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ABSTRACT
In the study of crystal nucleation via computer simulations, hard spheres are arguably the most extensively explored model system. Nonethe-
less, even in this simple model system, the complex thermodynamics of crystal nuclei can sometimes give rise to counterintuitive results, such
as the recent observation that the pressure inside a critical nucleus is lower than that of the surrounding fluid, seemingly clashing with the
strictly positive Young–Laplace pressure we would expect in liquid droplets. Here, we re-derive many of the founding equations associated
with crystal nucleation and use the hard-sphere model to demonstrate how they give rise to this negative pressure difference. We exploit
the fact that, in the canonical ensemble, a nucleus can be in a (meta)stable equilibrium with the fluid and measure the surface stress for
both flat and curved interfaces. Additionally, we explain the effect of defects on the chemical potential inside the crystal nucleus. Finally,
we present a simple, fitted thermodynamic model to capture the properties of the nucleus, including the work required to form critical
nuclei.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0226862

I. INTRODUCTION

Hard spheres play a central role in our understanding of phase
behavior, having been the focus of studies ranging from phase
boundaries1–3 to defects4–7 to glasses8–11 to crystal nucleation.12–15 In
particular, the nucleation behavior of hard spheres has drawn signif-
icant attention (see, e.g., Refs. 16–21) due to the alarming mismatch
between computationally predicted nucleation rates and experimen-
tal observations.12,22 While various solutions have been proposed
to address this discrepancy (see, e.g., Refs. 22–26), none have been
decisively proven.

Over the last few years, a number of simulation studies have
taken a new route to access properties associated with crystal
nucleation (see, e.g., Refs. 27–32). Instead of focusing on the nucle-
ation process, they have focused on equilibrium crystal nuclei in
(meta)stable coexistence with their surrounding fluid. Specifically,

in the canonical ensemble, spherical crystal nuclei are stable for
a range of system sizes and densities. By focusing on equilibrium
nuclei, equilibrium statistical physics is guaranteed to hold, facilitat-
ing careful studies of the equilibrium structure and thermodynamic
properties of crystal nuclei. A recent intriguing observation from
one of these studies32 on pseudo-hard spheres showed that, counter-
intuitively, the pressure inside the crystal nucleus was lower than in
the surrounding fluid. This clashes with our usual expectation of a
Young–Laplace pressure, which raises the pressure inside a liquid
droplet with respect to the surrounding medium. Pseudo-hard
spheres are not the only case where such an atypical pressure dif-
ference was seen; it was also seen in, e.g., hard spheres with short
range-attractions33 and binary hard-sphere mixtures,34 and good
theoretical foundations exist for explaining it.34,35 In particular,
Mullins derived expressions for the pressure inside a crystal
nucleus that is strained by its contact with the surrounding
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fluid.35 Additionally, Montero de Hijes et al. derived a variation
of the Young–Laplace equation linking the (positive) interfacial
free energy to the difference in pressure between the fluid and an
equilibrium bulk crystal at the same chemical potential.32

In this paper, we re-derive many of the founding equations
associated with crystal nucleation34,35 and apply them to one of the
most fundamental model systems: monodisperse hard spheres. This
paper is organized as follows: in Sec. II, we explore the pressure
inside the crystal nucleus and show the link between the pictures
of Mullins35 and Montero de Hijes et al.;32 in Sec. III, we measure
the surface stress for both flat and curved interfaces; in Sec. IV, we
discuss the chemical potential inside the crystal phase; in Sec. V,
we propose a fitted thermodynamic model for the properties of the
spherical fluid–crystal interface; and in Sec. VI, we determine the
work required to form critical nuclei.

II. PRESSURE INSIDE A CRYSTAL NUCLEUS
An intriguing observation made in several recent papers32,36 is

that for pseudo-hard spheres, the pressure inside the crystal nucleus
is found to be lower than that of the surrounding fluid. At first
glance, this contradicts our intuitive understanding of the pressure
difference arising from the Young–Laplace equation, which governs
the behavior of a liquid droplet in a gas. For such a droplet, the
internal pressure is always higher than the external one, with the
difference proportional to the interfacial free energy. In the case of
a crystal surrounded by a fluid, however, the situation is more com-
plex: the surface free energy is not only dependent on the amount
of surface but also on the lattice spacing of the crystal. As such, the
unexpectedly lower pressure of the crystal of pseudo-hard spheres
can be attributed to the properties of the crystal–fluid interface.

In this section, we first revisit the theory of spherical crystal
nuclei34,35 and then measure the pressure inside and outside of a
spherical nucleus of perfectly hard spheres. Throughout this work,
we focus on large nuclei for which the surface area is small rela-
tive to the volume. In such cases, the bulk of the nucleus can be
treated as a homogeneous phase, and any interfacial fluctuations can
be absorbed into the surface free energy.

A. Theory
1. Imposing thermodynamic equilibrium

Let us start by briefly revisiting the theory of fluid–crystal
phase coexistence.34,35 Consider the case of a crystal nucleus inside a
parent fluid phase. We are interested in the case where the nucleus
is in equilibrium with the fluid, which can be either a stable,
metastable, or unstable equilibrium depending on the conditions of
the system. In the canonical ensemble, it is possible for a nucleus to
be in a (meta)stable equilibrium with the fluid, a feature that we will
exploit in our simulations later in this work. In the grand-canonical
and isobaric–isothermal (Gibbs) ensembles, the same configura-
tion would correspond to a critical nucleus, i.e., a saddle-point
in the free-energy landscape.15,37 The grand-canonical ensemble is
more convenient for the theoretical treatment of systems with inter-
faces, and hence we will use it for the following derivation. In
the supplementary material, we include the same derivation in the
canonical ensemble.

For simplicity, we consider a spherical crystal nucleus (see
Fig. 1). In practice, the location of an interface between two

FIG. 1. Schematic representation of a spherical crystal nucleus inside a parent fluid
phase. Here, R indicates the radius of the dividing surface, and v indicates the unit
cell volume of the crystal. Notice that the nucleus is depicted with a vacancy.

coexisting phases is not unambiguously defined. Nonetheless, fol-
lowing Gibbs,38 it is common to define a dividing surface between
the two phases, which has zero thickness but may have a number
of particles associated with it. Using this interface, the volume of
the system V can be divided perfectly into the fluid volume and the
crystal volume (V = VF + VX). For a spherical nucleus, the crystal
volume is given by VX = 4πR3/3, with R the radius of the nucleus
for a given choice of dividing surface. The total number of particles
is then given by

N = NF +NX +NS = ρFVF + ρXVX +NS, (1)

with ρF(X) the number density of the fluid (crystal) phase far from the
interface. Note that, depending on the choice of dividing surface, the
number of interfacial particles NS can be positive, negative, or zero.
The choice of dividing surface that corresponds to NS = 0 is called
the equimolar surface.

In the grand-canonical ensemble, the total grand potential Ωtot
of this system is given by

Ωtot(μ, V , T; VX , v) = ΩF(μ, VF , T) +ΩX(μ, VX , T, v)
+ΩS(μ, R, T, v). (2)

Importantly, our grand potential Ωtot depends on five variables.
The first three are the thermodynamic variables defining the state of
the system, namely the chemical potential μ, volume V , and tem-
perature T, which define the state point at which we examine our
system. They can be regarded as external variables. Note that, by
necessity, T and μ are homogeneous throughout the system. The
last two parameters determining Ωtot are internal variables of the
system, namely the nucleus volume VX and the crystal unit cell
volume v, which are not fixed externally. The presence of the vari-
able v accounts for the possibility of configurations where the crystal
phase is strained (i.e., compressed or stretched) with respect to the
equilibrium lattice spacing of a bulk crystal at chemical potential μ.
For simplicity, here we assume the crystal to have cubic symmetry
and only consider strains that isotropically compress or decompress
the crystal, such that the unit cell retains its cubic shape. Note that
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crystals with equal v but different chemical potential μ in practice
correspond to crystals with the same lattice spacing but different
concentrations of vacancies and interstitials. We will return to this
topic in Sec. IV. Since we do not consider any variation in temper-
ature throughout this paper, we omit the T dependence in all the
following equations.

For the critical nucleus, the fact that we are at a saddle point
in the free-energy landscape implies that the free-energy landscape
is locally flat with respect to the two internal degrees of freedom.
Specifically,

(∂Ωtot

∂VX
)

μ,V ,v
= 0, (3)

(∂Ωtot

∂v
)

μ,V ,VX

= 0, (4)

where the subscripts denote variables kept fixed during the deriva-
tion. Notice that both these derivatives implicitly result in a change
in the number of lattice sites M, as v = VX/M.

In practice, it is helpful to define the interfacial free energy γ via

ΩS(μ, R, v) = γ(μ, R, v)A, (5)

with A = 4πR2 the surface area of the crystal nucleus. The constraints
from Eqs. (3) and (4) result in

PF + ωX +
2γ
R
+ ( ∂γ

∂R
)

μ,v
= 0, (6)

ωX + PX −
3v
R
( ∂γ
∂v
)

μ,R
= 0. (7)

Here, PF and PX are, respectively, the pressures of the fluid and crys-
tal phases far from the interface, and ωX = ΩX/VX represents the
cost of increasing the size of the crystal nucleus while keeping the
lattice spacing fixed. We will discuss the distinction between PX and
ωX in detail in Subsection II A 2. Subtracting these two equations
yields

PX − PF =
2γ
R
+ ( ∂γ

∂R
)

μ,v
+ 3v

R
( ∂γ
∂v
)

μ,R
, (8)

= 2 f
R
+ ( ∂γ

∂R
)

μ,v
, (9)

where we have used the spherically averaged surface stress f defined
as

f ≡ γ + 3v
2
( ∂γ
∂v
)

μ,R
. (10)

Note that for a specific crystal facet, the surface stress is a tensor fij
given by the Shuttleworth equation39,40

fij = γδij +
∂γ
∂ϵij

, (11)

where ϵij the strain tensor associated with tangential deformations
of the interface. Since we have assumed here that the interfacial free
energy of our spherical nucleus can be described by an averaged γ,
the surface stress similarly reduces to a single scalar quantity.

Importantly, the pressure difference cannot depend on the
choice of dividing surface, so we are free to choose any dividing
surface. A common and convenient choice is the so-called surface
of tension, which satisfies

( ∂γ
∂R
)

μ,v
∣
R=R∗
= 0, (12)

where the asterisk indicates variables evaluated under the condition
that R is chosen as the surface of tension. This results in the pressure
difference

PX − PF =
2γ∗

R∗
+ 3v

R∗
(∂γ∗

∂v
)

μ,R
= 2 f ∗

R∗
. (13)

This equation tells us that the pressure inside the crystal nucleus
is determined by the surface stress associated with the interface
between the two phases. The two terms in the surface stress f arise
from the two effects that compressing the crystal nucleus has on
the total surface free energy ΩS. First, similar to the gas–liquid case,
compressing the nucleus results in a smaller surface area, reducing
the interfacial free energy. Second, compressing a crystal nucleus
changes its lattice spacing, which in turn may affect the interfacial
free energy γ. Note that the latter effect can, in principle, be positive
or negative. For the simpler gas–liquid case, the latter term—and
the derivative (∂γ∗/∂v)μ,R in particular—is always zero because the
density of the liquid droplet cannot change when μ is kept fixed.
Consequently, the standard Young–Laplace equation is recovered:
Pliquid − Pgas = 2γ∗/R∗.

2. Grand potential density ωX vs the pressure
P X for a crystal

An important factor in the distinction between a fluid and a
crystal is the relationship between the pressure and the grand poten-
tial density. For a fluid, in the grand-canonical ensemble, we can
write the grand potential simply as ΩF(μ, VF), and the pressure can
be obtained by taking the partial derivative with respect to VF while
keeping μ constant,

PF = −(
∂ΩF

∂VF
)

μ
. (14)

Moreover, for any sufficiently large homogeneous system, we
know that the grand potential is extensive meaning that we can write

ΩF(μ, VF) = VFωF(μ), (15)

where we have introduced the grand potential density ωF of the fluid.
Combining Eqs. (14) and (15), we trivially find

ΩF = −PFVF. (16)
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For a crystal, which can be under strain, the situation becomes
more complicated. In the case where the only allowed strain is
isotropic (as we assume in this paper), the grand potential of the
crystal can be written as ΩX(μ, VX , v) and is hence dependent
on the unit cell volume v = VX/M, with M the number of lattice
sites. Along the same lines as for the fluid, we again can write the
pressure as

PX = −(
∂ΩX

∂VX
)

μ,M
. (17)

Note that here we additionally keep the number of lattice sites M
fixed. This is the pressure one would measure in standard equation-
of-state calculations via computer simulations of bulk crystals.

Interestingly, for the crystal, there is another derivative we
could take that looks very strongly related. In particular, we could
take the derivative of ΩX with respect to the volume while keeping
the lattice spacing fixed: (∂ΩX/∂VX)μ,v . Note that while this change
may look very small, the physics of this variation is quite different
from the one in Eq. (17). In particular, while previously we were
deforming the crystal during our compression or extension of the
system, we now are simply changing the amount of crystal in our
system, scaling the number of lattice sites, volume, and particles all
proportionally to each other. For this transformation, we once again
recover extensivity for a large enough system. In other words,

ΩX(μ, VX , v) = VXωX(μ, v). (18)

From this, we obtain

(∂ΩX

∂VX
)

μ,v
= ωX(μ, v). (19)

However, given the differences between the derivatives in Eqs. (17)
and (19), this means that ΩX ≠ −PXVX in general.

To see the relationship between PX and ωX , we simply use the
chain rule,

PX = −(
∂ΩX

∂VX
)

μ,M
, (20)

= −(∂ΩX

∂VX
)

μ,v
− (∂ΩX

∂v
)

μ,VX

( ∂v

∂VX
)

μ,M
, (21)

= −ωX(μ, v) − (∂ΩX

∂v
)

μ,VX

1
M

. (22)

In the special case of an equilibrium crystal, where the lattice spac-
ing v has been optimized to correspond to the minimum in the
free energy ΩX , the last term in this expression vanishes. Hence,
Peq

X = −ωX , and we once again recover ΩX = −Peq
X VX .

However, if the crystal is under any strain, then by definition
the derivative in the second term in Eq. (22) will be non-zero and
hence ωX ≠ −PX (and ΩX ≠ −PXVX) in general. Since our nucleus
is under strain due to the presence of an interface, ωX cannot be
trivially identified with the mechanical pressure in the interior of the

nucleus. Instead, it is a grand potential density, which we can regard
as a perturbation of the grand potential of an unstrained crystal at
the same chemical potential. To this end, we make the approxima-
tion that the crystal phase inside the nucleus is not strongly distorted
with respect to its equilibrium lattice spacing veq(μ) and expand
around equilibrium, leading to

ωX(μ, v) = ωX(μ, veq) + (∂ωX

∂v
)

μ
∣
v=veq

(v − veq) + O((v − veq)2),

(23)

= −Peq
X (μ) + O((v − veq)2). (24)

Here, we have used the fact that in equilibrium, the
grand potential is minimized with respect to v and equal to
ΩX = −Peq

X (μ)VX . In other words, to linear order in the strain on
the crystal, ωX is given by (minus) the pressure of the unstrained
equilibrium crystal at the chemical potential of the fluid. This
quantity Peq

X corresponds exactly to what is referred to as the ther-
modynamical pressure in Ref. 32. Note, however, that Peq

X is not a
quantity that can be directly measured.

Combining Eq. (24) with Eqs. (6) and (7), we get the relation

Peq
X (μ) − PF =

2γ
R
+ ( ∂γ

∂R
)

μ,v
. (25)

Note that at the surface of tension, the last term in Eq. (25) can again
be eliminated,

Peq
X (μ) − PF =

2γ∗

R∗
. (26)

This recovers the Young–Laplace-like equation presented in Ref. 32,
where the authors used a framework that uses as a reference for the
crystal phase inside the nucleus a bulk equilibrium crystal phase with
the same chemical potential as the fluid. In contrast, in this work we
consider the actual crystal phase inside the nucleus.

In the remainder of this section, we examine the pressure
difference directly in simulations of equilibrium crystal nuclei of
hard spheres.

B. Methods
In order to examine stable configurations containing a spher-

ical nucleus, we simulate our systems in the NVT ensemble. In
this ensemble, the free-energy landscape can exhibit a local mini-
mum corresponding to a spherical nucleus, as sketched in Fig. 2(b).
This free-energy minimum corresponds (via a Legendre transform)
to a saddle point (i.e., a critical nucleus) in the free-energy land-
scape in both the NPT and μVT ensembles29,41–43 and is the saddle
point discussed in Sec. II A. We use event-driven molecular dynam-
ics (EDMD) simulations44,45 to simulate systems of perfectly hard
spheres with diameter σ and mass m. We do not make use of a ther-
mostat, and hence the total energy of the system (which consists only
of the kinetic energy) is fixed. This in turn also fixes the temperature

T. The time unit of our simulations is given by τ =
√

βmσ2, where
β = 1/kBT, with kB the Boltzmann constant.

As initial configurations for our system, we use two differ-
ent approaches. First, we use configurations from the study in

J. Chem. Phys. 161, 184501 (2024); doi: 10.1063/5.0226862 161, 184501-4

Published under an exclusive license by AIP Publishing

 06 D
ecem

ber 2024 10:20:07

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

FIG. 2. (a) Snapshot of nucleus A after the overlaps are removed. Particles classified as crystal are depicted in red, whereas particles classified as fluid are depicted in blue
and at a quarter of their actual size to make the crystal nucleus visible. (b) Sketch of the Helmholtz free energy of the NVT ensemble and the Gibbs free energy of the NPT
ensemble as a function of nucleus size. Note that the stable nucleus in the NVT ensemble corresponds to a critical nucleus in the NPT ensemble. For the μVT ensemble,
the free-energy difference is the same as in the NPT ensemble (not shown). (c) Nucleus size during an EDMD simulation in the NVT ensemble of nucleus A at three
different global densities. (d) Nucleus size during 30 MC simulations in the NPT ensemble, all started from an equilibrated configuration of nucleus A (ρglobalσ

3
= 0.9691,

βPglobalσ
3
= 12.5945). Note that, in terms of the long-time diffusion time of the fluid particles, the NVT EDMD simulations of (c) ran ∼50 times longer than the NPT MC

simulations of (d).

Refs. 31 and 32. These are equilibrated nuclei of pseudo-hard spheres
(PHS), i.e., spheres interacting via a nearly hard pair potential.46

Specifically, we make use of the configurations labeled IV and V in
Refs. 31 and 32, which we here label A and B, respectively. We turn
these configurations into pure hard-sphere configurations by replac-
ing the particles with hard spheres with a diameter slightly smaller
than σ, such that there are no overlaps, and then rapidly growing
these particles back to the full diameter σ using the implementation
of the Lubachevsky–Stillinger approach47 of Ref. 45. Note that these
growth simulations are extremely short (taking less than 0.05τ), such
that the particles do not rearrange significantly and the overall size
of the nucleus does not change significantly during this step. As a
second source of initial configurations, we generate new coexisting
states by initializing systems of different numbers of particles N and
volumes V in a fully crystalline state, surrounded by a thin layer of
empty space on all sides. After equilibration, this results in a spheri-
cal nucleus whose size is determined by the initial N and V . Overall,
this results in a set of initial configurations (labeled C throughout
this paper) with sizes spanning from N = 2 × 104 to 3 × 105 parti-
cles, and with nuclei typically covering on the order of 15% of the
box volume.

In the EDMD simulations, the global pressure48 can be easily
calculated from the momentum transfer during collisions,49 i.e.,

βPkl/ρ = 1 + ∑collisions Πkl
ij

NΔt
, (27)

where Pkl indicates the kl-component of the pressure tensor,
ρ = N/V is the number density, ∑collisions indicates the sum over
all collisions during a time interval Δt, and Πkl

ij indicates the

kl-component of the momentum transfer during a collision between
particles i and j. For monodisperse hard spheres, Πkl

ij = −mvk
ijr

l
ij.

Here, rl
ij indicates the lth component of the center-to-center distance

vector rij = rj − ri at collision, and vk
ij indicates the kth component of

vij = vj − vi, with vi(j) the velocity of particle i (j) before collision.
Note that in (hydrostatic) equilibrium the pressure tensor will aver-
age to Pij = Pδij, with P the total pressure and δij the Kronecker delta.
Consequently, P is obtained by taking one-third of the trace of the
pressure tensor.

In addition to the global pressure, we are also interested in mea-
suring the pressure profile as a function of the radial distance to the
center of the nucleus. To this end, we divide the system into spheri-
cal shells around the center-of-mass of the nucleus and keep track of
the momentum transfer inside each shell, as well as the local density.
For the radial profile of the total pressure, one can make the reason-
able approximation that, for each collision, half of the momentum
transfer is added to the shell in which ri lies and half to the shell
in which rj lies. This approximation, however, is not valid for the
components of the momentum transfer normal and tangential to the
crystal–fluid interface (we have need for them in Sec. III). Hence, to
obtain the total, normal, and tangential pressure profiles, we instead
use the method described in Refs. 50 and 51. In order to explain
this method, consider a collision between particles i and j and define
the straight path from ri to rj as ℓ(λ) = ri + λrij with 0 ≤ λ ≤ 1. The
method then assigns a fraction of the momentum transferred during
this collision to each of the shells traversed by ℓ based on the part
of ℓ inside the shell. We indicate the part of ℓ inside a certain shell
by ℓa ≡ ℓ(λa) and ℓb ≡ ℓ(λb), which both mark either an intersec-
tion with the shell boundary or a terminal point of ℓ in the shell (i.e.,
λa = 0 or λb = 1). The total, normal, and tangential contributions of
the momentum transfer of the collision to that shell are then given
by
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[Πij]ba = −(vij ⋅ rij)
αb − αa

3∣rij∣2
, (28)

[Π�ij ]
b
a
= −(vij ⋅ rij)

αb − αa

∣rij∣2
− [Gij]ba, (29)

[Π∥ij]
b

a
= 1

2
[Gij]ba, (30)

where

[Gij]ba =
−(vij ⋅ rij)∣ω∣
∣rij∣2

[arctan
αb

∣ω∣ − arctan
αa

∣ω∣ ]

+ −(vij × rij) ⋅ ω
∣rij∣2

ln
∣ℓb∣
∣ℓa∣

. (31)

Here, we introduced the variables ω = rij × ri and α(λ) = ri ⋅ ℓ(λ),
and we defined αa ≡ α(λa) and αb ≡ α(λb). The list of values for αa(b)
and ∣ℓa(b)∣ for each collision is easy to compute (see Ref. 50). Note
that the normal and tangential pressure profiles can also be obtained
in the post-analysis from the radial profile of the total pressure (see
supplementary material).

In order to keep track of the size and center of mass of the
nucleus during our simulations, we classify each particle in the
system as either fluid or crystal using the six-fold ten Wolde bonds52

d6(i, j) = ∑m q6m(i)q†
6m( j)√

(∑m ∣q6m(i)∣2)(∑m ∣q6m( j)∣2)
, (32)

where † indicates the complex conjugate,∑m indicates the sum over
m ∈ [−6, 6], and q6m are Steinhardt’s six-fold bond-orientational
order parameters.53 Particle i is classified as crystal if it has 9 or more
neighboring particles j with which it has a crystal-like bond, i.e.,
d6(i, j) > 0.7. The neighbors of particle i are defined as all particles j
with ∣rij∣ < 1.45σ, which, for all systems studied, roughly corresponds
to the first minimum of the radial distribution function.

C. Results
We begin our investigation by equilibrating the initial configu-

rations of nuclei. A sample initial configuration is shown in Fig. 2(a).
The nuclei were equilibrated for 5 × 104τ. As the coexistence region
of pseudo-hard spheres is slightly different than that of hard
spheres,54 simulating the nuclei from sets A and B at their original
global density resulted in a noticeable increase of the nucleus size,
with nucleus B even becoming system spanning. To address this,
we equilibrate these nuclei for a small range of global densities,
slightly lower than that of the original pseudo-hard-sphere config-
urations. Figure 2(c) shows the size of the crystal nucleus during this
equilibration run for nucleus A at three different global densities.
One can see that the nuclei equilibrate quickly.

To confirm that the equilibrated nuclei, which are stable in
the NVT ensemble, are critical nuclei in the NPT ensemble [see
Fig. 2(b)], we take a few configurations and start 30 Monte Carlo
(MC) simulations in the NPT ensemble from each configuration.55

For the pressure in these MC simulations, we use the average global
pressure measured during the EDMD simulation. To make the
sampling in the MC simulations more efficient, we implemented

Almarza’s algorithm for the volume changes.56 We indeed observe
that each nucleus melts or grows with a roughly 50/50 probability
[see Fig. 2(d)].

Next, switching back to the canonical ensemble, we measure the
radial density and pressure profiles around the center of the nucleus.
For this, we take the equilibrated configurations of the EDMD sim-
ulations and start new EDMD simulations of 104τ in total. Since the
center of mass of the nucleus slowly drifts during the simulation, we
update it each 0.5τ. During this update, we also measure the num-
ber of particles in each spherical shell around the center of mass. We
use a bin width of 0.1σ for the spherical shells. In Fig. 3, we show
a selection of the resulting density profiles, as well as a typical pres-
sure profile. From the density profiles, one can clearly see that the
nucleus grows with increasing global density, as was predicted for
PHS in Ref. 36. Furthermore, looking at the pressure profile, we see
that the pressure both inside and outside of the nucleus reaches a
well-defined value far away from the interface. For the fluid, this
pressure corresponds to the average global pressure of the entire
system, which is due to the mechanical equilibrium condition.32

Importantly, we find a lower pressure inside the crystal nucleus
than in the surrounding fluid, consistent with what was observed in
Ref. 32 for pseudo-hard spheres.

From the plateau values of the density and pressure profiles,
we directly obtain the densities and pressures of both phases. In
Fig. 4(a), we plot the crystal density as a function of the density of
the fluid phase. Note that the density of both the fluid and the crys-
tal [Fig. 4(a)] is always significantly above the freezing and melting
densities, i.e., ρcoex

F σ3 = 0.939 18(1) and ρcoex
X σ3 = 1.0375(3).55,57,58

This is consistent with the idea that these nuclei are critical, which
can only occur in supersaturated fluids.

In Figs. 4(b) and 4(c), we explore the pressure difference
between the two phases and indeed find that for the wide range of
nucleus sizes studied, the pressure inside the nucleus is always lower
than that of the fluid. The absolute pressure difference ∣PX − PF ∣
gradually decreases with decreasing ρF , consistent with the require-
ment that it vanishes at the freezing density, where the two phases

FIG. 3. (a) The radial density profile for nucleus A (closed markers) and nucleus
B (open markers) for a few different global densities. For clarity, all profiles are
displayed with a bin width of 0.8σ, and the dashed lines are guides to the eye. (b)
The radial pressure profile for nucleus A at ρglobalσ

3
= 0.9691. The dashed lines

indicate the average pressures in the “bulk” crystal and fluid phases.
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FIG. 4. Different thermodynamic properties of the crystal nucleus and surrounding
fluid for all investigated nuclei, all as a function of the density of the fluid phase.
(a) The density inside the crystal nucleus. (b) The measured pressures (closed,
colored markers), as well as the pressures obtained from the equation of states
evaluated at the measured densities (black, open markers). (c) The pressure dif-
ference between the crystal nucleus and the surrounding fluid. (d) The equimolar
radius Re of the nucleus.

should have equal pressures. To double-check our pressure mea-
surements, we additionally plot in Fig. 4(b) the pressures as obtained
from the hard-sphere equations of state of both phases,59,60 eval-
uated at the measured densities (black open symbols), and find
excellent agreement, similar to what was seen for PHS.32 Finally, in
Fig. 4(d), we show the equimolar radius Re of the nucleus, calcu-
lated using Eq. (1) (with NS = 0). Clearly, we obtain nuclei spanning
a wide range of sizes. Note, however, that all of these simulations
are still at relatively low supersaturation. In fact, although the range
of fluid pressures obtained here (12.0 < βPFσ3 < 12.9) is certainly
above the coexistence pressure βPcoexσ3 = 11.5646(5),58 it is much
below the pressures where spontaneous nucleation can be feasibly
studied using brute-force simulations (typically above pressures
βPFσ3 ≳ 1514,26,61). The smaller nuclei at higher supersaturation are
harder to stabilize in unbiased NVT simulations. The free-energy
well associated with these nuclei becomes less deep for smaller
system sizes, making them more susceptible to escape via thermal
fluctuations. As a result, small nuclei either melt or grow out,
spanning the box.

We note that all nuclei investigated are nuclei of the face-
centered cubic (FCC) crystal. In the supplementary material, we
show that the thermodynamic properties of nuclei of the hexagonal
close-packed (HCP) crystal agree with those of FCC nuclei.

From Eq. (13), we see that the lower pressure inside the crystal
phase should be linked to a negative surface stress f∗ of the

interface between the fluid and the crystal. In particular, the negative
pressure differences and nucleus radii shown in Figs. 4(c) and 4(d)
correspond to a surface stress of approximately f∗ ≃ −0.7kBT/σ2

(assuming for the moment that the equimolar radius Re ≃ R∗). In
Sec. III, we examine the surface stress of hard spheres in more
detail.

III. SURFACE STRESS OF A SPHERICAL NUCLEUS
In this section, we examine the surface stresses associated

with a fluid–crystal interface in hard spheres in more detail. We
begin by revisiting the theory associated with the surface stress
for flat crystal–fluid interfaces and then extend this to spherical
nuclei. Using our measurements of the pressure profiles described
in Secs. II B and II C, we then determine the surface stress for a
spherical nucleus of hard spheres as a function of the metastable fluid
density.

A. Theory
As a starting point, we consider a fluid–crystal coexistence

with a flat interface (i.e., in a slab geometry) in the grand-canonical
ensemble. Specifically, we consider a periodic simulation box elon-
gated along the z axis containing two interfaces perpendicular to the
long axis of the box. Note that for a monodisperse system in the
grand-canonical ensemble, such a configuration is metastable and
corresponds to a saddle point in the free energy.

In this geometry, the lattice spacing of the crystal is imposed
by the periodicity of the system along the x and y axes of the box.
Specifically, the lattice spacing ax(y) = Lx(y)/Mx(y), where Mx(y) is the
number of lattice sites along the x(y)-direction, which we will keep
fixed in this entire derivation. Along the longer z axis, both the crys-
tal lattice spacing and the number of crystalline layers can fluctuate.
For such a system, the grand potential can be written as

Ωtot(μ, V , Lx, Ly, Lz ; VX , az) = ΩF(μ, VF) +ΩX(μ, VX , az , Lx, Ly)
+ 2γ(μ, ax, ay)A. (33)

Here, ai is the lattice spacing of the crystal in the i-direction, A is
the surface area of one of the interfaces, and the factor 2 arises from
the presence of two interfaces. Note that for flat interfaces, the inter-
facial free energy and surface stress are independent of the choice of
dividing surface.

Minimization of Ωtot with respect to VX and az gives

(∂Ωtot

∂VX
)

az

= Pzz
F + ωX = 0, (34)

(∂Ωtot

∂az
)

VX

= −Pzz
X − ωX = 0, (35)

which leads to

Pzz
F = Pzz

X . (36)

Here, Pzz denotes the zz-component of the pressure tensor Pij of a
given phase, which can be anisotropic for a crystal under strain or
a system containing an interface. Additionally, we note the pressure
tensor inside the fluid phase is necessarily isotropic (Pzz

F = PF), and
that under equilibrium coexistence conditions, the pressure tensor
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inside the crystal phase must also be isotropic: Pxx
X = Pyy

X = Pzz
X = PX

= PF (see, e.g., Ref. 58). Hence, the only anisotropic contribution to
the global pressure tensor of a system under equilibrium coexistence
conditions comes from the interface.

We can now consider how the free energy changes upon apply-
ing an infinitesimal elongation of the system along the x axis, i.e.,
tangential to the interface. From the definition of the pressure tensor,
we can write

(∂Ωtot

∂Lx
)

μ,V ,Ly ,Lz

= −PxxLyLz. (37)

Using Eq. (33), we can also decompose this free-energy change
into contributions arising from the fluid, crystal, and interface. For
elongation along the x axis, we obtain

(∂Ωtot

∂Lx
)

μ,V ,Ly ,Lz

= −VF

V
PFLyLz −

VX

V
PXLyLz + 2γLy + 2

∂γ
∂Lx

A

= −PFLyLz + 2Ly(γ + ∂γ
∂ϵxx
)

= −PzzLyLz + 2Ly fxx, (38)

where ϵxx is the applied strain on the interface along the x-direction,
and we used the Shuttleworth equation [Eq. (11)] in the last step.
Combining Eqs. (37) and (38), we obtain

fxx =
1
2

Lz(Pzz − Pxx). (39)

The analogous expression for fyy can be derived in the same way.
This provides us with a method to directly determine the surface
stress for a flat interface from direct coexistence simulations. Note
that f can be seen as a tensor of elastic constants for the crystal–fluid
interface and obeys the same symmetry considerations as the elas-
tic tensor of a two-dimensional solid. Hence, when the crystal plane
facing the fluid has square or hexagonal symmetry, we expect that
fxx = fyy.

It is important to note that, similar to the interfacial free energy,
the surface stress is expected to depend on which crystal plane faces
the fluid. In the case of a spherical nucleus, the relevant values of γ
and f correspond to their spherically averaged values, taken over the
entire nucleus surface. In principle, one could estimate the surface
stress of a spherical nucleus by measuring it for a number of different
crystal planes and taking an average (as has been performed for γ;
see, e.g., Refs. 62 and 63). However, a more direct measure could
be obtained by instead extending the approach for flat interfaces
to spherical nuclei. To this end, we consider a system containing a
spherical nucleus in the grand-canonical ensemble and measure the
normal and tangential components of the pressure as a function of
the radial distance from the center of the nucleus.

We would now like to deform the interface in a way that
stretches its surface area uniformly while keeping the spherical
geometry and the radius of curvature of the surface fixed. This is
not physically possible in a spherical nucleus, but we can imagine
performing this deformation only locally, on a narrow cone-shaped
subvolume of the system, with its tip located at the center of the
nucleus, and extending radially outward into the fluid phase up
to a maximum distance Rmax (see, e.g., Ref. 64). We now consider
changing the volume of this cone by modifying only its opening

angle θ, and examine the effect on the grand potential. Looking at
this deformation in spherical coordinates, this moves the bound-
aries of the cone-shaped region outward in the direction tangential
to the interface. The change in free energy due to this deformation
can be written in terms of the total pressure exerted on the sides of
the conical volume,

∂Ωtot

∂θ
= −2π sin θ∫

Rmax

0
drr2P∥(r), (40)

where P∥(r) is the tangential pressure profile as a function of
the distance to the center of the nucleus. This can be measured
directly in simulations similar to how we measured the total pressure
profile50,51 (see Sec. II B for the details).

Alternatively, by splitting the free energy up into contribu-
tions from the fluid, crystal, and interface, we can write the same
derivative as

∂Ωtot

∂θ
= (∂ΩF

∂θ
) + (∂ΩX

∂θ
) + (∂γA

∂θ
), (41)

= 2π sin θ
3

(−PF(R3
max − R3) − PXR3 + 3 f R2). (42)

Combining the two expressions, we can measure f by calculating

f = ∫
Rmax

0
dr

r2

R2 [Pstep(r) − P∥(r)], (43)

where Pstep(r) is a step function based on our choice for the radius
of the dividing surface R [Pstep(r < R) = PX , Pstep(r > R) = PF].

B. Results
We first measure the surface stress for planar fluid–crystal

interfaces using direct-coexistence simulations. To set up an equi-
librium coexistence between a fluid and an unstrained crystal, we
follow the approach of Ref. 58. We perform EDMD simulations of
hard spheres in an elongated simulation box, where the initial con-
figuration is mostly filled with a perfect FCC crystal at a chosen
initial density ρinit. The global density of the simulation box ρ < ρinit
is set by introducing a slab of empty space in the simulation box,
oriented parallel to the long axis of the box. We fix this overall
density to be inside the fluid–crystal coexistence region (ρσ3 = 0.99),
such that during equilibration the crystal slab partially melts, result-
ing in a system where the fluid and crystal phases coexist with each
filling roughly half of the simulation box. The crystal is oriented
such that either the (100) plane or the (111) plane faces the fluid,
with the configurations containing N = 14 850 and N = 16 133 par-
ticles, respectively. In this geometry, the lattice spacing normal to the
interface can relax and adapt to the pressure, while the lattice spac-
ing in the two tangential directions is fixed by the periodic boundary
conditions and hence by ρinit. After equilibration, we measure the
pressure tensor.

To find equilibrium coexistence conditions, we then look for
the initial density at which the crystal phase is unstrained. This
happens when the pressure in the z-direction coincides with that
of a bulk unstrained crystal at the same density ρinit.

58 For the
coexistence satisfying this criterion, we obtain f using Eq. (39),
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making use of the fact that for both the (100) and the (111) planes,
fxx = fyy,

f = 1
2

Lz(Pzz −
Pxx + Pyy

2
). (44)

Note that for a planar interface, the interfacial free energy and
surface stress are independent of the choice of dividing sur-
face. We obtain f = −1.0(1)kBT/σ2 for the (111) plane and
f = −0.24(4)kBT/σ2 for the (100) plane. Given that the results
are quite sensitive to the accurate determination of the equilib-
rium coexistence conditions, these values are in good agreement
with the ones reported by Davidchack and Laird in Ref. 65, i.e.,
−0.71(13)kBT/σ2 for (111) and −0.17(6)kBT/σ2 for (100). The
negative values of f confirm that it is indeed reasonable to expect
that the spherically averaged f for a spherical nucleus is negative as
well, explaining the sign of the pressure difference between the inside
and outside of the nucleus in Sec. II C.

To obtain a more direct estimate, we also measure the spheri-
cally averaged surface stress using the simulations of spherical nuclei
discussed in Secs. II B and II C. Specifically, we measure the radial
profiles of the normal and tangential pressures for each nucleus.
A typical example of these pressure profiles is shown in Fig. 5(a).
Then, using Eq. (43) with the equimolar radius R = Re as our divid-
ing surface, we calculate f in for each nucleus. Note that Re has
the advantage that it can be directly determined from the densi-
ties of the fluid phase, solid phase, and global system, which are
all known quantities in each simulation. In Fig. 5(b), we plot the
behavior of f as a function of the density of the fluid phase. Within
our error bars, the surface stress is approximately constant, around
βf σ2 ≃ −0.7. This is in good agreement with our estimate for f∗

based on the pressure difference in Sec. II. Note that the fluctuations
in P∥ shown in Fig. 5(a) complicate the accurate determination of f .
Moreover, it should be kept in mind that our measurement of f relies
on the approximation that the interface is perfectly spherical and
stationary during our simulations. Fluctuations in the nucleus shape

FIG. 5. (a) Radial profile of the total pressure, normal pressure, and tangential
pressure for one of the largest nuclei investigated (ρFσ3

= 0.948 24). Note that
P = (P� + 2P∥)/3. The dashed lines indicate the average pressures in the “bulk”
crystal and fluid phases. (b) Surface stress as a function of the density of the fluid
phase for all investigated nuclei.

will affect both the local curvature and the position of the interface,
which might introduce systematic errors in the determination of f
for finite-sized clusters. Hence, the results in Fig. 5(b) should be
considered an estimate rather than an exact determination.

Note that, naively, one could also have obtained an approxima-
tion for f by treating the normal and tangential pressure profiles as if
they belonged to a planar interface, ignoring the effects of curvature.
In this planar approximation, f could be obtained by integrating
over the difference between the normal and tangential pressure
profiles along the interface.65 This approximation results in values
for f that differ at most ±0.03kBT/σ2 with the values obtained via
Eq. (43) for the nuclei investigated.

IV. CHEMICAL POTENTIAL OF THE CRYSTAL PHASE
AND THE INTERFACIAL FREE ENERGY

The systems that we explore in this paper are in equilibrium.
Hence, the chemical potential must be the same (homogeneous)
throughout the entire simulation box. The chemical potential of the
fluid is easy to determine from its density profile: far away from
the interface, the fluid must simply be a bulk fluid, and its chemi-
cal potential can be determined from the equation of state. For the
crystal phase, an additional complication arises. Because the crystal
is a solid, deforming it at its boundaries inherently affects the lat-
tice spacing deep inside the crystal. In comparison to the fluid, the
lattice spacing provides an additional degree of freedom that can be
tuned independently from the chemical potential. This was included
in Eq. (2) by the additional dependence of ΩX on the unit cell size
v.66 The actual lattice spacing of the crystal nucleus is then set by a
competition between the crystal phase and the interface. The crystal
phase inside the nucleus favors a lattice spacing as close as possible
to the bulk equilibrium value at chemical potential μ. On the other
hand, because the surface stress is negative, the interfacial free energy
can be reduced by increasing the lattice spacing, favoring larger
lattice spacings. This effect is particularly strong for small nuclei,
where the surface-to-volume ratio of the nucleus is high. As a result
of this strain, the crystal phase we observe in our simulations does
not correspond to a bulk equilibrium crystal phase at the same den-
sity. Instead, it is a crystal under strain due to the presence of the
spherical interface. This crystal necessarily has the same chemical
potential as the surrounding fluid, but is stretched out by this strain,
resulting in a lower density than a bulk crystal would have at the
same chemical potential.

A natural question is then: how does this strained crystal
differ from an equilibrium crystal at the same density? In Fig. 6,

FIG. 6. Chemical potential difference between a bulk equilibrium crystal at the
same density as that of the crystal nucleus and the chemical potential of the fluid
for all investigated nuclei.
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we plot the difference between the chemical potential of the fluid
μ and that of an (unstrained) equilibrium bulk crystal with the same
density as the one we measure inside the crystal nucleus (μeq

X (ρX)),
as a function of the fluid density. We clearly find a negative apparent
chemical potential difference, consistent with the idea that the sur-
face stress causes the crystal density to be “too low” for its chemical
potential. This demonstrates that the crystal phase inside the nucleus
must differ from an (unstrained) equilibrium crystal phase at the
same density. Leaving aside the possibility of anisotropic deforma-
tions of the shape of the unit cell, the most obvious possible solution
to this apparent paradox is the existence of defects.

The primary effect of changing the chemical potential of a
crystal while keeping its lattice parameters fixed is a change in
the concentration of point defects inside the crystal. In the case of
monodisperse hard spheres, the dominant point defects are vacan-
cies, which in an equilibrium near the melting point occur in a
concentration of ∼10−4 defects per lattice site.4,6,67 In the following,
we explore how such vacancies affect the chemical potential of the
crystal nucleus.

A. Theory and results
Consider a crystal nucleus with fixed volume VX and number

of lattice sites M, while the number of particles NX can be varied
by exchanging particles with the surrounding fluid phase. The crys-
tal nucleus can then tune its chemical potential by changing the
defect concentration. Since for hard spheres, vacancies are much
more frequent than interstitials, we only consider the possibility of
vacancies. Assuming non-interacting vacancies, which is reasonable
at low vacancy concentrations, the Helmholtz free energy of the
crystal nucleus is given by55

FX(M, VX ; NX) = Fdf
X (M, VX) + (M −NX) fvac + Fconf(M, NX),

(45)

where the first term, Fdf
X , is the free energy of a defect-free crys-

tal, the second term is the free-energy cost associated with creating
M −NX vacancies at specific lattice sites, and the last term is the
configurational free energy given by

Fconf(M, NX) =M[xvac log xvac + (1 − xvac) log (1 − xvac)], (46)

with xvac = (M −NX)/M being the vacancy concentration. Using
that xvac = 1.10(2) × 10−4 is the equilibrium concentration of
vacancies in a hard-sphere crystal at melting,67 we obtain
fvac = − log xvac − μeq

X (ρX) = −6.956kBT. Combining this with the
known free-energy behavior of a defect-free hard-sphere crystal, we
plot in Fig. 7(a) the free energy of a crystal as a function of defect
concentration at a fixed density equal to the melting density. Clearly,
for the hard-sphere crystal, the defects have a negligible effect on the
free energy; hence,

FX(ρX , xvac = 0) ≃ FX(ρX , xeq
vac), (47)

where FX = FX/NX , and xeq
vac is the equilibrium defect concentra-

tion. Moreover, as the pressure is the derivative of the free-energy

FIG. 7. (a) Helmholtz free energy of a hard-sphere crystal at the melting density as
a function of the vacancy concentration. (b) The chemical potential of the crystal
at the melting density as a function of the vacancy concentration. The dashed line
indicates the equilibrium chemical potential at this density.

with respect to the volume, it must be similarly unaffected by defects:
PX(ρX , xvac = 0) ≃ PX(ρX , xeq

vac). In Sec. II, we indeed observed that
the pressure inside the crystal nucleus agrees well with the pressure
obtained from the bulk equation of state evaluated at the density of
the crystal nucleus.

In contrast, the chemical potential of the crystal, which is
given by

μX = (
∂FX

∂NX
)

M,VX

= − fvac − log xvac + log (1 − xvac), (48)

is greatly affected by the presence of defects. In Fig. 7(b), we plot μX
as a function of xvac. If we compare this to the chemical potential
differences observed in Fig. 6 (which are on the order of 0.2kBT),
we see that only tiny changes in defect concentration are required
to change the chemical potential of the crystal to match that of the
fluid. In practice, such small variations of the already very low defect
concentration would be essentially impossible to measure in our
simulations. Hence, although a shift in chemical potential on the
order of 0.2kBT might seem significant, in practice its effects can be
readily accounted for by nearly imperceptible changes to the defect
concentration.

When looking at Fig. 7(b), it might seem puzzling at first
glance that the chemical potential diverges in the limit of zero
defects. This might appear to conflict with our usual treatment of
free energies of defect-free crystals, where we typically calculate the
“defect-free” chemical potential via the relation μdf

X = FX + PX/ρX .
This is the chemical potential associated with a system where the
only way particles can be added or removed is by simultaneously
adding or removing a lattice site from the system. When vacancies
are allowed, the system can also change the number of particles
by creating or annihilating a defect. In this picture, putting a
defect-free crystal in contact with a particle reservoir would indeed
always lead to a flow of particles out of the system, reflecting the
diverging chemical potential.68 Importantly, the chemical poten-
tial at the equilibrium vacancy concentration is essentially identical
to μdf, as
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FIG. 8. Interfacial free energy as a function of the density of the fluid phase for all
investigated nuclei.

μeq
X (ρX) = FX(ρX ; xeq

vac) +
PX(ρX ; xeq

vac)
ρX

, (49)

≃ FX(ρX ; xvac = 0) + PX(ρX ; xvac = 0)
ρX

, (50)

= μdf
X (ρX). (51)

Hence, we are justified in using the “defect-free” chemical potential
instead of the equilibrium one for the purpose of, e.g., determining
phase boundaries.

We can relate the results in Fig. 6 on the behavior of μeq
X (ρX) − μ

to the properties of the interface by using again the knowledge that
the Helmholtz free energy and pressure of the crystal are only weakly
affected by vacancies. Specifically, using Eq. (49), we can write

μeq
X (ρX) − μ ≃ FX(ρX ; xeq

vac) +
PX(ρX ; xeq

vac)
ρX

− μ

= ΩX

NX
+ PX

ρX
= ωX + PX

ρX

= 2v
R
( f − γ), (52)

where in the last step we have used that for small defect concentra-
tions v = 1/ρX , as well as Eqs. (7) and (10). Given that we already
know f for our system, this provides us with a way of calculating γ.
Specifically,

γ ≃ f − R
2v
(μeq

X (ρX) − μ). (53)

To see how γ depends on the supersaturation of the system, in
Fig. 8, we plot γ as a function of the density of the fluid. Despite
the considerable scatter among data points, in general, we observe a
very weak increase in γ with increasing fluid density (and, therefore,
decreasing nucleus size). We note, however, that this determina-
tion of γ relies on our earlier determination of f , which is likely to
introduce some inaccuracy as discussed in Sec. III B.

V. THERMODYNAMIC MODEL OF THE SPHERICAL
CRYSTAL–FLUID INTERFACE

The wealth of data we have available here on large equilibrated
crystal nuclei allows us to take a closer look at the behavior of γ
both at coexistence and as a function of the supersaturation. In this
section, we attempt to use this wealth of data to determine γ as a

function of the chemical potential μ, the equimolar radius Re of the
cluster, and the lattice spacing v in the crystal.

A. Theory and results
As shown in Sec. II [Eqs. (2) and (5)], the thermodynamics of

a system containing a critical nucleus are completely described by
the thermodynamics of the bulk fluid (ΩF(μ, VF)), the bulk crys-
tal (ΩX(μ, VX , v)), and the interface (γ(μ, v, R)). In other words, if
we have expressions for all three of these free energies, we can pre-
dict all thermodynamic properties of a system containing a critical
nucleus. In particular, Eqs. (6) and (7) can be solved to obtain, e.g.,
the equimolar radius and the crystal pressure, for any choice of the
fluid chemical potential μ.

For the hard-sphere system, we have excellent knowledge of the
thermodynamics of the fluid via its equilibrium equation of state. As
a result, we can readily evaluate ΩF and its derivatives at any state
point. Here, we use the KLM equation of state of Ref. 59 for the
hard-sphere fluid.

For the crystal phase, the thermodynamics are more complex.
Although we have excellent knowledge of the equation of state
and free energy of a defect-free crystal, we need to account for the
effect of defects on ΩX as well. We can address this by making the
well-established assumption that the density, pressure, and
Helmholtz free energy F are essentially unaffected by defects in the
crystal (see Sec. IV). In this approximation, we can write

ρX ≃ 1/v, (54)

PX ≃ Pdf
X (ρX), (55)

ωX =
ΩX

VX
≃ (Fdf

X (ρX) − μN)ρX

N
, (56)

where the superscript df refers to the properties of a bulk defect-free
crystal. Here, we use Speedy’s equation of state for the hard-sphere
crystal60 and use the excess Helmholtz free energy from Ref. 57 as a
reference point for obtaining Fdf

X (ρX).
For the interface, we do not have a well-established functional

form for γ(μ, v, R). However, the wealth of simulation data we
have available on large equilibrated crystal nuclei allows us to fit
an approximate function to γ. To this end, we make the following
ansatz, based on a second-order Taylor expansion around the
infinite-nucleus coexistence value γ0:

βγ(μ, v, Re)σ2 = βγ0σ2 + cv
v − vcoex

σ3 + cvv(
v − vcoex

σ3 )
2
+ cR

σ
Re

,

(57)

where γ0 and the constants c are unknown fit parameters. Note
that the use of the equimolar surface ensures that the terms in the
expansion scaling with ∣μ − μcoex∣must vanish to ensure

(∂γ
∂μ
)
v,R
= −NS

A
= 0. (58)
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Given a trial set of fit parameters, this ansatz allows us, for any
fluid chemical potential μ, to determine the equimolar radius Re
and the pressure difference between the fluid and crystal ΔP, using
Eqs. (6) and (7). We can compare these values to our measured
equimolar radii and pressure differences from Sec. II to optimize our
trial fit parameters. To this end, we use least-squares optimization,
minimizing the relative squared prediction error in Re and ΔP,
summed over all investigated nuclei. Our resulting set of para-
meters results in the following fit: γ0 = 0.5496kBT/σ2, cv = −0.857,
cvv = 3.078, cR = 0.992. Note that the value we obtain for γ0 is
in reasonable agreement with past estimates of the spherically

FIG. 9. Different thermodynamic properties as a function of the density of the fluid
for all investigated nuclei. In (a) the equimolar radius, (b) the density of the crystal
nucleus, (c) the pressure difference between the crystal nucleus and surrounding
fluid, (d) the chemical potential difference between a bulk equilibrium crystal at the
same density as that of the crystal nucleus and the chemical potential of the fluid,
(e) the interfacial free energy, and (f) the surface stress. The data points are the
same results as in Figs. 4, 5(b), 6, and 8, but the figures now also include the result
from the theoretical model with the fitted functional form of γ (dashed lines). The
black dots indicate the values at the freezing density, i.e., in the limit of an infinite
nucleus.

averaged interfacial free energy,62,63,69–72 which range from
0.56kBT/σ2 to 0.66kBT/σ2.

Based on the fitted functional form of γ, together with the ther-
modynamics of the bulk fluid and crystal, we can then predict all
other thermodynamic aspects of the nucleus. In Fig. 9, we plot the
equimolar radius, crystal density, pressure difference, interfacial free
energy, and surface stress as a function of the fluid density, and com-
pare the results to our simulation data. We find good agreement in
all cases.

Note that we have tried several functional forms for Eq. (57)
by including higher-order terms in the Taylor expansion. However,
these did not lead to large changes in our predictions. Hence, we here
keep the lowest-order expansion that leads to a good fit of all of our
simulation data. Note that since this is an expansion in the limit of
large nucleus sizes, our expression for γ is likely not accurate for sig-
nificantly smaller nuclei (i.e., higher supersaturations) than the ones
we used in our fitting procedure. Nonetheless, our expression should
provide a convenient description of the interfacial thermodynamics
of sufficiently large nuclei.

VI. CLASSICAL NUCLEATION THEORY
AND FREE-ENERGY BARRIERS

A crucial quantity in the study of nucleation processes is the
height of the nucleation barrier, also known as the nucleation work.
This quantity represents the free-energy cost of creating a critical
nucleus out of the supersaturated fluid. In this section, we first show
that the familiar expressions for the nucleation work from classical
nucleation theory still apply when taking into account strains on
the crystal up to linear order.35 We then use simulations and the
nucleation theorem29,73–75 to calculate the nucleation work for criti-
cal nuclei at a range of supersaturations, and finally use these data to
improve the thermodynamical model from Sec. V.

A. Theory
The work required to create a crystal nucleus is given by the

difference between a system containing the nucleus and a system
of pure fluid. In the grand-canonical ensemble, the nucleation work
can be written as

ΔΩ = Ωtot(μ, V ; VX , v) −ΩF(μ, V), (59)

= ΩF(μ, VF) +ΩX(μ, VX , v) + γ(μ, R, v)A −ΩF(μ, V)
= −PFVF + ωXVX + γA + PFV
= γA + (ωX + PF)VX. (60)

To connect to classical nucleation theory (CNT), we make the
reasonable approximation that the crystal phase inside the nucleus
is not strongly distorted with respect to its equilibrium lattice spac-
ing veq(μ). Within this approximation, ωX is given by (minus) the
pressure of the bulk crystal at the chemical potential of the fluid, i.e.,
ωX(μ, v) = −Peq

X (μ), as shown in Eq. (24). Using this, we can rewrite
Eq. (60) as one of the familiar CNT expressions

ΔΩ ≃ γA − ΔP(μ)VX , (61)

where ΔP(μ) is the pressure difference between the two phases at
equal chemical potential.
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If we additionally assume that the crystal density ρX is approx-
imately constant in the pressure regime containing PF , PX , and
Peq

X (μ), we can write

μX(PF) ≃ μX(Peq
X (μ)) −

∂μX

∂P
∣
PX

(Peq
X (μ) − PF)

= μ − 1
ρX
(Peq

X (μ) − PF). (62)

Hence, we can substitute ΔP in Eq. (61) and obtain another familiar
expression from CNT:

ΔΩ ≃ γA − Δμ(PF)NX , (63)

where Δμ(PF) is the chemical potential difference between the two
phases at the fluid pressure.

If we now consider the derivative of the nucleation work with
respect to μ, then

(∂ΔΩ
∂μ
)

V
= (∂Ωtot

∂μ
)

V ,VX ,v
− (∂ΩF

∂μ
)

V

= −N + ρFV ≡ −ΔN, (64)

where in the first line we have used that the derivative of the grand
potential with respect to v and VX vanishes at the saddle point. The
quantity ΔN = N − ρFV is the excess number of particles in the sys-
tem with a nucleus in comparison to a pure fluid system under the
same conditions. Equation (64) is sometimes called the nucleation
theorem.29,73–75 By integrating it, we can calculate the work required
to create a critical nucleus

ΔΩ(μ) = ΔΩ(μref) + ∫
μ

μref
dμ′ΔN(μ′), (65)

provided we know ΔN(μ) as well as the nucleation work ΔΩ(μref)
at a reference chemical potential μref.

Often with nucleation studies, one works in the
isobaric–isothermal (Gibbs) ensemble. In that case, the Gibbs
free-energy difference between the nucleating system and a pure
metastable fluid is given by a Legendre transform of ΔΩ,76

ΔG = Gtot(N, P; VX , v) −GF(N, P), (66)

= Ωtot(μ, V ; VX , v) +Nμ + PV −ΩF(μ, VF) −Nμ − PVF , (67)

= Ωtot(μ, V ; VX , v) + PV −ΩF(μ, V) −ΩF(μ, VF − V) − PVF ,
(68)

= Ωtot(μ, V ; VX , v) −ΩF(μ, V) + PV + PVF − PV − PVF , (69)

= ΔΩ. (70)

Here, the pressure and chemical potential both correspond to
those of the parent fluid phase, and we used the fact that for the pure
fluid phase, ΩF = −PV . Hence, the nucleation work is the same in
the grand-canonical and isobaric–isothermal ensembles.

B. Methods
One way of obtaining ΔΩ (or equivalently ΔG) is to directly

use Eq. (60), using our knowledge of the thermodynamics of the

two phases and the fitted γ from Sec. V to evaluate it numerically.
As an extra check, we can also obtain ΔΩ via Eq. (65), where
we take the reference point for the integration from past mea-
surements of the nucleation work via umbrella sampling simula-
tions.14 To do this, however, we require knowledge of ΔN(μ) over
a large range of chemical potentials, spanning from the relatively
high supersaturations where umbrella sampling data are available
(βμ ≃ 19.6) to the regime where we performed our simulations
of stable nuclei (βμ ≲ 17.6). Filling in the gap between these lim-
its requires additional simulations at intermediate supersaturations,
where keeping a finite nucleus stable for long periods of time is not
feasible.

To address this issue, we perform umbrella simulations using
a hybrid simulation approach: we perform short simulation trajec-
tories in the canonical ensemble using our EDMD code and either
accept or reject the trajectory based on a biasing potential Ubias,
given by

Ubias = κ(n − ntarget)2, (71)

where κ is a spring constant, n is the size of the nucleus based on
bond-orientational order parameters (see Sec. II B), and ntarget is
the target nucleus size. Each simulation is initialized containing a
spherical nucleus of approximately the target size, and after equi-
libration we measure the average size ⟨n⟩ reached by the system,
as well as the global pressure. Our goal is not to sample the entire
nucleation barrier but rather to find, for a given system size, the
global density ρ where a nucleus of size ntarget is stable without bias-
ing. Hence, for a series of system sizes and choices of ntarget, we
perform a series of simulations with different global densities and
locate the global density where ⟨n⟩ = ntarget. Under this condition,
the biasing potential is not exerting any effective force on the sys-
tem, indicating that the nucleus would be at a saddle point in the
free-energy landscape without the biasing potential and is, therefore,
either a stable or critical nucleus. In other words, the system is either
at the maximum or minimum of the top plot in Fig. 2(a). Note that
this approach is similar in spirit to the interface pinning approach
for flat interfaces.77 The global pressure at this density then corre-
sponds to the pressure of a fluid, which can coexist with a nucleus of
size ntarget.

We consider system sizes between N = 2916 and 32 000,
with ntarget for each system size corresponding to αN, with α ∈
{0.04, 0.06, 0.08, 0.15}. As a spring constant, we use βκ = 105/N. For
each system size and ntarget, we perform simulations for a range of
densities ρ and measure both ntarget and P. After discarding simula-
tions where the nucleus melted or percolated the simulation box, we
fit ⟨n⟩ as a function of ρ and find the density ρunbiased where it equals
ntarget. The associated pressure Punbiased at this density is obtained by
fitting P(ρ) and evaluating it at ρunbiased. From Punbiased and the fluid
equation of state, we can then directly calculate ΔN,

ΔN = N − ρF(P)V , (72)

where ρF(P) is simply the inverse of the equilibrium fluid equation
of state. Additionally, from the equilibrium fluid equation of state,
we also know the corresponding chemical potential μ, giving us a set
of points tracing out the desired function ΔN(μ).
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C. Results
As a first step toward obtaining the nucleation work, we mea-

sure ΔN(μ) in both our biased simulations and from our previous
nuclei. In Fig. 10(a), we show the results for both simulations. All
the data from different system sizes and target nucleus sizes collapse
onto a single line, as expected. This allows us to fit ΔN using

log ΔN =
8

∑
i=0

ci

(μ − μcoex)i , (73)

where the constants ci are the fit parameters. We then integrate
the fit to obtain the nucleation work [Eq. (65)], which is shown
in Fig. 10(b) as a blue solid line. The resulting nucleation barriers
match closely those predicted for almost-hard spheres modeled via
the Weeks–Chandler–Andersen potential.29 It is also possible to pre-
dict the nucleation work from the functional model for γ predicted
in Sec. V and Eq. (60). The result is also shown in Fig. 10(b) as the
black dashed line. While the prediction shows the correct trend, the
nucleation work predicted via this fit is ∼40kBT off from the one
obtained via integration.

Given the excellent agreement with the thermodynamic para-
meters in Fig. 9, it is natural to wonder if the data we had contained
sufficient information to fully determine not only γ but also its
functional dependence on R and v. To test this, we refit all of
our data, but now also including the new information on ΔΩ.
Specifically, we used a least squares optimization minimizing the rel-
atively squared prediction error in Re, ΔP, and ΔΩ. The resulting
γ parameters are γ0 = 0.5645kBT/σ2, cv = −0.880, cvv = 2.190, and
cR = 0.511. The slightly higher value of γ0 is again consistent

FIG. 10. (a) Excess number of particles as a function of the chemical potential.
Blue dots are the results of the unbiased simulations (of nuclei C) of Sec. II. Red
squares are data from the biased simulations. The black line is a fit [Eq. (73)] to
all data. (b) Nucleation work as a function of the density of the fluid. The blue solid
line indicates the result from Eq. (65) and the dashed lines indicate the result from
Eq. (60) using the fitted functional form of γ. The black dashed line uses the original
fitted γ (as in Fig. 9), whereas the red longer-dashed line uses a γ fitted with an
additional loss term for ΔΩ. The inset shows the nucleation work (obtained via
umbrella sampling) for hard spheres at higher supersaturations reported by Filion
et al. in Ref. 14 (black points). The blue line shows the results from Eq. (65), using
the black point at ρFσ3

= 0.9952 as a reference point.

with past measurements62,63,69–72 of this quantity (0.56kBT/σ2 to
0.66kBT/σ2). The new fit is also shown in Fig. 10(b) as the red longer-
dashed line. Clearly, this new fit is able to capture the behavior of ΔΩ
excellently. Interestingly, as we show in the supplementary material,
the fit comes at no noticeable cost when it comes to fitting Re and
ΔP, indicating that our previous fit was indeed underdetermined.

VII. CONCLUSIONS
In conclusion, we have extensively explored the thermodynam-

ics of hard-sphere spherical crystal nuclei, both from a theoretical
and simulation perspective. We examined the cause of the observed
negative pressure difference between the inside and outside of the
crystal nucleus, predicted the surface stress and interfacial free
energy for spherical nuclei as a function of radius, examined the
role of defects and chemical potential in the thermodynamics of the
nuclei, and presented a simple thermodynamic model to capture the
properties of the nucleus. We hope that our extensive study of hard-
sphere critical nuclei will act as a foundation for future explorations
into nucleation.

SUPPLEMENTARY MATERIAL

In the supplementary material, we provide the derivation of
Sec. II in the canonical ensemble, show how one can obtain the
normal and tangential pressure profiles from the profile of total
pressure, give some results on the nuclei of HCP crystals, and
compare the two fitted models for the interfacial free energy γ.
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