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Self-assembly of dodecagonal and octagonal
quasicrystals in hard spheres on a plane†

Etienne Fayen, a Marianne Impéror-Clerc, a Laura Filion, b Giuseppe Foffi a

and Frank Smallenburg *a

Hard spheres are one of the most fundamental model systems in soft matter physics, and have been

instrumental in shedding light on nearly every aspect of classical condensed matter. Here, we add one

more important phase to the list that hard spheres form: quasicrystals. Specifically, we use simulations

to show that an extremely simple, purely entropic model system, consisting of two sizes of hard spheres

resting on a flat plane, can spontaneously self-assemble into two distinct random-tiling quasicrystal

phases. The first quasicrystal is a dodecagonal square-triangle tiling, commonly observed in a large

variety of colloidal systems. The second quasicrystal has, to our knowledge, never been observed in

either experiments or simulations. It exhibits octagonal symmetry, and consists of three types of tiles:

triangles, small squares, and large squares, whose relative concentration can be continuously varied by

tuning the number of smaller spheres present in the system. The observed tile composition of the self-

assembled quasicrystals agrees very well with the theoretical prediction we obtain by considering the

four-dimensional (lifted) representation of the quasicrystal. Both quasicrystal phases form reliably and

rapidly over a significant part of parameter space. Our results demonstrate that entropy combined with a

set of geometrically compatible, densely packed tiles can be sufficient ingredients for the self-assembly

of colloidal quasicrystals.

1 Introduction

Hard spheres are arguably the most fundamental model system
in colloid science. The colloidal equivalent of marbles, hard
spheres only interact when colliding, but despite this simplicity
exhibit nearly all important aspects of phase behavior.
As such, colloidal hard spheres have been instrumental in
enhancing our understanding of crystal nucleation,1,2 crystal-
lization in confinement,3–9 two-dimensional melting,10,11 glassy
dynamics,12–16 crystal defects,17–19 among many others. Their
important role in soft matter science stems from their theoretical
simplicity, which makes them a natural first approximation for
particles with a hard core, as well as the fact that they can be
quantitatively reproduced in the lab.20–23 One aspect of colloidal
phase behavior where hard spheres have thus far not proven
suitable as a model system is the formation of quasicrystals. These
exotic structures possess long-range order but lack periodicity and
typically exhibit so-called ‘‘forbidden’’ symmetries, incompatible

with periodic crystalline order. They have been predicted to form
or directly observed in a variety of soft-matter systems consisting of
nanoparticles or macromolecules,24–27 as well as in several (non-
additive) 2D binary Lennard-Jones mixtures,28–31 but have so far
remained elusive in colloidal particles on the micrometer scale.

This is unfortunate, as such a colloidal model system that
reliably forms quasicrystals would be ideal for the real-time
study of quasicrystal self-assembly. In computer simulations of
colloidal soft matter, quasicrystals are typically found in systems
with highly specific interactions – such as oscillatory potentials,
patchy interactions, and square-shoulder repulsion24,32–37 –
which are hard to realize in the lab. While complex quasicrystal
approximants have been found to self-assemble in simulations
of polydisperse mixtures of hard spheres,38 and finite clusters
with icosahedral symmetry have been shown to form in sphe-
rical confinement,3,4,39 to date hard-sphere systems have not
been found to be capable of forming a quasicrystal.

Here, we demonstrate quasicrystal self-assembly in binary
mixtures of hard spheres lying on a flat plane. In particular, we
find that this simple, purely entropic quasi-two-dimensional
system exhibits an amazingly rich self-assembly behavior,
forming not only six periodic crystal phases, but two random-
tiling quasicrystals as well: one dodecagonal and one octago-
nal. Although dodecagonal quasicrystals are relatively common
in soft matter models,25,32,33,40–42 octagonal ones are much
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more rare.33–36 Moreover, unlike previously observed eight-fold
quasicrystals made up of two tiles, the octagonal tiling we
observe here is composed of three distinct tiles, whose relative
composition can be directly tuned by changing the fraction of
small spheres in the system. Both quasicrystal phases form
reliably and rapidly over a significant part of parameter space.
As binary hard spheres on a plane are directly experimentally
realizable, to the point where they quantitatively match
simulations,10,43 this discovery identifies an ideal model system
for studying essentially all properties of quasicrystals, including
their structure, nucleation, melting, and defect dynamics.

2 Model

We consider mixtures of hard spheres of two different sizes
constrained to lie on a flat plane. As illustrated in Fig. 1, this
system can be mapped onto an equivalent 2D one by looking at
its projection on the substrate, where spheres become disks. As
the particles are constrained to move in only two dimensions,
the disks corresponding to spheres of equal size cannot over-
lap, and hence interact simply as hard disks. However, for
spheres of different sizes, a small amount of overlap of the 2D
projections of the particles is allowed. Specifically, the distance
of closest approach between the projections of a large particle
of diameter sL and a small particle of diameter sS is given by
the geometric mean of their diameters sLS ¼

ffiffiffiffiffiffiffiffiffiffi
sLsS
p

.
The phase behavior of a mixture of NL large spheres and NS

small spheres confined to a substrate with area A is controlled
by three parameters: the size ratio q = sS/sL, the fraction of
small spheres xS = NS/(NL + NS), and the packing fraction
Z = (NSs

2
S + NLs

2
L)p/4A occupied by the equivalent 2D disks.

Note that since some overlap is allowed between different

species in the 2D projection, the total packing fraction may
exceed 1 in some cases.

3 Infinite pressure phase behavior

Even for simple binary mixtures in 2D, the number of different
ordered structures that can emerge can be quite large and
difficult to enumerate. To obtain an impression of the crystals
we might expect to find, we used a technique specifically
designed to detect the close-packing crystal structures that
would form in the limit of infinite pressure. To this end, we
followed ref. 44 to map out the infinite pressure phase diagram
of non-additive hard disks. Specifically, for a range of size ratios
and compositions, we construct a library of candidate crystal
structures and find – for each combination of q and xS – the
best-packed phase or coexistence of phases. Note that in the
notation of ref. 44, the present case of spheres lying on a flat
plane corresponds to a size-ratio-dependent non-additivity
parameter

DðqÞ ¼ 2
ffiffiffi
q
p

=ð1þ qÞ � 1; (1)

such that the contact distance between a small and a large
sphere can be written as

sLS ¼ ð1þ DÞsL þ sS
2

: (2)

For each size ratio, we use the data from ref. 44 for the best
packed candidate structures, which were obtained from sys-
tematic sampling of unit cells containing up to 12 particles
using Monte Carlo simulations with a variable box shape.46 The
infinite pressure phase diagram is then constructed from these
structures by common-tangent construction,44 and shown in
Fig. 2.

In addition to the trivial monodisperse hexagonal crystal
phases of the large or small particles (HexL and HexS, respec-
tively), we observe a wide variety of binary phases. Since any
pure crystal phase can only occur at a single composition xS, the
densest-packed state at most points in the phase diagram
(white regions) is a coexistence between two crystal phases at
different compositions: the ones appearing directly above and
below the chosen state point. In addition to the expected
monodisperse hexagonal crystals of either large or small parti-
cles, we find a variety of binary crystal phases, many of which
are similar to those found in additive systems.44,45 Note that for
large size ratios, the system becomes almost additive. In the
additive case, it is proven that there exist no denser structures
than a coexistence of HexL and HexS for q \ 0.74.47 Therefore
we expect no additional binary crystal phases to appear at size
ratios above our investigated range 0.3 r q r 0.75.

For each phase in Fig. 2 we also depict the repeating unit
that can be used to construct the crystal phase, which we call a
tile. Unlike a unit cell, tiles can appear in the full crystal
structure in multiple orientations. Interestingly, for certain
coexistence regions, the two coexisting phases consist of tiles
that can mix. One realization of this occurs at low size ratios
(q C 0.3) where the T1 and HexL phases consist of identical

Fig. 1 Schematic depiction of the model. 3D hard spheres lying on a flat
surface (top) can be interpreted as an equivalent 2D system of non-
additive hard disks (bottom). Spheres of the same type behave like
standard hard disks (their projections cannot overlap), while the closest
projected distance between particles of different types sLS is smaller than
the sum of the radii.
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triangles of large particles, but decorated differently by small
particles. In the region where these two phases mix, they can
form a lattice gas where tiles of T1 and HexL are randomly
mixed (dotted region in Fig. 2). Another, much more interesting
situation occurs when two tiles of different shapes can mix.
This occurs in the three striped regions in Fig. 2. For example,
at size ratios just below q = 0.5, the square tile of the S1 phase
has the same edge length as the triangular tile of the HexL

phase, allowing them to mix and form a space-filling square-
triangle tiling,44,45 illustrated in the bottom right of Fig. 2. As
this mixing increases the entropy without lowering the packing
fraction, the expected phase at infinite pressure here is a
random tiling of squares and triangles, which at an ideal

composition xS ¼ ð3�
ffiffiffi
3
p
Þ=4 ’ 0:317 is known to have 12-

fold symmetry on average.48,49 Two closely related tilings, also
illustrated in Fig. 2 are found at lower size ratios. As a result,
one intriguing prediction from Fig. 2 is the possibility of a 12-
fold quasicrystal self-assembling from simple binary mixtures
of colloidal spheres on a substrate.

4 Finite pressure self-assembly

In practice, the infinite-pressure phase behavior is not a reli-
able indication for the phases one might find in a real self-

assembly experiment. Self-assembly in a colloidal system takes
place at finite pressure, where particles can diffuse to reach
their lattice site and vibrate around it. This brings vibrational
entropy contributions to the free energy of different crystal
phases which can fundamentally change the phase behavior.
Moreover, dynamical arrest or competition with other candi-
date phases can prevent the reliable formation of a crystal even
if it is thermodynamically stable.

Hence, for a more realistic look at the self-assembly, we
perform computer simulations at finite pressure for an exten-
sive grid of state points spanning size ratios 0.25 r q r 0.75,
compositions 0.05 r xS r 0.95, and packing fractions 0.7 r
Z r 1.0. In particular, we run event-driven molecular dynamics
(EDMD) simulations50 in the canonical ensemble, i.e. at con-
stant number of particles N, volume V, and temperature T. The
simulation algorithm is an adaptation of the methods described
in ref. 51. We perform the EDMD simulations in the micro-
canonical ensemble, i.e. at constant number of particles N,
volume V, and energy E. Initial configurations are obtained by
starting in a dilute state at the desired composition, and then
performing an EDMD simulation in which the particle dia-
meters grow until the desired packing fraction is reached.

We perform a systematic exploration of parameter space for
systems of N = 2000 particles, varying the composition xS

Fig. 2 Infinite-pressure phase behavior of binary mixtures of spheres on a flat plane, as a function of the size ratio q and fraction of small particles xS.
Phases are labeled following the naming scheme of ref. 44, 45. The white regions correspond to coexistence regions between the phases directly above
and below. The striped and dotted areas indicate regions where these two phases can form random tilings or a lattice gas, respectively. Examples of finite
patches of the three possible random tilings, corresponding to the striped regions in the diagram, are displayed on the right.
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between 0.05 and 0.95 in steps of 0.05 and the size ratio q
between 0.25 and 0.75 in steps of 0.05. The packing fraction Z
ranged from 0.7 to up to 1.0 in steps of 0.01, where we only
considered state points where the growing-particle simulations
were able to rapidly reach the desired packing fraction without
jamming. In other words, we assume that at packing fractions
where jamming occurs during our initial compression, the
system would likely be too densely packed to observe self-
assembly on a reasonable time scale. Each self-assembly simu-

lation is allowed to run for at least 106tMD, with tMD ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
msL2=kBT

p
the simulation time unit, m the mass of a particle

(chosen equal for both species), sL the large-particle diameter,
and kB Boltzmann’s constant. Subsequently, longer simulations

were performed for state points where self-assembly was con-
sidered likely to occur on a reasonable time-scale based on the

final pressure of the first simulations. In particular, we

extended the simulations at state points with a pressure 16 u
Ps2

L/kBT u 33 to a total length of 5 � 106tMD.
Our results are summarized in Fig. 3. The central diagram

reports for each investigated combination of q and xS what
ordered phases were observed. We consider a crystal to have
self-assembled for a given combination of q and xS when we
find significant clusters of the crystal in the simulation box for
at least one packing fraction. Our simulations show that a
number of the best-packed phases we predicted in Fig. 2 indeed
spontaneously self-assemble. Naturally, this includes the trivial

Fig. 3 Self-assembly diagram for binary mixtures of spheres on a flat plane, as a function of the size ratio q and fraction of small particles xS. For each
combination of q and xS, we perform simulations at a range of different packing fractions, and report the observed phases. Points in the phase diagram
contained in a colored region display the self-assembly of the corresponding phase. For each binary crystal phase, we include a representative snapshot
(marked as a large dot of the corresponding phase color) and the scattering pattern that results from a Fourier transform of the positions of the large
spheres. For the QC8 phase, we include two snapshots: one containing a large concentration of S1 squares (top middle) and one containing a large
concentration of S2 squares (top right). HexL and HexS are hexagonal crystals consisting of only large or small spheres, respectively, and are not depicted.
Note that at some state points, we find the self-assembly of two different phases that are either in coexistence or occur at different packing fractions –
hence some of the crystal regions overlap. At state points without an indicated crystal phase, no crystallization was observed at any of the investigated
packing fractions.
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hexagonal crystals of the large and small spheres (HexL and
HexS) that can be found at compositions close to xS = 0 and 1,
respectively. Additionally, we observe large-scale crystallization
into the S1 and S3 phases close to the regions expected from
Fig. 2. We also observe the more complex H2 phase, albeit only
in finite clusters – a closer inspection of the systems where
these form show a very low overall mobility of the system,
suggesting that crystallization of this phase is hindered by slow
dynamics. For sufficiently low q, the system nearly always forms
a hexagonal lattice of large spheres, with the small spheres
interspersed between them (labeled HexS

+). Depending on the
composition, this may look similar to the T1 phase (as depicted
in the sample snapshot in Fig. 3), but the number of small
spheres per triangular cavity in the lattice of large spheres
appears to continuously depend on the composition xS (see
ESI†). For xS o 2/3, this simply means that a random selection
of the triangular holes are empty, resulting in a lattice gas or
interstitial solid solution.44,45 For larger xS, progressively more
small particles are included between the large spheres, but we
observe no clear structural transition between these regimes.
Hence, we choose to collectively indicate this region as HexS

+.
Most intriguingly, in addition to these periodic phases, we

also observe the self-assembly of two distinct quasicrystals, both
at size ratios between q = 0.45 and q = 0.55. The dodecagonal
quasicrystal (QC12) that appears at low fractions of small
spheres is indeed the square-triangle tiling48,49 expected from
the infinite-pressure diagram. It is made of regular squares and
triangles (S1 and HexL tiles). This quasicrystal is analogous to a
number of quasicrystals observed in soft matter systems, includ-
ing patchy particles with five attractive patches,32 hard disks
with a square-shoulder repulsion,40,41 binary mixtures of
nanoparticles,25 block copolymers,26,27 and soft repulsive
colloids.33 Additionally, various 3D systems have been shown
to form quasicrystals consisting of layers of a square-triangle
tiling.42,52,53 The second quasicrystal (QC8) has octagonal sym-
metry, and consists of a mixture of three tiles: the isosceles
triangles that appear in the H1 phase, the squares from the S1
lattice, and the larger squares from the S2 lattice.

For the quasicrystals, local crystalline order is typically hard
to see by eye, and we instead rely on the symmetry of the
scattering pattern for our classification. In particular, for each
simulation, we measured the two-dimensional structure factor
of the final configuration using

SðkÞ ¼ 1

N

XN

n¼1
expðik � rnÞ

�����

�����

2

: (3)

where k is a wave vector commensurate with the periodic simulation
box, and rn is the position of particle n. We plot the resulting
scattering pattern S(k) in two dimensions via a logarithmic color
scale. The resulting scattering patterns for selected state points are
included in Fig. 3. Note that in the ESI† Data, we include a full
catalogue of all final configurations and their diffraction patterns.

5 Quasicrystal analysis

In order to examine the QC12 and QC8 quasiperiodic structures in
more detail, we perform additional simulations of N = 10 000
particles in the regime where they are found to self-assemble. In
the final configurations, we reconstruct the underlying tiling from
the bond network (see ESI†) and use it to analyse the quasicrystals.

In Fig. 4, we show portions of the final state of three
simulated mixtures of 104 particles, at different state points:
one corresponding to the QC12 phase and two corresponding
to the QC8 phase. Note that the two QC8 snapshots consist
primarily of the same three tiles, but mixed in different con-
centrations. The first is dominated by small squares, while the
second, which contains more small particles, predominantly
contains large squares. Nonetheless, both systems possess
global octagonal symmetry as indicated by the diffraction
patterns. The analysis of the tile orientations shows that in
all three quasicrystal phases, tiles of the same shape occur in all
possible orientations roughly with the same frequency, which is
a common feature of random-tiling quasicrystals.49

All three quasicrystal configurations shown in Fig. 4 also
contain local patches of periodic structures, such as square or
hexagonal regions, which may compete with the quasicrystal
phase in stability. However, we never observe long-term growth
of these patches. Instead, over the course of the corresponding
simulations, such patches are regularly formed and destroyed
as defects or fluid regions diffuse through the system.

For a defect-free dodecagonal square-triangle quasicrystal, it
is well-known that half of the total system area should occupied
by squares, and the other half by triangles.49,54 In other words,
s = t = 1/2, where s is the area fraction occupied by squares, and
t is the area fraction occupied by triangles. Ignoring the defects
that inevitably arise during our self-assembly process, the QC12
configuration shown in Fig. 4 corresponds to s = 0.491 and
t = 0.509. Given both the presence of defects and the periodic
boundary conditions of our finite system, this is fully consistent
with random quasicrystalline order.

For the QC8 phase, it is less obvious what tile concentrations
we should expect in a perfect random quasicrystal. As illu-
strated in the center and right panels of Fig. 4, the relative
concentrations of the different tiles we find in the self-
assembled QC8 phase vary drastically as a function of the
fraction of small spheres in the system. Since the S2 squares
contain 4 small particles each, while the S1 squares only
contain a single small sphere, higher compositions xS favor a
larger concentration of S2 squares. For high xS, the QC8 tiling
consists almost purely of large S2 squares and H1 triangles,
with the triangles joined in pairs that form a thin rhombus. In
this limit, the tiling can be seen as a mixture of just two types of
tiles – square and rhombic – that are identical to the tiles that
form e.g. the Ammann-Beenker55,56 and Watanabe-Ito-Soma57

octagonal aperiodic tilings. The same tiling – with different
decorations of the tiles with particles – was previously observed
in simulations of soft colloids,33 particles with an oscillating
interaction potential,34,36 and patchy particles.35 However, to
our knowledge, no octagonal quasicrystals have yet been observed to
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spontaneously self-assemble in soft-matter experiments. In contrast,
at low xS the quasicrystal approaches a tiling of only H1 triangles and
small S1 squares. Interestingly, a closely related tiling where the
isosceles triangles are slightly deformed (breaking the 8-fold sym-
metry), was recently conjectured to be the densest-packed structure
for a ternary mixture of hard disks.58 Our findings suggest that a new
QC8 quasicrystal made of these two tiles – isosceles triangles and
small squares – should exist, along with a whole family of three-tile
QC8 structures at different compositions. In this respect, our results
exhibit completely new types of aperiodic octagonal tilings, which, to
the best of our knowledge, have not yet been described in the
literature.

It is interesting to consider under what conditions the QC8 tiling
observed here can exhibit true 8-fold symmetry. Counting different
orientations, this tiling consists of 12 different tiles: 2 orientations of
large squares, 2 orientations of small squares, and 8 differently
oriented isosceles triangles. In general, quasicrystal vertices can be
seen as a projection of a high-dimensional lattice into a lower
dimensional space.54 As outlined in ref. 49, this representation can
aid in determining the constraints on the relative concentrations of
different tiles. As described in the ESI,† for a QC8 with octagonal
symmetry we find the following constraint for the partial area
fractions S, s, and t, associated with the large S2 squares, small
S1 squares, and the triangles that make up H1, respectively:

Sþ ð3þ 2
ffiffiffi
2
p
Þs� t ¼ 0: (4)

Additionally, since the entire area must be occupied by tiles,
these area fractions must satisfy S + s + t = 1. Since we know
the composition of each tile in our binary mixture, it is

straightforward to rewrite these constraints in terms of the
fraction of small particles xS, yielding:

S ¼
2 4þ 3

ffiffiffi
2
p� �

xS � 4
ffiffiffi
2
p
� 5

6� 4xS
(5)

s ¼
� 4þ

ffiffiffi
2
p� �

xS þ 4

6� 4xS
(6)

t ¼
� 8þ 5

ffiffiffi
2
p� �

xS þ 4
ffiffiffi
2
p
þ 7

6� 4xS
(7)

In Fig. 5, we plot this prediction together with the measured
tile concentrations in our self-assembled configurations of
10 000 particles. Note that in the analysis of the simulation
data, we consider only the portion of the system covered by the
three valid types of tiles and omit all defects. We find that the
observed tile concentrations are essentially independent of size
ratio and packing fractions within the investigated regime.
Considering the fact that the analyzed configurations were
the result of spontaneous self-assembly, and hence contain
significant amounts of defects, the agreement is excellent,
demonstrating that the system indeed favors tile compositions
that correspond to an eight-fold quasicrystalline symmetry.

Finally, in order to quantitatively assess the quality of the
quasiperiodic order, we measure the perpendicular strain (also
often called phason strain59 ‡) of the self-assembled structures.
To this end, we associate each vertex in the tilings obtained at

Fig. 4 Self-assembled dodecagonal and octagonal random-tiling quasicrystals in mixtures of 104 spheres on a flat plane, at state points (left QC12)
q = 0.45, xS = 0.35, Z = 0.84, (middle QC8) q = 0.5, xS = 0.675, Z = 0.86 and (right QC8) q = 0.55, xS = 0.725, Z = 0.84. The underlying tilings are highlighted
and tiles colored according to shape and orientation. The insets show the diffraction patterns, signaling the global 12 or 8-fold symmetries. Tile
distributions (bottom) show the number of tile in each orientation in the tiling. The grey rightmost bar labeled denotes all defects.

‡ Note that there has been some debate in the literature with respect to the use of
the word ‘phason’ when describing quasicrystal properties.59,60
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the end of the simulations to points in 4D spaces; a procedure
known as lifting.61,62 Dodecagonal and octagonal tilings are
lifted to two different 4D spaces whose basis vectors are
reported in the ESI.† This assigns to each particle a position
in the 4D superlattice associated with the 2D quasicrystal. This
position can then be projected either back to its 2D parallel-
space position r8i or its 2D perpendicular-space position r>i . The
parallel and perpendicular sub-spaces are orthogonal to each
other, with the parallel subspace corresponding to the real
space of our original quasicrystal lattice. The perpendicular strain is

then measured from the relation between points separation in these
two projections, following ref. 63. In particular, we examine the
behavior of the perpendicular displacement d> as a function of d8,
where for each pair of particles i and j, d8/>

ij 6 8r8/>
i � r8/>

j 8. For
large distances in parallel space, the perpendicular displacement
increases linearly with the separation in parallel space and its slope

is a direct measure of the average perpendicular strain x ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x12 þ x22

p
with x1,2 the eigenvalues of the full 2 � 2 perpendicular

strain matrix. For a quasicrystal with long range quasiperiodic
order, the perpendicular strain is zero. Defective quasicrystals
resulting from self-assembly however typically exhibit some residual
perpendicular strain, while periodic phases have an intrinsic non-
zero perpendicular strain. For all three configurations shown in
Fig. 4, we show the behavior of the perpendicular displacement field
in Fig. 6, and compare it to the perpendicular displacement of a
reference periodic approximant structure (see ESI†). Clearly, the
perpendicular strain in the self-assembled quasicrystals is non-zero,
but significantly lower than that in the periodic approximants. In
practice, we observe that the value of the measured average
perpendicular strains depend significantly on the state point and
fitting range, and is sensitive to the defects in our reconstructed
tiling. Typically, our self-assembled structures contain long disloca-
tion defects (see ESI†), which separate regions with significantly
different perpendicular displacements. This may be the result of our
self-assembly simulations taking place at relatively high pressures.
Rather than forming via a single nucleation event, self-assembly of
our quasicrystal phases tends to occur via the rapid formation of
quasicrystal tiles throughout the simulation box, followed by a
much slower relaxation that rearranges these tiles and allows
different domains to coalesce.64 This slow nature of this process
means that it is difficult to obtain high-quality quasicrystals. We
note that other simulation studies have found much lower
perpendicular strain in quasicrystals,63,65 but typically by consider-
ing clusters of quasicrystal in direct coexistence with a fluid, which
likely allows for significantly faster relaxation.

6 Geometrical arguments for
quasicrystal stability

The emergence of the QC12 phase in our system can clearly be
understood from its stability in the infinite-pressure limit.

Fig. 5 Area fractions of the three different tiles in the QC8 tiling, S, s, and
t, corresponding to the large squares, small squares, and triangles, respec-
tively. The lines indicate the theoretical prediction on the assumption of a
maximally symmetric and globally uniform eight-fold tiling with no
defects. Points correspond to simulation results at size ratios q = 0.5 (full
symbols) and q = 0.55 (open symbols). Different colors of points corre-
spond to different packing fractions, with 0.855 r Zr 0.87 for q = 0.5 and
0.835 r Z r 0.85 for q = 0.55. For the simulation data, we only consider
the area covered by non-defect tiles when calculating the composition xS

and the tile area fractions. At the top, three patches illustrate the evolution
of the tilings with the composition. From left to right: primarily small
squares, mixture of small and large squares and primarily large squares.

Fig. 6 The average perpendicular displacement d> as a function of the parallel-space displacement d8 for the three self-assembled quasicrystal
configurations in Fig. 4. The red lines are linear fits to the large-distance behavior, with the slope related to the average perpendicular strain. For
comparison, we also plot the corresponding line for a periodic approximant for each system (dotted black lines).
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However, this is not the case for the QC8 phase: in the infinite-
pressure limit, we find only periodic phases in the regime
where QC8 was found to self-assemble. Hence, an intriguing
question remains – is there a way to understand why these
octagonal quasicrystals form? As stated, the three tiles that
comprise the tiling are the small S1 square, the large S2 square,
and the H1 triangle. In order to form the observed tilings, these
shapes must have compatible edge lengths on their shared
edges. In particular, the shared edges in the observed tilings are
between the large square and the long edge of the H1 triangle,
and the small square and the short edge of the H1 triangle. As
shown in Fig. 7, the long edge of the triangle matches up
almost exactly with the edge of a large square for size ratios
between 0.5 and 0.6, in the region where we observe the self-
assembly of this phase. Similarly, the short edge of the triangle
and the small square match exactly for size ratios below

q ¼ 2�
ffiffiffi
2
p
’ 0:59. The fact that a QC8 with mainly small

squares is not observed at size ratios below q = 0.45 can be
understood from a packing argument. As shown in the inset of
Fig. 7, when q is decreased below 1/2, the packing fraction of
the triangle tile, which makes up the majority of the QC8 phase,
decreases rapidly and drops below that of competing phases,
such as the simple hexagonal lattice.

It is interesting to note that in the case of additive hard disks
(or equivalently, spheres whose centers are constrained to a flat
plane), we can still observe a regime where the three QC8 tiles
match up geometrically, but in this regime their packing
fraction is systematically lower than that of a hexagonal lattice
(see ESI†). Consistently, in a self-assembly scan of additive hard
disks in this regime we observed no quasicrystal self-assembly.
Taken together, these observations suggest that the quasicrys-
tal self-assembly requires both densely packed tiles and geo-
metric edge-matching between them.

7 Discussion

In conclusion, we have explored the self-assembled phases that
appear in binary mixtures of hard spheres on a flat plane. In
addition to a variety of periodic crystals, we found that this very
simple system is capable of forming two different quasicrystal
structures: one dodecagonal, commonly observed in soft matter
systems, and one octagonal which, to our knowledge, is
described here for the first time. The octagonal quasicrystal
consists of three distinct tiles, whose relative concentration can
be continuously tuned by manipulating the number fraction of
small spheres in the mixture, while maintaining the octagonal
symmetry. Both observed quasicrystals self-assemble rapidly
and reliably over a significant region of parameter space. The
tiles proportions in the self-assembled octagonal quasicrystals
are in remarkable agreement with theoretical predictions and
their stability can be readily understood from geometrical
arguments. We note that proving whether these quasicrystal
phases are truly thermodynamically stable will require careful
free-energy calculations, which we aim to explore in a
future study.

In contrast to nearly all other numerical models that have
been shown to form 2D quasicrystals, hard spheres on a flat
plane can be realized experimentally on the colloidal scale, to
the point of quantitative agreement between the experimental
hard spheres and their ideal counterparts.10,43 The simplicity of
the model allows us to identify minimal ingredients for quasi-
crystal self-assembly: dense tiles with matching edges and
entropy alone are sufficient to induce the formation of quasi-
crystals of different symmetries. Since many colloidal particles
include a repulsive spherical core, these simple ingredients
might explain quasicrystal formation in a broad range of soft
matter systems, beyond hard-sphere colloids alone. This iden-
tifies hard spheres on a plane as a perfect candidate system for
tackling fundamental open questions on quasicrystals, such as
the dynamics of their nucleation, growth and annealing, the

Fig. 7 Evolution of the possible long (top) and short (bottom) edge
lengths as a function of size ratio. Matching regions are highlighted with
a darker background. For size ratios between 0.5 and 0.6, long edges of
the triangle and large square tiles on one hand, and short edges of triangle
and small square tiles on the other hand match, thus allowing for the tiles
that comprise the octagonal tiling to mix. The inset of the bottom graph
displays the packing fraction of the three individual tiles, along with that of
a coexistence of hexagonal packings of large and small particles. Self-
assembly of QC8 is indeed observed for these values of the size ratio
where edge lengths match and tiles pack better than Hex phases.
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role of their unique phason excitations or the dynamics of
defects, both theoretically and in colloidal experiments on the
micron scale.

Data availability

The data associated with Fig. 3, including all snapshots and
scattering patterns, is available as a data package at: https://doi.
org/10.5281/zenodo.7712001. To help view the data, HTML
pages listing the results per size ratio are included.
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