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ABSTRACT
Using Onsager–Straley’s second-virial theory, we investigate the cholesteric pitch of cellulose nanocrystal (CNC) suspensions. We model the
CNCs as hard chiral bundles of microfibrils and examine the effect of the shape of these chiral bundles, characterized by aspect ratio and
chirality, on the cholesteric pitch. Additionally, we explore the impact of length polydispersity and surface charge on the cholesteric phase of
CNCs. Furthermore, we consider binary mixtures of twisted bundles and achiral primary crystallites to provide a more realistic representation
of CNC suspensions. Our findings reveal that the degree of bundle twisting significantly affects the helical twisting of the cholesteric phase.
We also observe that the average particle length and length polydispersity have substantial effects on strongly twisted bundles but minimal
effects on weakly twisted ones. Finally, our study indicates that as the range of electrostatic interactions increases, the transfer of chirality from
the microscopic to macroscopic length scales becomes masked, resulting in an increase in the cholesteric pitch. In the case of binary mixtures,
the bundles act as chiral dopants, and an increasing fraction of bundles progressively enhances the helical twisting of the cholesteric phase.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0167362

I. INTRODUCTION

Over the past two decades, cellulose nanocrystals (CNCs) have
attracted significant attention as a renewable source for various
applications, including photonic materials.1 When immersed in
a solvent, these anisotropic colloidal particles self-assemble into
cholesteric phases at sufficiently high concentrations,2 and it is
worth noting that the pitch of these cholesteric phases decreases as
the concentration increases.3

Experimental systems using CNCs typically employ water as a
solvent, and the surfaces of the CNCs are charged with acidic func-
tional groups. These groups become ionized during the production
process, resulting in a negative electric charge on the particles, which
aids in stabilizing the dispersion. The charged groups grafted onto
the CNC surfaces often include anionic sulfate half-esters (OSO −3 ),

which are formed through the hydrolysis of cellulose derived from
wood or cotton using sulfuric acid. This hydrolysis process dis-
solves the disordered regions of the cellulose fibrils while preserving
the crystalline parts, ultimately leading to the formation of rod-
like nanocrystals.4 The electrostatic interactions not only shift the
isotropic-cholesteric phase transition to lower concentrations (typ-
ically in the order of a few weight percent) but also increase the
cholesteric pitch as the ionic concentration of the aqueous phase
decreases.5

Molecular cellulose is inherently chiral, and it is conjectured
that this chirality is transferred from the molecular level to the
macroscopic scale through an intermediate structure. Cellulose
microfibrils, which constitute crystalline substructures of cellulosic
fibers, exhibit a twist along their long axis.6 Molecular simula-
tions have demonstrated that the length scale of this internal twist,
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referred to as the microscopic pitch, depends on the width of the
microfibril, with the degree of twisting being inversely proportional
to the cross-sectional surface area of the fibril.7

The mechanism behind the transfer of chirality has been a
subject of debate, but recent theoretical and experimental find-
ings strongly suggest a correlation between the degree of twisting
in the cholesteric phase, represented by the cholesteric pitch, and
the presence of chiral bundles composed of cellulose microfibrils.8,9

Specifically, it has been demonstrated that the theoretical predictions
of the cholesteric pitch, obtained using Onsager theory for chiral
particles and modeling CNCs as chiral hard bundles of spherocylin-
ders, aligned well with experimental measurements.8 Furthermore,
it has been observed that the relationship between the microscopic
pitch of the bundles, which determines the degree of twisting within
a bundle, and the cholesteric pitch is non-monotonic. Additionally,
the size and aspect ratio of the bundles were found to affect the
cholesteric pitch, with a larger aspect ratio of the bundle resulting
in a larger cholesteric pitch. Moreover, the presence of bidispersity
in the system was found to increase the cholesteric pitch compared
to a monodisperse system.

These findings suggest that fractionation of length polydisperse
systems could offer a means to tailor the cholesteric pitch. To explore
this possibility, we perform a comprehensive theoretical investi-
gation of various factors that affect the cholesteric pitch of CNC
suspensions.

More specifically, we examine how the length of the particles
and the degree of twisting of the bundles influence the cholesteric
pitch. Additionally, we investigate the effect of polydispersity and
surface charge on cellulose microfibrils, offering valuable predic-
tions that can assist in understanding the correlation between the
microscopic characteristics of CNCs and system properties and how
they relate to the resulting cholesteric pitch. Finally, we analyze how
the cholesteric pitch varies with the fraction of chiral bundles present
in CNC suspensions.

II. MODEL OF CNCS
To conduct a theoretical examination of the different factors

influencing the cholesteric pitch in CNC suspensions, we employ the
model introduced in Ref. 8 and represent CNCs as twisted bundles of
microfibrils, as illustrated in Fig. 1. The microfibrils of a CNC bun-
dle are modeled as Nsc = 4 achiral hard spherocylinders with a fixed
diameter D and an end-to-end length L. Throughout the remain-
der of the paper, we use D as our unit of length. The chirality of the
bundles arises from the microscopic pitch p, which is inherited from
the individual microfibrils and results in a twist between adjacent
microfibrils. We quantify the degree of twisting in the bundles by
introducing a reduced internal wavevector, qint = 2π/p. To be more
specific, we choose the twist axis to be parallel to the z-axis in the
particle frame of reference, with the center of the twist axis coincid-
ing with the center of mass of the bundle.8 Points within the bundle,
denoted by (x, y, z), undergo a rotation by an angle αint = 2πz/p. The
total width w of a chiral bundle can vary, either smaller or larger than
NscD, allowing for some degree of overlap between the crystallites.
Here, we consider the same spherocylinder overlap of the bundle
as described in Ref. 8, which is defined as the total width of the
bundle w = CNscD with a constant factor C = 0.75. The interactions
between the bundles are exclusively governed by excluded-volume

FIG. 1. Two CNC bundles, modeled as Nsc = 4 achiral hard spherocylinders of
length L and diameter D, with a center-of-mass separation r. The orientations
are given by the Euler angles θ,ϕ, and ξ, where the long-axis orientation ω̂ is
defined by the former two (relative to the nematic director n̂) and the internal angle
ξ defines rotations around ω̂.

interactions. In Sec. IX, however, we further explore the effect of sur-
face charge on the system. In this section, we also describe the inter-
actions between the bundles, which include a screened-Coulomb
interaction in addition to the hard-particle interaction.

III. DENSITY FUNCTIONAL THEORY
FOR POLYDISPERSE SYSTEMS OF CNCS

We examine the effect of both the length and the length poly-
dispersity of the CNC bundles on the equilibrium cholesteric pitch
P of the cholesteric phase of CNCs using classical density func-
tional theory (DFT) for chiral nematic phases.8,10–12 To achieve this,
we consider a normalized length distribution P(l), where l = L/L0
represents a renormalized length. Specifically, we consider a length
polydisperse density distribution denoted by c(l) = c0P(l), where
c0 = Nv0/V represents a dimensionless number density. Here, N,
V , and v0 represent the number of particles in the system, the sys-
tem volume, and the characteristic excluded volume of a particle,
respectively. The value of v0 is approximated as v0 = πL2

0DB/4 and
represents the second virial coefficient of the chiral bundles in the
isotropic phase under the condition L0 ≫ DB, where DB denotes
a suitably selected width of the bundle. Our estimation is that
DB = D

√
CNsc. This estimation is derived by mapping the bundle

onto a cylindrical rod with a diameter DB that has the same length L0
and volume as the bundle. For additional information, please refer
to the Appendix. It is important to note that if the particle consists
of a single microfibril, meaning DB = D, we recover the conven-
tional dimensionless concentration for rods, which is expressed as
c0 = πL2

0DN/(4V).
The Helmholtz free energy F[ρ] of a polydisperse suspen-

sion of CNCs is a functional of ρ(r, R, l), which represents the
density distribution of particles at position r in Cartesian space.
Here, the density distribution depends on a reduced length l and a
particle orientation defined by a 3× 3 rotation matrix R, character-
ized by the polar angle θ ∈ [0,π), azimuthal angle ϕ ∈ [0, 2π), and
the internal azimuthal angle ξ ∈ [0, 2π), representing the particle’s
rotation around its long axis. The density distribution satisfies the
normalization condition, ensuring that the total number of parti-
cles in the system is defined as N = ∫dr ∫dl ∫dR ρ(r, R, l), where
dR = dξdϕd cos θ.

Within Onsager’s second virial approximation, the Helmholtz
free energy per unit volume can be expressed as a sum of ideal and
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excess contributions, v0βF[ρ]/V = f [ρ] = fid[ρ] + f(q)ex [ρ], where
β = 1/kBT represents the inverse temperature, T is the temperature,
and kB is the Boltzmann constant.

The ideal part of the free-energy density functional, denoted
as fid, for a length polydisperse system of CNCs comprises both
translational and orientational contributions,

fid[ρ] =∫ dlc(l)(ln [c(l)V0] − 1) + ∫ dlc(l)∫ dRψ(R, l)

× ln [8π2ψ(R, l)], (1)

where ψ(R, l) represents a length-dependent orientation distribu-
tion function (ODF), and V0 is a dimensionless (and irrelevant)
thermal volume.

The excess part of the Helmholtz free-energy functional,
denoted as f (q)ex , depends on the macroscopic pitch P of the chiral
nematic phase, which is related to the chiral wave vector q = 2π/P. If
we define the chiral director (or helical axis) χ̂ to be aligned along the
y-axis, the helical arrangement of the director field in the cholesteric
phase implies that the ODF at any arbitrary position along the
y-axis can be deduced from that at y = 0 by rotating it by an angle
of 2πy/P = qy around the y-axis. Therefore, we find that the ODF
defined at r = 0, denoted as ψ(R, l), becomes ψ(Rχ̂(qχ̂ ⋅ r)R, l) at r,
where Rχ̂(qχ̂ ⋅ r) represents a rotation around the chiral director χ̂
(which coincides with the y-axis) by an angle of qχ̂ ⋅ r = qy. Within
the Onsager second-virial approximation, the excess part of a length
polydisperse chiral nematic phase is expressed as follows:

f (q)ex [ρ] = ∫ dldl′c(l)c(l′)E(l,l
′ ,q), (2)

where E(l,l′ ,q) represents the angular-averaged excluded volume for
two bundles with renormalized lengths l and l′,

E(l,l
′ ,q)
= −

G(η)
2v0
∫ dr∫ dRdR

′ψ(Rq, l)ψ(R ′, l′)

× f (Rq, R ′, l, l′, r), (3)

with Rq = Rχ̂(qχ̂ ⋅ r)R, and where the term G(η) = (1 − 3η/4)/
(1 − η)2 represents the Parsons–Lee correction factor. Here, η rep-
resents the volume fraction, which can be expressed as η = vBN/V ,
where vB corresponds to the volume of a bundle, which we calcu-
late through Monte Carlo integrations.13,14 The Parsons–Lee factor
approaches unity for rods that are infinitely long and slender.

Furthermore, we make the assumption that the local struc-
ture of the chiral nematic phase is locally uniaxial and remains
unchanged under rotations around the main particle axis. The local
uniaxiality assumption implies that any non-cylindrically symmetric
characteristics of the particle are effectively averaged out. As a con-
sequence, the ODF exhibits rotational symmetry around the local
nematic director n̂ and the long axis of the particles. Hence, the
ODF, denoted as ψ(R, l) = ψ(θ, l), depends solely on the polar angle
θ relative to n̂.

A. Onsager theory
For a monodisperse system, the coefficients E(l,l′=l,q) in Eq. (3)

can be computed using Monte Carlo integration techniques, as
demonstrated in Refs. 8, 10, and 11. Subsequently, the resulting

Helmholtz free energy F[ρ] can be minimized with respect to ψ(θ, l)
for a fixed density c0. This process is repeated for various values
of the inverse pitch length q. Finally, the equilibrium pitch of the
cholesteric phase is obtained by minimizing the free energy with
respect to q. We will refer to this approach as the full Onsager
theory.

B. Onsager–Straley theory
In Ref. 8, the Onsager theory approach was extended to a binary

mixture of CNCs. This extension involves the computation of inter-
and intra-species excluded volume terms and the minimization of
the Helmholtz free energy with respect to the ODFs of each species
as well as the chiral wavevector q. However, calculating the equilib-
rium pitch for a polydisperse system using the full Onsager theory
approach is exceptionally computationally intensive.

We, therefore, resort to Straley’s theory,15 which is applicable
in the weak-chirality regime, and combine it with Onsager’s the-
ory. This approach is commonly referred to as the Onsager–Straley
theory. Given that the cholesteric phase of CNCs is typically char-
acterized by weak chirality, Straley’s theory is expected to offer a
suitable approach.

To achieve this, we expand the dimensionless free energy
f (q)
[ρ] to second order in q,

f (q)[ρ] = f (q=0)
[ρ] + βKTq +

1
2
βK2q2

+ O(q3
), (4)

where we introduced the chiral strength

βKT =
d f (q)ex [ρ]

dq

RRRRRRRRRRRq=0

, (5)

and the twist elastic constant

βK2 =
d2 f (q)ex [ρ]

d2q

RRRRRRRRRRRq=0

. (6)

In the case of polydisperse chiral phases of chiral nanorods,
q can be computed directly from the length-averaged KT
and K2,16

q0 = −
KT

K2
= −
∬ dldl′c(l)c(l′)K(l,l

′
)

T

∬ dldl′c(l)c(l′)K(l,l
′
)

2

, (7)

which is valid when the cholesteric pitch is much larger than the
typical length of the particles, i.e., P≫ L0. As previously mentioned,
the equilibrium cholesteric pitch is then P = 2π/q0. Here, the length-
specific splay, twist, and bend elastic constants, K(l,l

′
)

1 , K(l,l
′
)

2 , and
K(l,l

′
)

3 , respectively, and the length-specific chiral strength, K(l,l
′
)

T ,
within the format of Onsager’s second-virial theory read17,18
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βK(l,l
′
)

1 =
G(η)
2v0
∫ dr∬ dRdR

′ψ̇(θ, l)ψ̇(θ′, l′)

× f (R, R ′, l, l′, r)y2ωyω′y,

βK(l,l
′
)

2 =
G(η)
2v0
∫ dr∬ dRdR

′ψ̇(θ, l)ψ̇(θ′, l′)

× f (R, R ′, l, l′, r)y2ωxω′x,

βK(l,l
′
)

3 =
G(η)
2v0
∫ dr∬ dRdR

′ψ̇(θ, l)ψ̇(θ′, l′)

× f (R, R ′, l, l′, r)z2ωyω′y,

βK(l,l
′
)

T =
G(η)
2v0
∫ dr∬ dRdR

′ψ(θ, l)ψ̇(θ′, l′)

× f (R, R ′, l, l′, r)yω′x,

(8)

where χ̂ is taken to be parallel to the y-axis, ψ̇(l, θ)
= dψ(l, θ)/d cos θ is the derivative of the ODF, and ωi is the
i-component (i = x, y, z) of the orientation ω̂ of the long-axis of the
particle. Note that we also included here the expressions for the
length-specific splay and bend elastic constants, K(l,l

′
)

1 and K(l,l
′
)

3 ,
respectively, for completeness.

The length-specific elastic constants K(l,l
′
)

i with i ∈ 1, 2, 3 and
chiral strength K(l,l

′
)

T rely on a length-specific orientation distribu-
tion function ψ(θ, l). To obtain an expression for ψ(θ, l), we assume
strong nematic ordering, allowing us to use the Gaussian ansatz for
the trial ODF,16,19,20

ψ(θ, l) =
1
Z
α(l)
4π

exp [−
1
2
α(l)θ2

], (9)

where α(l), a length-dependent variational parameter, represents
the width of the Gaussian distribution, and Z is a normalization con-
stant. The argument θ is defined for 0 ≤ θ ≤ π/2. For π/2 < θ ≤ π, we
apply the polar mirror argument (π − θ) to maintain the apolarity of
ψ. To derive an expression for α(l), we first consider the ideal part
of the free-energy density by inserting Eq. (9) into Eq. (1). By taking
the asymptotic limit of large α(l),21 we find

fid[ρ] =∫ dlc(l)(ln [c(l)V0] − 1) + (
2π
Z
)∫ dlc(l)

× [ln α(l) + ln(
2π
Z
) − 1]. (10)

In the Onsager limit L0 ≫ D and under the assumption of weak
chirality, the excluded volume E(l, l′) can be approximated as

E(l,l
′
)
=

4G(η)ll′

π ∫ dRdR
′
∣ sin (γ(R, R ′))∣ ψ(θ, l)ψ(θ′, l′), (11)

where γ represents the angle between the long axis orientations of
the particles, denoted as ω̂ and ω̂ ′, respectively (see ω̂ in Fig. 1).
For θ, θ′, and γ, all of which are very small in the limit α(l)≫ 1,
we can employ the trigonometric relation cos γ = cos θ cos θ′
+ sin θ sin θ′ cosϕ, with ϕ indicating the angle between the

projections of the bundles onto a plane perpendicular to the director.
This relation yields γ2

≃ θ2
+ θ′2 − 2θθ′ cosϕ. By substituting this

and Eq. (9) into Eq. (11), we obtain

E(l,l
′
)
=G(η)

(2π)2

π
α(l)

Z
α(l′)

Z
ll′∬ dθdθ′(θ2

+ θ′2)

× exp [−
1
2
α(l)θ2

−
1
2
α(l′)θ′2]. (12)

In this equation, two important steps have been taken. First, the
azimuthal angle ϕ has been pre-averaged in the cosine term.22 Sec-
ond, the internal angles, ξ and ξ′, have been integrated out. The
remaining steps for the integration in Eq. (12) can be found in the
Appendix to Ref. 22. This integration results in

E(l,l
′
)
=G(η)(

2π
Z
)

2
ll′

4
√

2π

√
α(l) + α(l′)
√
α(l)
√
α(l′)

=G(η)(
2π
Z
)

2
ll′
¿
Á
ÁÀ 8

π
(

1
α(l)

+
1

α(l′)
). (13)

Substituting Eqs. (10) and (13) into f [ρ] and minimizing the free
energy density with respect to the non-conserved orientational
degrees of freedom yields16,20

δ f
δα(l)

= (
2π
Z
)

c(l)
α(l)

−G(η)(
2π
Z
)

2
√

8
π

lc(l)
2α2
(l)

× ∫ dl′l′c(l′)(
1

α(l)
+

1
α(l′)

)

−1/2

. (14)

Applying the stationary condition, δf /δα(l) = 0,20 yields the follow-
ing self-consistency equation:

α(l) =
4(G(η)c0)

2

π
(

2π
Z
)

2
2l2
⎧⎪⎪
⎨
⎪⎪⎩
∫ dl′l′P(l′)[1 +

α(l)
α(l′)

]

−1/2⎫⎪⎪
⎬
⎪⎪⎭

2

.

(15)
Throughout the derivation, we have retained the normaliza-

tion constant Z explicitly and generalized our analysis beyond
infinitely long and slender rods by introducing G(η). Notably, the
Parsons–Lee factor G(η) ≥ 1 in Eq. (15) favors a more sharply
peaked ODF as it appears squared in the prefactor. Moreover, as
the concentration increases and α(l) becomes larger, the factor
2π/Z tends toward unity. Consequently, at the high concentration
limit, this factor can be neglected. For the monodisperse case (l = l′

= 1) and at high particle concentrations where 2π/Z ≃ 1, we obtain
α0 = 4(G(η)c0)

2
/π. This result represents a Parsons–Lee-corrected

expression for α, as presented in Ref. 19. By combining Eq. (9) with
Eq. (15) in Eq. (8), we can calculate the equilibrium chiral wavevec-
tor q0 as defined in Eq. (7) within the Onsager–Straley approach for
any length polydisperse concentration distribution c(l).

To summarize, the Onsager–Straley theory is based on an
expansion of the full free energy functional for small q, with coef-
ficients evaluated in the achiral limit (q = 0). These coefficients,
namely the chiral strength and the twist elastic constant, enable
a direct estimation of the cholesteric pitch. We also note that the
Onsager–Straley theory is only valid in the limit of weak chirality
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due to the small-q expansion. In Sec. IV, we investigate the applica-
bility of the weak chirality limit, as assumed by Onsager–Straley’s
theory, to the cholesteric phases of twisted bundles of cellulose
microfibrils. To accomplish this, we compare the predictions derived
from Onsager–Straley’s theory with the full solutions obtained from
Onsager’s theory, not limited to Straley’s weak chirality regime.

IV. VALIDITY OF THE ONSAGER–STRALEY THEORY
FOR SUSPENSIONS OF CNCS

To assess the applicability of the weak chirality limit of
the Onsager–Straley theory to cholesteric phases of twisted bun-
dles of cellulose microfibrils, we compare the predictions of the
Onsager–Straley theory with the full solution from the Onsager the-
ory across a range of relevant CNC packing fractions. In Fig. 2, we
plot the predictions for the cholesteric pitch P of a monodisperse
system of CNC bundles with an aspect ratio L0 = 14D, bundle width
w = 3.1D, and microscopic pitch p = 54D, corresponding to a length
L0 = 130.2 nm and microscopic pitch p = 500 nm for microfibrils
with a diameter D = 9.3 nm, as a function of CNC packing fraction
η as obtained from the Onsager–Straley theory [Eq. (7)] using the
Gaussian ansatz for the ODF. For comparison, we also plot the full
solutions from Onsager theory. We find that the Onsager–Straley
predictions agree rather well with the full Onsager solution. The pre-
dictions slightly overestimate the pitch P at low packing fractions;
however, the difference decreases with increasing packing fractions.
This is to be expected as the ODF becomes more strongly peaked
around the (local) nematic director as the packing fraction increases.
Consequently, the Gaussian Ansatz becomes an increasingly good
approximation for the self-consistent ODF derived from the full
Onsager solution. This can also be appreciated by comparing the
nematic order parameters S as predicted by the full Onsager theory
with those obtained from the Gaussian ansatz α0 = 4(G(η)c0)

2
/π

for a monodisperse system, where the nematic order parameter is
defined by S = ∫dRP2(θ)ψ(θ) with P2(θ) = (3/2)cos2 θ − 1/2 the
second Legendre polynomial. The inset in Fig. 2 demonstrates that
the nematic order parameter S as obtained from the full Onsager
theory approaches the one obtained from the Gaussian ansatz upon

FIG. 2. The cholesteric pitch P in μm of a suspension of monodisperse CNC bun-
dles with an aspect ratio L0 = 14D, microscopic pitch p = 54D, width w = 3.1D,
and D = 9.3 nm as a function of the CNC packing fraction η as obtained using
Onsager–Straley theory. For comparison, we also plot the full solutions from
Onsager theory. The inset shows the corresponding nematic order parameter S
as a function of η.

increasing the packing fraction. However, the nematic order para-
meter S is slightly higher using the Gaussian approximation as the
ODFs are slightly more peaked due to the Parsons–Lee correction in
Eq. (15).

In summary, our predictions for the macroscopic pitch P of
cholesteric phases in twisted bundles of cellulose nanocrystals, using
the Onsager–Straley theory, show good agreement with the full
Onsager predictions. Given the previous findings in Ref. 8, where
the full Onsager predictions aligned well with experimentally deter-
mined pitches in apolar solvents,9,23 it is reasonable to expect that the
Onsager–Straley predictions would similarly correspond favorably
with these experimental values.

In the remainder of the paper, we will employ the
Onsager–Straley approach to investigate the effect of particle
shape, length polydispersity, surface charge, and fraction of twisted
bundles on the cholesteric pitch P.

V. THE EFFECT OF LENGTH AND CHIRALITY
OF CNC BUNDLES

We first calculate the cholesteric pitch P for a suspension of
CNC bundles with two different end-to-end lengths L0 and two dif-
ferent microscopic pitches p using the Onsager–Straley approach. In
Fig. 3, we plot the cholesteric pitch P as a function of packing fraction
η for CNCs with a length L0 = 14D and L0 = 21D and a microscopic
pitch p = 54D (a) and p = 500D (b). For CNCs with strong chirality,
as characterized by a small microscopic pitch p shown in Fig. 3(a),
we observe a significant dependence of the cholesteric pitch P on
the length L0 of the CNC bundles. More specifically, for a CNC

FIG. 3. The cholesteric pitch P in μm as a function of the CNC volume fraction η of
a cholesteric phase of monodisperse CNC bundles with an aspect ratio L0 = 14D
(red) and L0 = 21D (blue) and microscopic pitch p = 54D (a) and p = 500D (b), all
with a width w = 3.1D and D = 9.3 nm.
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system with a length-to-diameter ratio of L0 = 14D, we observe a
monotonic decrease in the macroscopic pitch P as the packing frac-
tion η increases. This behavior indicates that as the CNC bundles
become more densely packed, the cholesteric pitch decreases con-
sistently. However, for CNCs with a larger length-to-diameter ratio
of L0 = 21D and a short microscopic pitch p = 54D, we observe a
non-monotonic relationship between the macroscopic pitch P and
the packing fraction η. In the case of weakly chiral CNCs, as shown
in Fig. 3(b), changes in the particle length have little impact on the
resulting macroscopic pitch P.

It is intriguing to draw a comparison between our key observa-
tions regarding CNC bundles and another particle system, specifi-
cally hard helices, as investigated in Ref. 11. Our primary findings
indicate that, in the case of CNC bundles, an increase in parti-
cle length results in a longer cholesteric pitch P, corresponding to
a weaker cholesteric character. This observation is consistent with
Ref. 8. Additionally, for strongly twisted bundles (i.e., small p),

FIG. 4. (a) The cholesteric pitch P in μm, (b) the twist elastic constant K(l,l′)
2 , and

(c) the chiral strength K(l,l′)
T , with l = l′ = 1 as defined in Eq. (8), of a cholesteric

phase of monodisperse CNC bundles for varying microscopic pitches (p = 54D,
100D, and 500D), a width w = 3.1D, D = 9.3 nm, and a volume fraction η = 0.4,
all as a function of the aspect ratio L0/D. The solid lines in (a) represent fits to the
data, following the form Pfitting = C1(L0/D)C2 + C3.

the relationship between P and packing fraction η becomes non-
monotonic for sufficiently long CNC bundles, while weakly chiral
bundles exhibit a monotonic dependence of P on η. Remarkably,
both of these observations align with the behaviors observed for hard
helices, as studied in Ref. 11.

To examine in more detail the effect of bundle length on the
cholesteric pitch P, we plot in Fig. 4(a) the particle-length depen-
dency of P at volume fraction η = 0.4 for three microscopic pitches,
p = 54D, p = 100D, and p = 500D. The behavior of the cholesteric
pitch P as a function of particle length L0/D depends strongly on
the microscopic pitch p, as already hinted at in Fig. 3. In the case
of strongly twisted bundles with microscopic pitches of p = 54D
and p = 100D, the cholesteric pitch P shows a significant and rapid
increase as the particle length L0 increases. However, for weakly
twisted bundles with a microscopic pitch of p = 500D, the increase
in cholesteric pitch within the range of particle lengths L0/D con-
sidered is practically negligible. Within this experimentally relevant
range of particle lengths L0 for CNCs, the dependency on length
becomes less significant for sufficiently low degrees of twisting.
However, the cholesteric pitch P varies considerably for different
values of p. For example, at L0 = 15D, the pitches for p = 54D and
p = 100D are quite similar, whereas the pitch for p = 500D is several
times larger.

To delve deeper into the markedly different behaviors observed
for the three different microscopic pitch lengths p, we consider their
influence on KT and K2, which are predictive of the cholesteric pitch
P [see Eq. (7)]. The twist elastic constant K2 increases with L0/D
for all three values of p, even though the length-dependence behav-
ior is very different [Fig. 4(b)]. However, the behavior of the chiral
strength KT is more intricate, as depicted in Fig. 4(c). This aspect is
crucial in understanding the substantial increase in P with increas-
ing L0/D for short microscopic pitches p. For sufficiently long p,
the chiral strength monotonically increases with L0/D. In contrast,
for the two shorter p values, the behavior is non-monotonic, and it
decreases for relatively large L0/D. Remarkably, the chiral strength
even changes sign as q0 changes sign, resulting in a reversal of the
cholesteric handedness. We will further elaborate on these effects
related to the degree of chiral twist in the bundle in Fig. 6.

VI. THE EFFECT OF LENGTH POLYDISPERSITY
OF CNC BUNDLES

Next, we investigate the effect of length polydispersity of CNC
bundles on the cholesteric pitch P. Our Monte Carlo (MC) integra-
tion procedure follows the same approach as described in Ref. 8,
where we sample random orientations of pairs of CNC bundles.
However, we made some adjustments to the sampling procedure.
The lengths of the CNC bundles are sampled from the specified
length distribution. To determine α(l) for a given length distribution
P(l), we solve Eq. (15) self-consistently. By discretizing the length
distribution, we obtain a corresponding distribution of α(l). This
distribution can be pre-calculated and incorporated into the MC
integration process. Additionally, we assume the center-of-mass of
the first CNC bundle to be positioned at the origin. The spatial coor-
dinate of the second CNC bundle is randomly sampled within the
largest sphere, where two particles of lengths l and l′ could poten-
tially overlap. This modified sampling approach allows us to perform
the MC integration process and to compute the excluded volume
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[Eq. (3)] and elastic constants [Eq. (8)]. As in Ref. 8, the overlap of
two CNC bundles was evaluated by checking overlaps between the
respective Nsc hard spherocylinders.

In Fig. 5, we demonstrate the impact of length polydispersity σ
on the cholesteric pitch P, including its two contributions, K2 and
KT [see Eqs. (7) and (8)]. The polydispersity σ is defined as

σ = (
⟨l2
⟩ − ⟨l⟩2

⟨l2
⟩
)

1/2

. (16)

FIG. 5. (a) The cholesteric pitch P, (b) the twist elastic constant K2, and (c) the
chiral strength KT as a function of polydispersity σ of a lognormal and Gaussian
length distribution of a cholesteric phase of CNC bundles with an aspect ratio
L0 = 14D and microscopic pitch p = 53D, p = 100D, and p = 500D, respectively,
at a packing fraction η = 0.37, corresponding to a nematic order parameter
S = 0.93 (for σ = 0). Here, P0, K2,0, and KT ,0 represent the cholesteric pitch, twist
elastic constant, and chiral strength in the monodisperse case (σ = 0).

In general, the cholesteric pitch P as well as K2 increase with polydis-
persity σ. However, the shape of the curves for K2 varies depending
on the degree of twisting of the bundle. In the case of weakly twisted
bundles (p = 100D and 500D), K2 increases gradually with poly-
dispersity σ, whereas for strongly twisted particles (p = 53D), K2
remains unaffected by polydispersity until σ reaches 0.3, beyond
which it rapidly increases. The relationship for KT is more complex,
transitioning from a decrease with σ for strongly twisted particles to
an increase with σ for weakly twisted particles.

The results presented consider a lognormal length distribu-
tion that takes into account the explicit length dependency of the
α-parameter, denoted as α(l). In all cases, the first moment is
conserved, meaning that ∫dl lP(l) = 1.

Additionally, we provide results for a Gaussian length distribu-
tion at p = 53D, which exhibits a cholesteric pitch P that is virtually
indistinguishable from the corresponding case with a lognormal
length distribution. Consequently, we reach the same conclusion as
in Ref. 16 on polydisperse slender rods with a soft chiral interac-
tion. Namely, the specific shape of the length distribution becomes
less significant compared to the degree of polydispersity, where an
increase in the width of the length distribution results in a significant
“stiffening” of the nematic phase with respect to a twist distortion.

VII. THE EFFECT OF MICROSCOPIC PITCH
AND LENGTH POLYDISPERSITY

We now investigate in further detail the combined effect of
microscopic pitch p and the length polydispersity of the CNC bun-
dles on the cholesteric pitch P. In Fig. 6, we plot the equilibrium
cholesteric wave number q0L0 = 2πL0/P as a function of the internal
wave number qintL0 = 2πL0/p of the CNC bundle for monodisperse
(σ = 0) and polydisperse (σ = 0.2 and σ = 0.4) CNC suspensions

FIG. 6. The cholesteric wave number q0L0 as a function of the internal wave
number qintL0 for monodisperse (σ = 0) and polydisperse (σ = 0.2 and σ = 0.4)
systems with lognormal length distributions of CNC bundles of length L0 = 14D
and width w = 3.1D, D = 9.3 nm, and at a volume fraction η = 0.31. The gray fit-
ted curve for σ = 0 is given by C1(qint)

C2 + C3, with C1 = 0.029, C2 = 0.89, and
C3 = −0.000 26. Schematics of CNC bundles with an internal wave number of
qintL0 = 0.2, 1.5, 2.0, 2.9 from left to right.
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with an averaged bundle length L0 = 14D, width w = 3.1D, dia-
meter D = 9.3 nm, volume fraction η = 0.31, and a lognormal length
distribution.

In the limit qint → 0, the twist within the bundle vanishes,
resulting in an infinite cholesteric pitch (q0 → 0), corresponding to
a uniaxial nematic phase. As the twisting of the bundle increases
(starting from no twisting), there is a corresponding increase in the
value of q0 (or decrease in P) until a maximum value of q0 is reached
at an optimal degree of internal twist of the bundle (qintL0 ≈ π/2).
Beyond this optimum, as the bundle becomes increasingly twisted,
q0 starts to decrease again. In the case of an over-twisted bundle
where qintL0 → π, P tends toward infinity, indicating that the par-
ticles lose their chiral property. It is important to note that for
qintL0 > π, the handedness of the particles changes, leading to a
sign change in q0 as a consequence. At first glance, the curve may
appear to be symmetric about qintL0 ≈ π/2 for the monodisperse
case (σ = 0). However, upon closer examination, the curve exhibits
a slight rightward skewness.

Furthermore, as polydispersity increases (cf. σ = 0.2 and 0.4),
the effect becomes increasingly asymmetric about the optimum
degree of bundle twist. Initially, at vanishing bundle twist, the effect
of polydispersity is negligible. However, as the twist of the bun-
dle increases, the importance of polydispersity gradually grows. For
strongly twisted bundles, beyond the optimum twist, the relative dif-
ference between the monodisperse and polydisperse pitches remains
significant.

The asymmetry around the maximum can be explained by
Fig. 4. For small values of p (specifically p = 54D and 100D), there is a
significant rise in the cholesteric pitch with particle length, unlike the
cases with larger p values (such as p = 500D). In the regime of small
p, the contribution of longer particles from the polydisperse length
distribution becomes more prominent due to the strong dependence
of pitch on particle length. Consequently, larger variations in q0 are
observed for different polydispersities, particularly in the range of
larger qintL0, as depicted in Fig. 6, where the bundles exhibit strong
twisting.

VIII. ELASTIC CONSTANTS
We now turn our attention to the elastic constants. Figure 7

presents the elastic constants for monodisperse and polydisperse
(σ = 0.3) CNC bundles, along with reference values for rods con-
sisting of a single microfibril. All the structures have an average
aspect ratio of L0 = 14D. The elastic constants are plotted as a func-
tion of the uniaxial order parameter S, allowing for a comparison of
the two systems (bundles vs rods). This approach avoids compar-
ing them based on the number density N/V and packing fraction η,
as it is not possible for both of these parameters to be equal for the
two systems simultaneously due to the presence of four microfib-
rils in each bundle. Notably, we found that the elastic constants are
consistently higher for the bundles compared to the reference rods.
However, the discrepancy between the bundles and rods is notably
more pronounced for K1 and K2 compared to K3. More surprisingly,
a polydispersity level as high as σ = 0.3 in bundle length has a mini-
mal, almost negligible, effect on K1 and K2, resulting in only a slight
increase in K3 compared to the monodisperse reference.

To further evaluate the elastic constants for rods at S ≃ 0.8, we
employ the Gaussian Ansatz (GA) for the ODF and compare the

FIG. 7. Elastic constants (a) βK1D/v0 (splay), (b) βK2D/v0 (twist), and (c)
βK3D/v0 (bend) as a function of the nematic order parameter S for monodisperse
(σ = 0) and polydisperse (σ = 0.3) systems with a lognormal length distribu-
tion of CNC bundles of length L0/D = 14 along with the elastic constants for rods
consisting of single microfibrils as a reference.

results with the corresponding predictions made by Straley (S),24

where he utilized an approximate form of the Onsager’s trial ODF,
i.e., ψ(θ) = 1.483 exp(−6.92 + 4.58 cos2 θ + 2.0 cos4 θ − 2.01 cos6 θ
+ 2.28 cos8 θ). The comparison reads: (GA/S): K1 = 0.062/0.062,
K2 = 0.021/0.021, and K3 = 0.30/0.39. We thus find that the dif-
ference in the elastic constants as obtained by using the Gaussian
Ansatz or Onsager’s trial ODF is negligible to small.

Experimentally, the twist elastic constant for coated CNC was
determined to be in the range of K2 ≈ 0.02–0.07 pN for weight frac-
tions approximately ranging from 20 to 35 wt. %.23 This system
closely resembles the one in Ref. 8, albeit with toluene as the solvent.
By employing the volumetric packing fraction-to-weight fraction
conversion method outlined in Ref. 8, we can estimate K2 to be
in the range of 0.04–0.14 pN for weight fractions spanning from
27 to 35 wt. %. This corresponds to packing fraction values in the
range η = 0.19–0.25 and nematic order parameter values in the range
S = 0.55–0.76. This comparison demonstrates that our predictions
align with the experimental estimates, falling within the same range.
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IX. CHARGED BUNDLES
We now shift our focus to CNC bundles in aqueous solutions,

where electrostatic interactions play a significant role. As previously
described, these interactions arise from the ionization of sulfuric
groups on the surface of CNCs. The range of electrostatic interac-
tions is influenced by the concentration of mobile ions present in
the solvent. This includes the presence of dissociated counterions
that interact with the ionized sulfuric groups on the CNC surface as
well as any additional salt in the solution.

To model the interactions resulting from charges along the
backbone of each microfibril within a CNC bundle, we employ
a Yukawa-site model. This model discretizes the line charge uni-
formly. The total interaction energy between a pair of bundles
is obtained by summing the pairwise Yukawa-site interactions
between each individual bundle while excluding self-interactions.
When two bundles do not overlap, the site-to-site energy can be
expressed as follows:

βu(r) =
lB
D
(Z/M)2

(1 + κD/2)2
exp [−κ(r −D)]

r/D
, (17)

where Z denotes the charge on a spherocylinder, lB is the Bjer-
rum length, 1/κ is the Debye screening length, M is the number of
Yukawa sites representing the line charge, and r is the site-to-site
distance. If the bundles overlap, the interaction potential becomes
infinity, βu(r) =∞, which is analogous to the hard-core interactions
of uncharged CNC bundles. The electrostatic surface potential ϕ0 of
the spherocylinders (hence the bundles) is assumed to be uniform
and is given by

βeϕ0 =
lB

D/2
(Z/M)
(1 + κD/2)

. (18)

Figure 8 shows the effect of electrostatic screening on the
cholesteric pitch P of charged CNCs with a surface potential of
βeϕ0 = 2 and 3, corresponding to 50 and 75 mV at 298 K, respec-
tively. The linear charge is discretized with M = 10 sites, and the
range of the Coulomb interactions is truncated at a site-to-site dis-
tance of r = 20/κ. The microfibril aspect ratio is L0 = 14D, and the
microscopic pitch is p = 54D with D = 9.3 nm. Figure 8 reveals that
an increase in screening, characterized by an increase in κDeff, leads
to a decrease in the cholesteric pitch, i.e., a shorter pitch length
P. These findings align with experimental observations.5,25 Simi-
lar results were observed for hard helices exhibiting a short-ranged
repulsive interaction. In these cases, the cholesteric pitch increased
upon increasing the range of the soft interaction.11 In addition,
we find that the cholesteric pitch P decreases upon increasing the
nematic order parameter S, as was also observed for uncharged
bundles.

It is important to note that we use the Gaussian ansatz for the
orientation distribution function in our Onsager–Straley approach.
The width of the Gaussian distribution function is determined by a
dimensionless number density c0 = πL2

0DBN/4V with DB = D
√

CNsc
[see Eq. (15)]. By assuming that the particles are characterized
by an effective length L0 and an effective diameter D that takes
into account the electrostatic contributions, we can also compute
an effective packing fraction ηeff for a given c0 without explicitly

FIG. 8. The cholesteric pitch P as a function of the nematic order parameter S at
varying electrostatic screening lengths κD for monodisperse bundles consisting of
charged microfibrils with an aspect ratio L0 = 14D, width w = 3.1D, D = 9.3 nm,
and surface potential (a) βeϕ0 = 2 and (b) βeϕ0 = 3. The inset in (a) shows the
effective packing fraction ηeff for a given S.

separating the hard-core contribution from the electrostatic contri-
bution. Moreover, the width of the Gaussian distribution function
determines the nematic order parameter S. In the inset, we show
the relation between the nematic order parameter S and an effective
packing fraction ηeff, which can be used to estimate the dependence
of cholesteric pitch on the effective packing fraction.

When the screening length becomes on the order of the
microfibril width D, the cholesteric pitch P becomes highly sensi-
tive to changes in the ion concentration (or in κD) while keeping
the nematic order parameter S constant. However, as the screening
becomes stronger and the Debye screening length becomes signifi-
cantly shorter than D, for example, when κD > 4, the pitch becomes
less sensitive to a further increase in salt concentration. Conversely,
an increase in charge density (corresponding to a higher surface
potential ϕ0) at a constant nematic order parameter S leads to a
notable increase in the pitch, particularly within the screening range
of κD < 10.

X. BINARY MIXTURES OF BUNDLES AND RODS
Real systems of CNCs exhibit significant polydispersity in terms

of particle size. In addition, the size distribution within a suspension
can be influenced by tip sonication.9 The CNC population can be
broadly classified into several distinct “subspecies” that have varying
impacts on the cholesteric pitch. These subspecies include aggre-
gates, bundles, crystallites (individual microfibrils), and distorted
particles resulting from sonication. The relative proportions of these
classes depend on the degree of sonication, which typically breaks
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down aggregates and bundles into their constituent units, namely
microfibrils.

According to the first approximation, the system predomi-
nantly consists of two components: bundles and free crystallites.
Hence, we can model these systems as binary mixtures composed of
two distinct species: Bundles (B) act as chiral dopants, while rods (R)
are inherently incapable of transferring chirality to the macroscopic
scale. To describe the system, we extend the free-energy functional
in Eqs. (1) and (2) for a binary mixture,

f (q)[ρ] =∫ dlc(l)(ln [c(l)V0] − 1 +∑
i

xi ln xi)

+ ∫ dlc(l)∑
i

xi ∫ dRψi(R, l) ln [8π2ψi(R, l)]

+ ∫ dldl′ c(l)c(l′)∑
i
∑

j
xixjE(l,l

′ ,q)
i, j , (19)

where ψi(R, l) denotes the length-dependent orientation distribu-
tion function of species i = R, B, xB corresponds to the fraction
of bundles in the system, given by xB = NB/(NB +NR), and NB
and NR denote the number of bundles and rods, respectively. The
species-specific excluded volumes for bundle–bundle, rod–bundle,
and rod–rod interactions are denoted by E(l,l

′ ,q)
i, j , where i and j can

represent either R (rods) or B (bundles).
Using Onsager–Straley’s theory, we predict the cholesteric

pitch P for a binary mixture of rods and bundles. We employ the
same ODF for both rods and bundles, denoted as ψB = ψR = ψ, and
adopt the Gaussian ansatz for the ODF. This approach leads us to the
same expression for the width of the Gaussian distribution, α(l), as
in Eq. (15). We note that the length-dependent Gaussian width α(l)
includes a Parsons–Lee correction that depends on a dimensionless
number density c0 = Nνmix/V , where νmix denotes the second virial
coefficient of the particles in the isotropic phase of the mixture and
N = NB +NR. We approximate νmix by a number fraction averaged
excluded volume νmix = x2

BvBB + 2xB(1 − xB)vRB + (1 − xB)
2vRR with

vBB = πL2
0DB/4, vRR = πL2

0D/4, and vRB = πL2
0(DB +D)/8.

We compute the equilibrium chiral wave number q0 of the
cholesteric phase directly from the length-averaged and species-
averaged KT and K2,

q0 = −
∬ dldl′c(l)c(l′)∑i∑j xixjK(l,l

′
)

T,i, j

∬ dldl′c(l)c(l′)∑i∑j xixjK(l,l
′
)

2,i, j

. (20)

We use a similar numerical MC integration scheme to evaluate these
integrals as for the pure bundle systems above, but with the following
adjustment: for each two-particle configuration, during the MC inte-
gration process, we randomly select either a rod or a bundle for each
particle with a probability determined by their respective number
fractions xi.

We examine the impact of increasing the volume fraction of
bundles, acting as chiral dopants, on the equilibrium chiral wave
number q0 for both monodisperse particles and length-polydisperse
rods and bundles following a lognormal distribution with σ = 0.4.
The results are depicted in Fig. 9. The bundle volume fraction,
denoted as ζB, is calculated using the expression ζB = xBvB/(xBvB
+ (1 − xB)vR), where vB and vR are the volumes of a bundle and a
rod, respectively.

FIG. 9. The equilibrium cholesteric wavenumber q0 as a function of the volumetric
chiral dopant fraction ζB for a monodispere and length-polydisperse (lognormal,
σ = 0.4) binary mixture of bundles (the dopant) and rods, both with averaged
length L0 = 14D and width w = 3.1D, D = 6.5 nm. The CNC packing fraction is
η = 0.4, and the microscopic pitch is p = 54D.

As expected, when no bundles are present, the chiral wave
number q0 is found to be zero. However, as the fraction of bun-
dles increases, q0 also increases, leading to a larger degree of helical
twisting. The observed behavior is rather similar to the experimental
observations in Ref. 9, particularly when polydispersity is considered
in the model, exhibiting a nearly linear relationship between q0 and
ζB. It is important to note that the experimental system in Ref. 9
is aqueous, where electrostatic interactions likely play a significant
role. In our predictions, we have solely accounted for hard-particle
interactions. However, as depicted in Fig. 8, the masking of the par-
ticle chirality due to electrostatics tends to primarily increase or
decrease the cholesteric pitch, depending on the level of screening.
This effect should not fundamentally change qualitative behavior.
Our findings on binary mixtures of bundles and crystallites further
support the hypothesis proposed by Parton et al.9 that bundles act as
chiral dopants in a crystallite-rich environment, thereby triggering
the self-assembly of a cholesteric phase.

XI. CONCLUSIONS
Using the second-virial Onsager–Straley theory and modeling

CNC microfibril bundles as hard chiral bundles of spherocylin-
ders, we demonstrate that the weak chirality limit of Straley’s theory
provides an accurate approximation for the predictions obtained
from the full Onsager theory, especially at high packing fractions.
In addition, we extend the Onsager–Straley theory to encompass
length-polydisperse systems and screened Coulomb interactions,
employing Yukawa potentials between discretized line charges on
the spherocylinders. Furthermore, we consider binary mixtures of
CNC bundles and individual crystallites (rods), creating a more
realistic representation of CNC systems.

Our first observation reveals the substantial influence of the
degree of internal chirality within the bundles, characterized by the
microscopic pitch p, on the cholesteric pitch P. The cholesteric chiral
wave number q0 reaches its maximum when the normalized inter-
nal chiral wave number qintL0 is approximately equal to π/2. The
normalized internal chiral wave number serves as a measure of the
degree of twisting of the particle.
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Furthermore, we find that the effect of particle aspect ratio
(L0/D) and polydispersity on the cholesteric pitch P is moder-
ate to weak when the particles exhibit weak twisting (qintL0 ≲ π/2)
and diminishes for qintL0 ≪ π/2. However, for strongly twisted
bundles (qintL0 ≳ π/2), this effect becomes substantial. Generally,
an increased aspect ratio and polydispersity tend to increase the
cholesteric pitch. Furthermore, in our comparison between a Gaus-
sian and lognormal length distribution, we observe that, while
keeping the same length polydispersity σ, the shape of the length
distribution does not significantly impact the cholesteric pitch.

In addition, we demonstrate that the presence of long-ranged
screened-Coulomb interactions tends to mask the inherent chirality
of the bundles, leading to a larger cholesteric pitch.

Finally, our study provides further support for the hypothesis
that microfibril bundles act as chiral dopants in CNC suspen-
sions that are predominantly composed of crystallites (free singular
microfibrils), which are incapable of stabilizing a cholesteric phase
on their own. These results are in accordance with experimental
observations reported by Parton et al.9
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APPENDIX: DETERMINATION OF THE
PARSONS-LEE CORRECTION

As mentioned in the main text, we employ a Parsons–Lee
corrected form of the length-dependent width α(l) for the Gaus-
sian orientation distribution function. The Parsons–Lee correc-
tion includes a dimensionless concentration c0 = Nv0/V , where
v0 = πL2

0DB/4 denotes the second virial coefficient of hard rods in

FIG. 10. The cholesteric pitch P in μm and the nematic order parameter S (inset)
as a function of the packing fraction of the bundles of a suspension of monodis-
perse CNC bundles with an aspect ratio L0 = 14D, microscopic pitch p = 54D,
width w = 3.1D, and D = 9.3 nm as predicted by Onsager–Straley theory (O–S)
using DB = D (blue), D

√

CNsc (red) and D(CNsc) (green), respectively, with
C = 0.75 correcting for overlapping spherocylinders. Full Onsager predictions
(black) are obtained using Ref. 8.

the isotropic phase in the limit L0 ≫ DB, and where DB denotes a
characteristic width. In the case of chiral bundles, we need to define
the characteristic width of a bundle, DB, which is bounded by the
diameter of a single microfibril D and the width w of the bundle.
Figure 10 shows that using DB = D overestimates the cholesteric
pitch P, whereas DB = w ≃ D(CNsc) underestimates P, where C is a
correction factor accounting for the degree of overlap of the sphero-
cylinders constituting the bundle. In addition, Fig. 10 demonstrates
that the best agreement with the full Onsager predictions is obtained
when DB = D

√
(CNsc). This expression for DB is derived by map-

ping the bundle to a representative cylindrical rod with a diameter
DB, possessing the same length L0 and volume as the bundle. This
mapping is reasonable when L0 ≫ w and w ≥ D.

It adjusts c0 to account for the width of the bundle, thereby
influencing the broadness of the orientation distribution function
(ODF) ψ(θ). In terms of the ODF, the volume-equivalent rod
approximation (DB = D

√
(CNsc)) also exhibits the best agreement

with the self-consistent ODF derived from the full Onsager solu-
tion. The nematic order parameter S from the volume-equivalent
rod approximation converges most rapidly to the full Onsager solu-
tion compared to the cases of the upper and lower bounds for DB.
As expected, DB = D yields a lower nematic ordering, while DB = w
leads to an overestimated ordering. This indicates that the primary
contributor to the local nematic ordering of the phase is the long axis
of the bundle, while other intricate features have a lesser impact.
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