a
snapshot, we define a set of ~1000 parameters describing their local
structural environment and use standard ridge regression in order
to fit the dynamic propensity as a function of these parameters. A
full description of these structural order parameters for each model
is provided in the supplementary material. It should be noted that
this is the same approach as we used for the data in Fig. 1. As a
basis for calculating the local structural descriptors, we now use
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either the initial, inherent, or cage state, resulting in three sets of
structural descriptors for each particle: Xt XS and XS, where
init stands for the initial state, IS stands for the inherent state, and
CS stands for the cage state. We then examine how these different
sets of input data influence our ability to predict dynamic propen-
sity. The results are shown in Figs. 3(a)-3(c) for the three model
systems. In all cases, at short times, the initial state of the system
provides the best input for predicting propensities. This is under-
standable, since only the initial state contains information about
the exact particle environments in the limit t — 0. At longer time
scales, both the inherent and cage state structures outperform the
initial state, with the cage state always outperforming the inherent
state. This further supports the observation that the cage state, as
determined by our MC approach, represents an excellent approx-
imation for the underlying structure of our system when it comes
to understanding its dynamics on time scales around the structural
relaxation time.

The obvious next step is to combine this information with
knowledge of Ar*#¢, which we already know provides a strong pre-
diction of dynamics in the caging regime. In Figs. 3(d)-3(f), we
plot the correlation between the dynamic propensity and predic-
tions based on linear regression, combining as input xinit xeage,
and Ar“*®, for both cage definitions. Overall, we observe a massive
improvement in our ability to predict propensity at all time scales
beyond the ballistic regime.

The predictive power of our models using information about
the cage state is particularly impressive compared to past results.
Specifically, the state point of the KA mixture we study here has
been used in a variety of previous studies, where new methodolo-
gies were introduced to attempt accurate prediction of the dynamic
propensity. In Fig. 4, we plot our results from Fig. 3(f) (correspond-
ing to Xinit,XCS, Arcs) and compare them to the results of Refs. 13
and 16-19. It should be noted that the comparison between differ-
ent predictions is complicated because of the significant differences
between the dataset we used here and the dataset from the work of
Bapst et al.,'* which was also used by Boattini, Jung, and Pezzicolo
and their respective co-workers.'”'”"" In particular, for our dataset,
we determine dynamic propensities for a set of initial snapshots
that are all taken at the same density, and we measure the dynamic
propensity at a fixed set of times. In contrast, the authors of Ref. 13
took the initial snapshots from constant-pressure simulations, and
hence, the configurations vary slightly in density. Additionally, for
each initial configuration, they measured the dynamic propensity at
different time intervals, based on the decay of the intermediate scat-
tering function for that specific snapshot. In Fig. 4(b), we illustrate
this difference by plotting for each of the initial configurations in the
training set of Ref. 13 the average propensity as a function of time
and color each point based on the corresponding system density.
Hence, in our comparison in Fig. 4(a), the time for each point based
on this dataset is an average time. Clearly, there is a significant cor-
relation between the density of the snapshot and the mean dynamic
propensity, and a significant spread in acquisition times. Addition-
ally, the spread in mean propensities is significantly lower than that
in our own data [shown in black in Fig. 4(b)], due to the grouping
of initial configurations based on their structural relaxation instead
of time. It should be noted that this grouping is not fully consistent
with Eq. (4) and implies that some dynamical information is already
included in the input data.
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FIG. 4. (a) Pearson correlation coefficient between the dynamic propensity and the
prediction for A particles in a KA system at the state point used in this paper, made
by different models: linear regression (LR) by Boattini et al., 'S multi-layer percep-
tron (MLP) by Jung et al.,'” graph neural network (GNN) by Bapst et al.,’*> BOnd
TArgeting Network (BOTAN) GNN by Shiba et al.,'® and SE(3)-equivariant GNN
by Pezzicoli et al.'% (b) Average dynamic propensity per snapshot in the dataset
of Ref. 13, which was also used in Refs. 16, 17, and 19. For each initial snapshot
in the training set of Ref. 13, we plot the mean propensity in that snapshot at the
times reported for that snapshot and color the point based on the system density.
For comparison, we also plot in black the mean propensity taken from our own
dataset, where the times and density are the same for each initial configuration.
The error bars indicate +2 times the standard deviation of the mean propensity at
each time.

Evidently, including information about the cage
state—captured in our parameters X°° and Ar®—allows our
linear regression approach to outperform the current state-of-the-
art machine learning methods for predicting dynamic propensity
over a wide range of time scales. The GNN-based methods do
outperform our predictions in the very short-time regime, where
the dynamics are likely dominated by the forces that act on the
particles in the initial configuration. This may be an indication
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FIG. 5. Pearson correlation coefficient between measured and predicted propen-
sity over time, shown for linear regression models trained on different subsets of
structural parameters for A particles in a KA system. F"0 is the absolute net
force that a particle feels at t = 0, ArS is the absolute difference between the
positions of particles in the initial configuration and the cage state, and X°S are the
structural parameters evaluated for the cage state. Note that the green line (“All")
is the linear regression model trained on the combination of {F"?, ArcS, XS},
while the black line (“All +X""”) also includes the structural parameters of the initial
configuration in the structural dataset.

that these instantaneous forces cannot be directly recovered from
our set of input parameters. In contrast, all the three GNN-based
approaches plotted (in blue) in Fig. 4 have information about
the relative positions of particles with respect to their neighbors
included in the input graph, and hence might be able to learn the net
forces on the particles with high accuracy. At very long time scales,
where the motion of particles becomes more diffusive, the results
of the different machine learning approaches appear to converge to
similar performance—with the physics-informed approach by Jung
et al.'” performing the strongest in this regime.

To test whether the improved performance of the GNNs at
short time scales is, indeed, due to them directly learning the initial
forces, we adapted our method to also include the net force on each
particle in the initial configuration. In Fig. 5, we show the correlation
between the dynamic propensity and the initial force in blue, and,
indeed, we see a strong peak at short times. Adding this information
into our input data for the full linear regression model, we, indeed,
see a significant improvement at short times (black line). However,
the GNN-based methods still achieve a significantly higher accu-
racy in this regime and hence appear to be capable of learning
more about the short-time dynamics than simply the instantaneous
forces.

In Fig. 5, we also break down our prediction of the dynamic
propensity into the different relevant aspects of the input data. Over-
all, we see that the dynamic propensity at short times is, indeed,
dominated by the forces, at intermediate times by the initial distance
to the cage center, and at long times by the structural features of the
cage state. While this is, in principle, not surprising, it is impressive
to see that the vast majority of the variation in propensity at short
and intermediate time intervals can be explained by just two sim-
ple measurements. Moreover, the predictive ability of the cage state
structure at long times is impressive as well and demonstrates that
using the cage state rather than the initial state to make long-time
predictions is an excellent strategy. It should be noted that outside
of short times, adding information on the initial state in addition to
the cage state is fully irrelevant.
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IV. CONCLUSIONS

In short, we have demonstrated that the behavior of the
dynamic propensity of glassy fluids can be predicted with high
accuracy by using information about the cage state of the initial
configuration. This cage state is defined as the set of coordinates
describing the average position of the particles when the system
is constrained to ensure particles cannot escape their local cages.
Combining this information with a simple linear-regression-based
algorithm, we can predict dynamic propensities with accuracies that
rival or exceed current state-of-the-art machine learning methods at
nearly all times. This suggests that the cage state could be a helpful
tool for further studying the underlying structure of glassy fluids.

SUPPLEMENTARY MATERIAL

See the supplementary material for an extended discussion of
the structural order parameters used in this paper, a listing of the
parameters used for the FIRE algorithm, an extra analysis of the
difference in structure between the IS and the CS, and finally, a
comparison between two different methods to obtain the CS.
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