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ABSTRACT
Since the influential work of ten Wolde, Ruiz-Montero, and Frenkel [Phys. Rev. Lett. 75, 2714 (1995)], crystal nucleation from a Lennard-Jones
fluid has been regarded as a paradigmatic example of metastable crystal ordering at the surface of a critical nucleus. We apply seven commonly
used local structure detection algorithms to characterize crystal nuclei obtained from transition path sampling simulations. The polymorph
composition of these nuclei varies significantly depending on the algorithm used. Our results indicate that one should be very careful when
characterizing the local structure near solid–solid and solid–fluid interfaces. Particles near such interfaces exhibit a local structure distinct
from that of bulk fluid or bulk crystal phases. We argue that incorporating outlier detection into the local structure detection method is
beneficial, leading to greater confidence in the classification results. Interestingly, the bcc coating nearly disappears when adopting a machine
learning method with outlier detection.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0239424

I. INTRODUCTION

In the simplest view of crystallization, a stable crystal phase
forms directly from a supercooled fluid. However, as early as
1897, Ostwald realized that this simple picture does not always
hold: his famous step rule states that the nucleating phase is
typically a less stable crystal phase instead. Later, Stranski and
Totomanow2 rationalized Ostwald’s step rule by proposing that
the nucleating phase is determined by the one with the lowest
free-energy barrier for nucleation. Alexander and McTague3 fur-
ther demonstrated that general symmetry considerations uniquely
favor the body-centered cubic (bcc) crystal phase near the
solid–fluid coexistence. These studies all predict an important
role for metastable phases during crystal nucleation. In recent
decades, it has become possible to directly test these predictions
using computer simulations. This has enabled the observation of
intermediate phases in the crystallization of colloidal fluids,4–7

metallic melts,8,9 and aqueous solutions.10,11 These intermediates

can be metastable crystal polymorphs,6–8,12 amorphous solids,4,11 or
fluid phases.4,13

In 1995, ten Wolde, Ruiz-Montero, and Frenkel1 identified a
remarkable role for bcc during crystal nucleation from a Lennard-
Jones fluid, which is in simultaneous accordance with the conjec-
tures of Ostwald, Stranski and Totomanow, and Alexander and
McTague. They observed that small, precritical nuclei were pre-
dominantly bcc-like, while the critical nucleus was predominantly
fcc-like. Surprisingly, the surface of the critical nucleus was also sig-
nificantly bcc-like. Since the fcc crystal is the stable phase under
the conditions they investigated, the initial formation of bcc is in
line with Ostwald’s step rule. The bcc “coating” is also consis-
tent with density functional theory calculations,14–16 which suggest
that the presence of bcc lowers the nucleation barrier. Since the
influential work of ten Wolde, Ruiz-Montero, and Frenkel,1,17–21

similar coatings of metastable polymorphs on the surface of crys-
tal nuclei have been identified in water,19,22–24 colloids,25–27 and
metals.28
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However, in the case of water, several authors have recently
demonstrated that the surface structure is highly dependent on the
local structure detection algorithm.19,23,24 Even minor variations in
the definition of nearest neighbors can lead to the appearance or
disappearance of the coating.23 This controversy in water raises the
question of whether the bcc coating of Lennard-Jones nuclei exhibits
a similar dependence on the local structure detection algorithm.

In this paper, we aim to address this question by first simulating
crystal nucleation from a Lennard-Jones fluid under the same con-
ditions as those investigated in Ref. 1 using transition path sampling.
We characterize the structure of crystal nuclei using seven different
local structure detection methods. This includes two variants of the
histogram method from Ref. 1 as well as methods based on more
recent advances in local structure detection, such as locally aver-
aged bond-order parameters,29 machine learning,30 and polyhedral
template matching.31

II. SIMULATION METHODS
A. Molecular dynamics

We perform molecular dynamics simulations of N = 3 × 104

particles interacting with a Lennard-Jones pair potential,

u(r) = 4ε[(σ
r
)

12
− (σ

r
)

6
],

in the isobaric–isothermal (NPT) ensemble. Here, σ and ε set the
length and energy scales, respectively, and r is the distance between
a pair of particles. Molecular dynamics simulations with a Lennard-
Jones pair potential were originally used to model liquid argon,32

but the simple form of the pair potential has also made it a princi-
ple testing ground for computational methods, including methods
for nucleation and local structure detection.17,18,29,33 We truncate
the pair potential at r = 2.5σ and apply isotropic tail corrections
for the energy and pressure. We integrate the equations of motion
with a Nosé–Hoover thermostat and barostat, as implemented in
the LAMMPS molecular dynamics code.34 We use a time step

Δt = 0.004
√

mσ2/ε, where m is the particle mass, and relaxation
constants of 500 and 100 time steps for the barostat and thermostat,
respectively. Unless stated otherwise, the simulation box is cubic and
the barostat is isotropic.

B. Brute-force nucleation simulations
We first perform brute-force simulations of nucleation at three

different state points. These state points correspond to ∼30% super-
cooling at three different pressures: Pσ3/ε = 0, 5.68, and 50. The
exact temperatures are kBT/ε = 0.50, 0.79, and 2.30, respectively.
Here, P denotes the pressure, T is the temperature, and kB is
Boltzmann’s constant. For these simulations, we start with a fluid
phase and wait for the system to spontaneously crystallize. We per-
form 16 independent brute-force nucleation simulations for each
state point.

C. Transition path sampling
Similar to Ref. 1, we focus on temperature kBT/ε = 0.92 and

pressure Pσ3/ε = 5.68. As the melting temperature at this pressure

is approximately kBTm/ε = 1.11,35 these conditions correspond to a
supercooling of around 20%.

At this supercooling, there is a significant barrier for nucle-
ation, meaning that it would take a very large amount of computer
time for nucleation to occur spontaneously. To address this issue,
enhanced sampling techniques, such as umbrella sampling,36,37

metadynamics,18,38,39 forward-flux sampling,40 and transition path
sampling,17,20,26,41–43 have been introduced. All these techniques
require an order parameter to monitor, or even drive, the progress
of a nucleation trajectory. Previous work has used, for example, the
number of particles in the nucleus, or the global Steinhardt bond
orientational order Q6 of the system,1 as the order parameter. In
the case of metadynamics, the choice of order parameter directly
influences the dynamics to favor sampling away from already visited
configurations, whereas umbrella sampling restrains the sampling
toward a small order parameter range. In this work, we focus on
the influence of the local structure detection algorithms on the anal-
ysis of crystal nuclei, rather than on the potential influence of an
order parameter on the simulation of crystal nucleation. To mini-
mize the impact of the choice of order parameter on the nucleation
mechanism, we use transition path sampling.

Transition path sampling (TPS) is designed to efficiently sam-
ple unbiased trajectories of rare events, such as nucleation. To
initialize the procedure, we first require an initial nucleation tra-
jectory, which we obtain from one of the brute-force nucleation
simulations at kBT/ε = 0.79. From this initial trajectory, TPS gener-
ates an unbiased ensemble of nucleation trajectories using “shooting
moves.” These shooting moves generate a modified trajectory from a
previous trajectory, thereby performing a random walk in trajectory
space in a Monte Carlo fashion, and equilibrating the ensemble of
trajectories. In Appendix A, we explain the details of our TPS simu-
lations. The result of our TPS simulations is an unbiased ensemble of
50 decorrelated nucleation trajectories. Furthermore, we have per-
formed a committor analysis to identify an ensemble of 50 critical
nuclei.

Using TPS, we have access to 50 distinct critical nuclei and 50
unique nucleation trajectories at a temperature of kBT/ε = 0.92 and
a pressure of Pσ3/ε = 5.68.

III. LOCAL STRUCTURE DETECTION METHODS
To analyze the local structure in all these nucleation trajecto-

ries, we employ a variety of local structure detection methods. In
Sec. III A, we explain how we identify crystal nuclei. Subsequently,
we explain the seven different ways used to identify the crystal poly-
morphs face-centered cubic (fcc), hexagonal close-packed (hcp), and
body-centered cubic (bcc) in these crystal nuclei. With the excep-
tion of polyhedral template matching,31 these methods are based
on local order parameters derived from spherical harmonics expan-
sions qlm(i) of the nearest neighbor density of each particle i.1,29,44

Unless stated otherwise, nearest neighbors are identified using the
solid-angle based nearest-neighbor algorithm.45 From the spheri-
cal harmonics expansion qlm(i), we compute the inner products
d6(i, j) = q6m(i) ⋅ q6m(j) as introduced in Ref. 1, along with the non-
averaged bond order parameters ql(i) and wl(i), and the locally
averaged bond order parameters ql(i) and wl(i) as introduced in
Ref. 29. Please see Appendix B for the precise definition of these local
order parameters.
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A. Identification of crystal nuclei
Following Ref. 1, we use the inner products d6(i, j) to iden-

tify crystal nuclei. A pair of particles (i, j) has a “solid-like bond”
if d6(i, j) > 0.7. Subsequently, a particle is classified as “solid-like”
if it has at least six of such solid-like bonds, and solid-like particles
are considered to belong to the same solid-like cluster if they have
a solid-like bond. For each snapshot in our simulations, we iden-
tify the largest solid-like cluster as the crystal nucleus. Only particles
within this crystal nucleus are further analyzed using a polymorph
classification scheme, while all other particles are simply labeled as
“fluid-like.”

B. Polymorph classification with non-averaged bond
order parameters

We start with the polymorph classification scheme used by
ten Wolde, Ruiz-Montero, and Frenkel.1,46 This scheme is based
on the distributions of the non-averaged bond order parameters
(q4, q6, w6). Reference 1 calculated histograms of (q4, q6, w6) and
concatenated these histograms to form a “characteristic vector” v.
To classify a collection of particles, the characteristic vector v is
calculated and projected onto the characteristic vectors of the bulk
phases. To be specific, v is decomposed using a linear least-squares
algorithm into contributions from the fcc, bcc, and fluid phases by
minimizing the distance,

Δ2 = [v − ( ffccvfcc + fbccvbcc + fflvfl)]2. (1)

Here, ffcc, fbcc, and ffl represent the fractions of fcc, bcc, and fluid-
like order, respectively. During the optimization, the fractions are
constrained to lie between 0 and 1.

We note that the presence of hcp-like order is not consid-
ered in Ref. 1. To investigate its significance, we also examine
a variant in which we project the characteristic vector onto the fcc,
hcp, bcc, and fluid phases by minimizing the distance,

Δ′2 = [v − ( ffccvfcc + fhcpvhcp + fbccvbcc + fflvfl)]2. (2)

We will refer to the classification scheme based on Eq. (1) as the
“histogram scheme excluding hcp” and the one based on Eq. (2) as
the “histogram scheme including hcp.”

To illustrate the histogram schemes, we show the distributions
of q4, q6, w4, and w6 in the top row of Fig. 1. These distributions
correspond to the bulk phases under the simulation conditions
Pσ3/ε = 5.68 and kBT/ε = 0.92. Although the distributions for the
bulk phases are highly overlapping, there are distinct differences.
For example, particles in the fcc phase generally exhibit higher q4
values compared to particles in the bcc phase. The black line cor-
responds to the bond order distributions of particles within critical
nuclei. To determine the relative contributions of different phases in
these nuclei, the black lines are fitted as a linear combination of the
other distributions.

C. Polymorph classification with locally averaged
bond order parameters

Next, we discuss two different polymorph classification
schemes based on the locally averaged bond order parameters
ql and wl. We label these schemes according to the order para-
meters they are based on: the (w4, w6)-scheme and the q4-scheme.
In the (w4, w6)-scheme, a solid-like particle is classified as follows:

FIG. 1. Distributions of the non-averaged bond order parameters q4, q6, w4, w6 (top row) and their locally averaged counterparts q4, q6, w4, w6 (bottom row).29 The lines
represent the distributions of bulk phases at Pσ3

/ε = 5.68 and kBT/ε = 0.92, while the black lines correspond to particles in critical crystal nuclei under the same conditions.
The vertical black lines in the bottom row indicate the thresholds used to distinguish between fcc, hcp, and bcc phases in the two polymorph classification schemes based
on locally averaged bond order parameters.
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⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

fcc-like if w6 < 0 and w4 < 0,

hcp-like if w6 < 0 and w4 > 0,

bcc-like if w6 > 0.

In the q4-scheme, a solid-like particle is classified as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

fcc-like if q4 > 0.125,

hcp-like if 0.083 < q4 < 0.125,

bcc-like if q4 < 0.083.

We have chosen these thresholds to identify the crystal polymorphs
with the fewest mislabeled particles.47

To illustrate these two schemes, we show the distributions of
q4, q6, w4, and w6 in the bottom row of Fig. 1. Again, these dis-
tributions correspond to the bulk phases and the critical nuclei.
The thresholds used above to distinguish the different phases are
indicated by the black vertical lines. As Ref. 29 demonstrated, the
distributions of the locally averaged bond order parameters (ql, wl)
are well-separated. For example, the fluid phase is well-separated
from the crystal phases with respect to q6, and the fcc and hcp crys-
tal phase are well-separated based on w4 and q4. Although q4 is
commonly used to distinguish between fcc, hcp, and bcc phases,
we note that the distributions for hcp and bcc show significant
overlap.

D. Machine-learned polymorph classification
with outlier detection

In recent years, there has been a rise in the use of machine learn-
ing for local structure detection.24,28,30,48–54 In particular, several
approaches have been proposed for crystal polymorph classification.
While we do not claim that the schemes used here are necessarily the
best or the only methods for polymorph classification using machine
learning, there are several general aspects that we believe are impor-
tant to consider when applying polymorph classification to nucle-
ation. First, to compare to other polymorph classification schemes,
we seek a machine-learning method that classifies particles as fluid,
fcc, hcp, or bcc. Second, given the uncertain nature of interfacial
particles, as observed in ice nucleation studies,19,23,24 the method
should be able to recognize when the local structure does not corre-
spond to any of these phases. Third, to avoid coarse-graining across
solid–fluid or solid–solid interfaces, the method should rely solely
on the nearest neighbors of a particle. For these reasons, we use the
following machine-learned polymorph classification schemes, which
are largely inspired by Ref. 30.

To capture the local structure around a particle i, we use
the non-averaged bond order parameters ql(i), as they rely solely
on nearest-neighbor information. However, as shown in Fig. 1,
these distributions exhibit more overlap compared to their aver-
aged counterparts. Therefore, we employ a neural network to
extract more informative features from the non-averaged bond
order parameters.53 To be more precise, the neural network per-
forms a non-linear combination and dimensionality reduction of
the input features into a lower-dimensional space, where the bulk
phases are classified using a Softmax function. The neural network
architecture is shown in Fig. 2. The input to the neural network is
a 195-dimensional vector consisting of non-averaged bond order

FIG. 2. Machine-learned polymorph classification with outlier detection. For each
particle, 195 different non-averaged bond order parameters ql are computed. A
neural network transforms these ql into non-normalized log-likelihoods ℓ for each
bulk phase. In this four-dimensional latent space, multi-dimensional Gaussian dis-
tributions, represented here by ellipsoids, are fitted to the bulk phase distributions.
If a particle environment maps to the interior of an ellipsoid, it is classified as
belonging to the corresponding phase, otherwise, it is considered an outlier.

parameters ql(i) calculated using contributions from varying num-
bers of nearest neighbors. To be more specific, for each number
k = 2, . . . , 14, we identify the k nearest neighbors to particle i and
compute the spherical harmonics expansions qlm(i). Then, for each
number of nearest neighbor k, we compute the bond order para-
meters ql, where we vary l from 2 to 16. In this way, we compute
13 sets of bond order parameters q2, . . . , q16, giving a total number
of 195 = 13 × 15 input features. We train the neural network to clas-
sify bulk fluid and crystal phases based on these input features. The
neural network consists of 195 input nodes, one hidden layer of 100
nodes, and four output nodes corresponding to the four different
phases. We also considered neural network architectures with more
hidden layers and more hidden nodes, but found that these changes
did not significantly improve the classification accuracy. Similarly,
we considered including the third-order invariants wl to the input
features, but this also did not significantly improve the classifica-
tion accuracy. In Appendix C, we perform a sensitivity analysis to
assess which of the 195 input features are most important for the
classification problem.

For the training data, we consider two approaches. In the
first approach, following Ref. 30, we generate the training data by
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adding Gaussian noise to ideal crystal lattices, specifically for fcc,
hcp, and bcc. In other words, the training data are derived from
Einstein crystals. The spring constants of these Einstein crystals
are set to match those measured for a thermally equilibrated fcc
crystal under our simulation conditions. The average magnitude
of the Gaussian noise is ∼10% of the nearest neighbor distance
in each case. In addition, we add an equilibrated bulk fluid phase
in the training data to enhance the network’s capability to dis-
tinguish fluid-like from crystalline local structures. In the second
approach, the training data are simply obtained from thermally
equilibrated fcc, hcp, bcc, and fluid phases under our simulation
conditions. We refer to the machine-learned (ML) classifiers based
on these two training sets as the ML1 and ML2 schemes, respec-
tively. To be clear, the ML1 scheme uses ideal crystal lattices with
noise, while the ML2 scheme uses thermally equilibrated crystal
phases.

As mentioned above, we require a method to detect when
the local structure does not correspond to any of these phases. In
machine learning, identifying deviations from a set of reference data
is referred to as novelty detection or outlier detection. To describe
the outlier detection algorithm that we use, we first note that the out-
put of the neural network is a non-normalized log-likelihood ℓ for
each phase. For example, the probability pfcc that a particle belongs
to the fcc phase is computed as

pfcc = eℓfcc

eℓfcc + eℓhcp + eℓbcc + eℓfl
.

The set of non-normalized log-likelihoods ℓ provides a convenient
“latent space” in which we can apply the outlier detection scheme
proposed in Ref. 55. Each bulk phase corresponds to a specific dis-
tribution within this four-dimensional latent space. By inspecting
the survival functions of the so-called “Mahalanobis” distance, we
find that these distributions are well-described by multi-dimensional
Gaussian distributions. In Fig. 2, we show three dimensions of
the four-dimensional latent space. The Gaussian distributions cor-
responding to the bulk phases are represented by ellipsoids. The
surface of each ellipsoid represents, within the Gaussian approxi-
mation, the smallest surface that encloses 95% of the distribution.
Consequently, 95% of the particles in a bulk fcc phase will be mapped
within the interior of the fcc ellipsoid. We have chosen this threshold
of 95% conservatively to ensure high confidence in positive classifi-
cations. It should be noted that we use the outlier detection scheme
on the latent space of log-likelihoods ℓ rather than using a thresh-
old on the classification probabilities pfcc, phcp, . . .. This approach
is chosen because the classification probabilities output by a neural
network can be misleadingly high even for outliers.55 For example,
when classifying a simple cubic crystal structure using the ML1 neu-
ral network, the output probability was p > 0.99 for the hexagonal
close-packed (hcp) class, even though the simple cubic structure is
clearly different from the hexagonal close-packed structure. In con-
trast, our outlier detection method correctly identifies the simple
cubic crystal structure as an outlier.

In summary, our machine-learned polymorph classification
schemes with outlier detection, ML1 and ML2, operate similarly,
with the only difference between them being the training data. For
each particle, 195 non-averaged different bond order parameters ql

FIG. 3. Templates used for the identification of local fcc, hcp, and bcc crystal
structures in the polyhedral template matching (PTM) algorithm.

are calculated. These ql values are then mapped by the neural net-
work to a four-dimensional latent space where the bulk phases are
separated. If a particle in this space falls within the ellipsoid corre-
sponding to a specific phase, we classify this particle as belonging
to that phase. If this particle lies outside all ellipsoids, we classify
this particle as an outlier. In Fig. 2, we show an example where the
ML1 scheme is applied to a nucleus from our TPS simulations. Each
small dot represents a single particle within the nucleus, and the
dots are colored according to their classification, with the black dots
indicating outliers.

E. Polyhedral template matching
Finally, we also employ a polymorph classification method

known as polyhedral template matching (PTM).31 The PTM algo-
rithm identifies local crystal structure by comparing the real-space
positions of a central particle and its nearest neighbors to a prede-
fined reference template. The reference templates used for fcc, hcp,
and bcc in PTM are shown in Fig. 3. For fcc and hcp, the template
consists of the central particle and its 12 nearest neighbors, while
for bcc, the template contains the central particle and its 14 nearest
neighbors. The output of the PTM algorithm is a root-mean-square-
deviation (RMSD) score for each particle relative to each crystal
template. The particle is classified according to the crystal phase with
the lowest RMSD score, indicating the best-matching crystal phase.
In order to increase confidence in the classification, Ref. 31 recom-
mends applying a maximum value of the RMSD. We use a maximum
RMSD of 0.12; thus, if a particle’s RMSD exceeds this value, it is
classified as fluid-like.

IV. RESULTS
We apply the seven different polymorph classification schemes,

introduced in Sec. III, to the crystal nuclei sampled with transition
path sampling. To summarize, these schemes include two vari-
ants of the histogram method used by ten Wolde, Ruiz-Montero,
and Frenkel,1 one including hcp and one excluding hcp; two
schemes based on Lechner–Dellago’s locally averaged bond order
parameters:29 the (w4, w6)- and q4-schemes; two machine learn-
ing methods with outlier detection inspired by Ref. 30, labeled as
ML1 and ML2; and finally, the polyhedral template matching (PTM)
algorithm.31

To illustrate these schemes, we start by applying them to two
representative nuclei from the TPS simulations. In Fig. 4, the color
of the particles indicates their local structure: fcc-like particles are
dark blue; hcp-like particles are red; bcc-like particles are yellow; and
fluid-like particles are light gray. The top row shows a cut-through
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FIG. 4. Two crystal nuclei classified
using five different polymorph classifi-
cation schemes. The labels correspond
to the polymorph classification meth-
ods described in Sec. III. The top row
shows a cut-through image of a nucleus
of around 600 particles, while the bot-
tom row shows the external surface of
a post-critical nucleus of around 1100
particles.

image of a nucleus around the critical size of 600 particles, while
the bottom row shows the external surface of a post-critical nucleus
of around 1100 particles. For this post-critical nucleus, fluid-like
particles are not shown. It should be noted that the histogram-
based schemes inherently apply to collections of particles, rather
than single particles, which is why they are not included in Fig. 4.
All classification schemes agree that the core of the nucleus is pre-
dominantly fcc-like. However, they differ in how they classify the
local structures at the interface between the crystal nucleus and the
surrounding fluid. This disagreement is especially visible in the bot-
tom row, where the fluid–crystal interface of the post-critical nucleus
looks completely different for each different classification scheme.
According to the (w4, w6)-scheme, the interface is mainly fcc-like
with smaller amounts of hcp and bcc. In contrast, the q4 and ML2
schemes identify a higher portion of hcp- and bcc-like particles at the
interface. More remarkably, both the PTM and ML1 schemes iden-
tify almost no bcc-like particles within these nuclei. Interestingly,
the methods not only disagree near the solid–fluid interface but also
near internal solid–solid interfaces. For instance, the top right of the
smaller nucleus (top row of Fig. 4) is predominantly classified as hcp-
like according to the q4-scheme. In contrast, all other methods agree
that this region contains two hcp-like layers in between fcc-like lay-
ers. This example illustrates how classification schemes can disagree
on the identification of local structures, particularly near solid–solid
and solid–fluid interfaces.

A. Radial dependence of critical nucleus composition
To provide a more quantitative analysis, we examine the local

structure of the ensemble of critical nuclei. For each particle in the
system, we determine its local structure using the various classifica-
tion schemes and measure its distance from the center of mass of
the critical nucleus. In Figs. 5(a)–5(g), we plot the fraction of parti-
cles classified as fcc-, hcp-, bcc-, and fluid-like, as a function of their
distance from the center of mass of the critical nucleus.

We observe the same trends as shown in Fig. 4: the core of the
nuclei is predominantly fcc-like, while the classification of the inter-
face varies significantly among the different schemes. In line with
the findings of Ref. 1, the histogram scheme excluding hcp shows
a significant presence of bcc on the surface. For sufficiently large
distances Δr/σ from the center of mass, the bcc fraction exceeds
even the fcc fraction. In contrast, the histogram scheme including
hcp suggests that hcp ordering predominates the nucleus surface,
with the bcc fraction significantly reduced but still larger than the
fcc fraction for larger Δr/σ. The q4-scheme qualitatively agrees

with the histogram scheme including hcp. On the other hand, the
(w4, w6), PTM, and ML1 schemes agree that the fcc structure still
dominates the surface, but they differ regarding the bcc fraction:
PTM and ML1 indicate that bcc is almost completely absent, while
the (w4, w6)-scheme still detects a significant bcc fraction near the
nucleus surface. ML2 shows a dominant bcc and a significant hcp
presence on the surface.

In summary, we conclude that the solid–fluid interface of crit-
ical nuclei is bcc-dominated according to the histogram scheme
excluding hcp and ML2, hcp-dominated according to the histogram
scheme including hcp and q4, and fcc-dominated according to
(w4, w6), PTM, and ML1. The only consistent finding all methods
agree on is that the core is fcc-dominated.

B. Size dependence of nucleus composition
These findings also have implications for the size dependence

of the nucleus composition. We divided the crystal nuclei from our
TPS simulations into 20 different groups based on their nucleus size,
with each group corresponding to nucleus sizes ranging from 0–50,
50–100, . . ., 950–1000. For each group, we classified the local struc-
ture according to the seven polymorph classification schemes and
averaged the fractions of fcc-, hcp-, bcc-, and fluid-like order in each
group. In Figs. 5(h)–5(n), we show the resulting averaged compo-
sition as a function of nucleus size. To facilitate comparison, we
have normalized the composition so that the fcc, hcp, and bcc frac-
tions sum to one. Furthermore, we have highlighted two nucleus
size groups with dots: the smallest nuclei with sizes 0–50 and nuclei
around the critical size with sizes 600–650. We first discuss the com-
position of the smallest nuclei and, subsequently, the composition of
the critical nuclei.

For the smallest nuclei, the histogram scheme excluding hcp
suggests that bcc dominates, consistent with the findings of Ref. 1.
The q4 and ML2 schemes also indicate that bcc dominates, while the
histogram scheme including hcp and ML1 indicate that hcp dom-
inates. In contrast, the (w4, w6) and PTM schemes agree that fcc
dominates even in the smallest nuclei. The disagreement between
these different schemes becomes especially clear when ranking
the fractions of fcc, hcp, and bcc. For the smallest nuclei, nearly
every possible ordering of the six combinations, (1) fcc > hcp
> bcc, (2) fcc > bcc > hcp, and (3) hcp > fcc > bcc, is obtained
as almost every polymorph classification scheme yields a different
ranking.

For the critical nuclei, all classification schemes agree that fcc
dominates. The hcp fraction is almost equal to the fcc fraction
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FIG. 5. Polymorph composition of nuclei
during crystallization from a Lennard-
Jones fluid at pressure Pσ3

/ε = 5.68
and temperature kBT/ε = 0.92 as clas-
sified by seven different local structure
detection methods. (a)–(g) Composition
of critical nuclei as a function of the dis-
tance Δr/σ from the center of mass of
the nuclei. (h)–(n) Composition of nuclei
as a function of the nucleus size, i.e.,
the number of particles in the nuclei.
The dots in panels (h)–(n) highlight
two selected nucleus sizes: n ≈ 25 and
n ≈ 625. The latter corresponds approxi-
mately to the critical nucleus size. Please
see Sec. III for an explanation of the local
structure detection methods.

according to the histogram scheme including hcp and the q4-
scheme, but significantly smaller according to the histogram scheme
excluding hcp, the (w4, w6), PTM, and ML schemes. The bcc frac-
tion is ∼30% according to the histogram scheme excluding hcp and
ML2; around 20% using the (w4, w6) and q4 schemes; and less than
5% according to the histogram scheme including hcp (4%), ML1
(3%), and PTM (2%). Although the bcc fraction is low according to
PTM and ML1, it is still non-zero.

In summary, the size-dependence of the nucleus composi-
tion varies significantly, depending on the polymorph classification

scheme. For the smallest precritical nuclei, nearly every scheme dis-
agrees on the relative importance of fcc, hcp, and bcc structures.
While most schemes agree that fcc order dominates in the critical
nuclei, they diverge on the relative importance of hcp and bcc.

C. Pressure and temperature dependence
of nucleus composition

So far, we have observed that the composition of crystal nuclei
can depend sensitively on the choice of polymorph classification
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scheme. In this section, we explore a completely different factor that
can influence the composition of crystal nuclei: the state point. As
shown in Ref. 12, the composition of post-critical Lennard-Jones
nuclei varies widely with pressure and temperature. To be specific,
Ref. 12 found that the hcp fraction increases with supercooling,
while the bcc fraction increases with pressure. At sufficiently high
pressures, the post-critical nuclei were found to be almost entirely
bcc-like.

To investigate this, we analyze the brute-force simulations that
we performed at 30% supercooling at three different pressures. The
three pressures are Pσ3/ε = 0, 5.68, and 50. As before, we divide the
crystal nuclei from the brute-force simulations into 20 groups based
on their nucleus size, ranging from 0–50, 50–100, up to 950–1000.
We classify the local structure using the polyhedral template match-
ing (PTM) algorithm.31 We chose PTM because we consider it
to be the most reliable method. Furthermore, together with the
(w4, w6)-scheme, PTM is the only scheme that can be automatically
transferred to different state points. For each nucleus size group,
we compute the average fraction of fcc-, hcp-, bcc-, and fluid-like
order. In Fig. 6, we show the average composition as a function of
the nucleus size. Again, we normalize the composition so that the
fcc, hcp, and bcc fractions sum to one.

The composition of crystal nuclei appears to be largely inde-
pendent of both nucleus size and pressure. Fcc consistently domi-
nates, followed by hcp and then bcc. The smallest nuclei exhibit a
nearly equal fraction of fcc and hcp. Quantitatively, the fcc fraction
fluctuates around 55%, the hcp fraction around 36%, and the bcc
fraction around 9%. The average bcc fraction increases slightly with
pressure: for Pσ3/ε = 0, it fluctuates around 7%, for Pσ3/ε = 5.68
around 8%, and for Pσ3/ε = 50 around 11%. For higher pressures,
the hcp fraction decreases slightly to around 32%.

We were unable to reproduce the completely bcc-like crystal-
lites observed in Ref. 12 at high pressures. This discrepancy could

FIG. 6. Pressure and size dependence of the polymorph composition of Lennard-
Jones crystal nuclei. For each pressure, we performed brute-force simulations to
obtain nucleation trajectories at ∼30% supercooling. The local crystal structure in
this analysis is determined using polyhedral template matching.31

stem from differences in the polymorph classification schemes used.
Reference 12 used thresholds for the non-averaged bond-order para-
meters q4 and w4 to distinguish fcc, hcp, and bcc.56 Due to the
significant overlap in these order parameter distributions, as shown
in Fig. 1, we were unable to reproduce their classification scheme
effectively. We also note that the formation of entirely bcc-like crys-
tallites seems improbable in the light of the mechanical instability of
the bcc phase of Lennard-Jones particles.57,58

To discuss the temperature dependence, we compare Fig. 6(b)
to Fig. 5(l). In this way, we are able to compare 30% supercooling
with 20% supercooling at Pσ3/ε = 5.68 using the same polymorph
classification scheme (PTM). We observe that the hcp and bcc frac-
tions increase with supercooling, while the fcc fraction decreases
with supercooling. Quantitatively, at 30% supercooling, the fcc, hcp,
and bcc fractions are ∼55%, 36%, and 9%, respectively, as mentioned
above. In contrast, at 20% supercooling, these fractions change to
around 78%, 20%, and 2%. This finding, particularly the increase in
the hcp fraction with supercooling, is in agreement with Ref. 12.

Given the sensitivity of composition to the polymorph classi-
fication scheme, all these fractions should be taken with a grain of
salt. For instance, using the (w4, w6) scheme on the same brute-force
nucleation trajectories reveals lower hcp and higher bcc fractions
compared to the PTM scheme. Nevertheless, both the PTM and
(w4, w6) scheme agree on the following qualitative conclusions.
Although the composition of crystal nuclei does not depend sensi-
tively on nucleus size or pressure, the hcp fraction decreases and the
bcc fraction increases with pressure. Furthermore, the hcp and bcc
fractions appear to increase with supercooling, although they remain
smaller than the fcc fraction.

V. DISCUSSION
Why do different polymorph detection schemes yield such

varying results for the surface of crystal nuclei? First, particles near
a solid–fluid or solid–solid interface have a local structure that dif-
fers from that of bulk fluid or bulk crystal phases. As a result, it is
not immediately clear whether order parameters that work well for
distinguishing bulk phases will also be reliable for classifying these
interfacial particles. It is possible that interfacial particles should
not be classified with the same criteria as bulk phases and might
be better considered as distinct from the bulk altogether. We will
discuss this point in more detail in the following. In addition, we
will explore how the choice of training data influences the analysis,
including which phases are considered and how reference structures
are obtained.

A. Interfacial particles as outliers
Since interfacial particles can differ significantly from bulk

phases, it is useful to employ an outlier detection method to iden-
tify when the local structure deviates from a bulk phase. The PTM
and ML methods that we examined both rely on the similarity of the
positions of the nearest neighbors of a particle to those in a refer-
ence crystal phase. Essentially, these methods compute a distance
from the reference crystal phase and classify particles as outliers
if this distance exceeds a certain threshold. Other methods based
on templates, such as common neighbor analysis,59 the topolog-
ical cluster classification,60 and analysis of Voronoi polyhedra,61
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are even stricter: they require the local (topological) structure to
match the reference template exactly. It should be noted that Swope
and Andersen61 also found a small fraction of bcc-like particles in
Lennard-Jones nucleation using the Voronoi polyhedra analysis. It
is somewhat reassuring that our PTM and ML1 results align with
those in Ref. 61 on this point. All three methods use some kind of
outlier detection method and rely solely on the nearest neighbors
of a particle. They all find a small fraction of bcc-like particles in
Lennard-Jones nucleation.

The notion that particles near interfaces and within small crys-
tal nuclei exhibit a distinct local structure is well-established in the
literature. This phenomenon, and related behaviors, are commonly
referred to as pre-ordering,62 pre-structuring,26 pre-cursors,22 or
two-step nucleation.63 The local structure of precursors or interfa-
cial particles is frequently associated with a metastable bulk phase,
such as a liquid,13 an amorphous solid,10 or a metastable crystal
polymorph.22 In contrast, several studies have also shown that the
local structure of interfacial particles can differ from any bulk phase.
For example, it has been demonstrated that the interface possesses
a distinct local topological structure compared to the bulk.28,62,64 In
addition, interfacial particles exhibit values of q4 and q6 that differ
from those of bulk phases.19,23,26,65

The latter effect is also evident in two-dimensional scatter plots
of (q4, q6) and (w4, w6) shown in Figs. 7(a) and 7(b), where the
typical order parameter values for bulk phases are represented by

ellipses that contain 95% of their distributions. The black dots rep-
resent the order parameter values of the solid-like particles in the
critical nuclei. The black lines correspond to the thresholds used
in the (w4, w6)- and q4-schemes for polymorph classification. We
observe that many particles exhibit order parameter values that lie
outside the bulk phase ellipses. Instead, these values often lie in an
intermediate range between those of the fcc and fluid phase.

The observation that interfacial particles exhibit q4 and q6 val-
ues distinct from bulk phases has prompted some authors26,62 to
adopt an outlier detection approach based on these order para-
meters. In these studies, a particle is classified as corresponding to
a bulk phase only if its q4 and q6 values overlap directly with the
distribution of the respective bulk phase. Roughly speaking, this
“overlap criterion” requires that the black dot shown in Fig. 7(a)
would fall within one of the ellipses, rather than in the intermediate
white space. It is reasonable to expect that this method likely results
in a stricter and more reliable classification. This overlap criterion
resembles the outlier detection algorithm employed in our machine
learning method. However, there are two key differences.

The first difference is that we use non-averaged bond order
parameters instead of locally averaged bond order parameters, as
we believe that the overlap criterion may be too strict when applied
to locally averaged bond order parameters. Locally averaged bond
order parameters29 characterize the local structure of a particle by
incorporating both its nearest neighbors and the neighbors of those

FIG. 7. Two-dimensional scatterplot of the averaged bond order parameters (q4, q6) and (w4, w6) for particles in the critical nuclei from the transition path sampling
simulations at Pσ3

/ε = 5.68 and kBT/ε = 0.92. The ellipses enclose 95% of the distributions of thermally equilibrated bulk phases under the same conditions. The
horizontal and vertical black lines indicate the thresholds used to classify fcc, hcp, and bcc polymorphs in the q4 and (w4, w6)-schemes. The columns show different
subsets of the solid-like particles in the critical nuclei: all particles in the critical nuclei (a) and (b), particles classified as bcc-like (c) and (d), hcp-like (e) and (f), and fcc-like
(g) and (h) according to the q4 -scheme.
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nearest neighbors. The computation of these order parameters effec-
tively results in a coarse-graining over a small surrounding region.
Consequently, applying a strict overlap criterion to locally averaged
bond order parameters would require that the positions of all nearest
neighbors and their neighbors closely resemble those in a bulk phase.
In a crystal nucleus, such a requirement would likely exclude parti-
cles on the surface, and possibly the layer below the surface, from
being classified as part of the bulk phase. Near solid–solid interfaces,
such as in a random-hexagonal close packed (rhcp) stacking, such
a requirement would also exclude many particles from being classi-
fied. For example, in Fig. 4, the top right of the nucleus would not be
recognized as either fcc or hcp. Indeed, as shown in Fig. 7(a), nearly
all particles fall outside the ellipses.

The second difference is that we require overlap in a four-
dimensional space rather than a two-dimensional space. In one-
or two-dimensional spaces, it is relatively easy to get overlap, and,
therefore, relatively easy to identify metastable crystal phases on the
surface of crystal nuclei. As an extreme example, if we consider the
one-dimensional q4-distributions shown in Fig. 1, we see that the
fluid phase nearly completely overlaps with the bcc phase. Interfacial
particles with values between the fcc and fluid phases will inevitably
adopt intermediate q4 values, and consequently, they must overlap
with the hcp phase. This may explain why hcp is frequently identi-
fied on the surface of crystal nuclei.25–27 A similar effect occurs with
q6: interfacial particles with intermediate q6-values will inevitably
overlap with the bcc or hcp phases.

The two-dimensional scatterplots of (q4, q6) and (w4, w6)
shown in Figs. 7(c)–7(h) also illustrate how different projections can
lead to very different classifications. In these figures, we alternately
plot the solid-like particles in the critical nuclei that are classified as
bcc-like [(c) and (d)], hcp-like [(e) and (f)], and fcc-like [(g) and (h)]
according to the q4-scheme. Particles that are classified as bcc-like
by the q4-scheme show a wide variation of w4 and w6 values shown
in Fig. 7(d). The (w4, w6)-scheme would classify these particles as a
distribution of fcc, hcp, and bcc. They have almost no overlap with
the bcc, hcp, or fcc ellipses shown in Fig. 7(c), but have significant
overlap with the bcc and hcp ellipses shown in Fig. 7(d). Particles
that are classified as hcp-like by the q4-scheme tend to have more
negative w6 values but still display a wide variation in w4. These par-
ticles are very far from the fcc ellipse shown in Fig. 7(e), but overlap
with the fcc ellipse shown in Fig. 7(f). Particles that are classified
as fcc-like by the q4-scheme are usually also fcc-like according to the
(w4, w6)-scheme. These examples show that whether interfacial par-
ticles overlap with a bulk phase distribution can depend sensitively
on the choice of order parameters, as was also shown for water in
Ref. 23.

B. Influence of training data
So far, we have focused on how the choice of order parameters

affects the polymorph classification of interfacial particles. Another
fundamentally different aspect of polymorph classification methods
is the “training data” they rely on. By training data, we mean the
following: which phases are considered in the analysis and how are
reference structures obtained?

Among the polymorph classification schemes that we consider,
the histogram, (w4, w6), and q4 schemes are all based on thermally
equilibrated bulk phases under the same simulation conditions as

our transition path sampling simulations. However, the histogram
scheme excluding hcp does not incorporate the hcp phase in its
training data, while the histogram scheme including hcp does. Apart
from this difference, both histogram schemes are exactly the same.
We have seen how the inclusion or exclusion of hcp in the train-
ing data leads to significant differences in the classification of crystal
nuclei. In particular, the bcc fraction decreases substantially, and
the hcp fraction significantly increases when hcp is included in the
histogram scheme.

The choice of training data also has a large impact on the results
of our machine learning (ML) schemes. The training data for our
ML1 scheme is obtained by adding Gaussian noise to ideal fcc, hcp,
and bcc lattices. The magnitude of the Gaussian noise is chosen such
to resemble the thermal fluctuations under the relevant simulation
conditions. In contrast, the ML2 scheme directly uses training data
from thermally equilibrated fluid, fcc, hcp, and bcc phases under
the same simulation conditions. The change in training data causes
ML2 to identify a significantly larger bcc fraction compared to ML1.
Determining which of the two ML schemes is more reliable is open
to interpretation. However, we consider the ML1 scheme as more
reliable for the Lennard-Jones system, given the mechanical insta-
bility of the bcc phase.58 We find that the thermally equilibrated
bcc phase exhibits much larger fluctuations around its ideal lattice
positions compared to the fcc and hcp phases. In addition to its
mechanical instability,58 these larger fluctuations in the bcc phase
may also be related to the metastable I43d phase.57 We refer read-
ers to Appendix D for a more detailed discussion of the stability
of bcc and the I43d phases. However, we note that the bcc phase
appears to transform into a heterogeneous mixture of fcc, hcp, and
bcc structures. As a result, the ML2 scheme may inadvertently incor-
porate locally fcc- and hcp-like structures into the bcc training data,
potentially introducing a bias toward bcc classification.

In summary, we have demonstrated that the choice of training
data can significantly influence polymorph classification schemes,
both for histogram and ML schemes. In both cases, different train-
ing data lead to qualitatively different conclusions for the nucleation
mechanism.

VI. CONCLUSION
In conclusion, we have shown that different local structure

detection methods yield markedly different results for crystal nucle-
ation from a Lennard-Jones fluid. While all seven methods we
considered agree that the core of the critical nucleus is predom-
inantly fcc-ordered, they vary in their assessment of the surface
composition of the critical nucleus, which can be dominated by
fcc, hcp, or bcc, depending on the local structure detection method
used. Similarly, there is significant disagreement among the methods
regarding the relative importance of fcc, hcp, and bcc for the small-
est precritical nuclei. We attribute the discrepancies to the selection
of reference crystal structures, the use of outlier detection, and the
choice of local order parameters.

These results suggest that one should be very careful when char-
acterizing the local structure near solid–solid interfaces, solid–fluid
interfaces, and small crystal nuclei. Particles near such interfaces
often have local structures that deviate from those in bulk fluid or
bulk crystal phases. Therefore, we advocate for incorporating out-
lier detection in local structure detection methods, as it provides
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a stricter definition of crystallinity and enhances confidence in the
classification results.

The two methods that we consider to be the most reliable are a
machine learning method (ML1) with outlier detection and polyhe-
dral template matching.31 Both methods employ a strict definition
of crystallinity and are the only ones that provide consistent results
for the polymorph composition of Lennard-Jones crystal nuclei.
According to these more stringent methods, there is virtually no
bcc-like ordering on the surface of critical nuclei. The prominent
role of metastable bcc ordering observed during Lennard-Jones crys-
tal nucleation1,12 may be attributed to less rigorous local structure
detection methods.

SUPPLEMENTARY MATERIAL

The supplementary material contains the code used to gener-
ate and analyze the results of this paper as well as the nucleation
trajectories obtained using brute-force and transition path sampling
simulations.
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APPENDIX A: TRANSITION PATH SAMPLING

In this Appendix, we provide details of our transition path sam-
pling (TPS) simulations using the aimless shooting variant.42 In each

shooting move, a “shooting point,” i.e., a time slice is selected from
the previous trajectory. The velocities of all particles at this shoot-
ing point are completely resampled from a Maxwell–Boltzmann
distribution. From this shooting point with resampled velocities,
the equations of motion are propagated in both time directions:
one simulation runs forward and one simulation runs backward in
time. During the simulations, the nucleus size n is calculated every
250 time steps according to a criterion based on “solid-like bonds,”
as explained in Sec. III A. The simulation is terminated when the
nucleus size n < 30 or when n > 2000. The new trajectory is accepted
if it shows successful nucleation, i.e., if one of the simulations ends
with n < 30 and the other with n > 2000. To be clear, there are
four possible outcomes: (1) the forward path ends with n < 30 and
the backward path with n > 2000; (2) the backward path ends with
n < 30 and the forward path with n > 2000; (3) both paths end with
n < 30; and (4) both paths end with n > 2000. The new trajectory is
accepted in the first two cases and rejected in the last two cases.

To select the shooting points, we use the following proce-
dure that is slightly adapted from Ref. 42. From the initial path,
we randomly pick shooting points until a trajectory is accepted.
Subsequently, we choose a new shooting point tn by slightly per-
turbing a previously accepted shooting point to. The new shooting
point tn is randomly selected from one of the following candidates:

to, to ± 1ΔT, to ± 2ΔT, . . . , to ± 20ΔT, where ΔT =
√

mσ2/ε should

not be confused with the simulation time step Δt = 0.004
√

mσ2/ε.
The typical length of accepted trajectories is around 650ΔT with a
standard deviation of 80ΔT, so the time interval ∣tn − to∣ is much
smaller than the total length of the trajectory.

Since shooting points are only accepted if they lead to a transi-
tion path, the nuclei at these shooting points must have a reasonable
probability of both growing and melting. By choosing new shooting
points close to previously accepted ones, aimless shooting leads to
shooting points that are close to the transition states.42 To identify
critical nuclei, we selected 240 different shooting points and per-
formed committor analysis on them. For each shooting point, we
performed M = 100 different simulations to approximate the com-
mittor p̂B, i.e., the probability that the nucleus in that shooting point
will grow rather than melt. In Fig. 8, we show the distribution of
committor values p̂B for the 240 shooting points. We see that the
committor distribution is broad, with a standard deviation of 0.25

FIG. 8. Distribution of committor values p̂B computed for 240 different shooting
points. The distribution has a mean value of 0.55 represented by the dashed black
line and a standard deviation of 0.25.
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and a mean value of 0.55, indicating that the shooting points are
not guaranteed to be transition states. We deem a nucleus critical
if the approximated committor p̂B is statistically indistinguishable
from 0.5, i.e., if 0.5 lies within the interval [ p̂B − 2σ, p̂B + 2σ], where
σ =√p̂B(1 − p̂B)/M.66 Using this criterion, we identified 53 criti-
cal nuclei from the 240 analyzed shooting points. These 53 critical
nuclei are the ones we use for further analysis in the main text.

We use a total of 10 000 shooting moves with an average
acceptance rate of 24%. We use the first 5000 shooting moves for
equilibration and the last 5000 for production. At each shooting
point, we use polyhedral template matching31 to determine the num-
ber of fcc-like nfcc, hcp-like nhcp, and bcc-like nbcc particles in the
nucleus. We use these data to calculate the autocorrelation function
of the fraction nfcc/(nfcc + nhcp + nbcc) of fcc-like particles. Using
this autocorrelation function, we estimate the decorrelation time to
be around 100 shooting moves. Therefore, the pathways we used
for further structural analysis were obtained after every 100 shoot-
ing moves. This results in a total of 50 decorrelated nucleation
pathways.

Recently, Falkner et al.67 demonstrated that the aimless shoot-
ing procedure with flexible path lengths, as described above, intro-
duces a bias in the transition path ensemble. To correct this bias,
they proposed a reweighting procedure where each transition path
is assigned a relative weight of 1/L, where L is the length of the path.
We have incorporated this reweighting procedure into our analy-
sis: each critical nucleus or nucleation trajectory shown in Fig. 5 has
been reweighted to calculate the average compositions.

To assess the impact of reweighting, we compared the results
shown in Fig. 5 both with and without reweighting. We found that
the effect of reweighting is minimal in our case and is not shown in
Fig. 5. Reference 67 notes that the bias in the transition path ensem-
ble is less significant for higher free-energy barriers, indicating that
the minor impact of reweighting in our case may result from the fact
that the nucleation barrier is around 25 kBT,1 significantly higher
than the 5 kBT barrier investigated in Ref. 67.

APPENDIX B: BOND ORIENTATIONAL
ORDER PARAMETERS

We used the freud library68 to calculate the local bond order
parameters. To calculate the local bond orientational order para-
meters for a particle i, we first identify its nearest neighbors. In most
cases, this was done using the solid-angle-based nearest neighbor
algorithm (SANN).45 For the machine-learning schemes, we also
determined nearest neighbors by selecting the k particles which are
closest to particle i.

In addition to this definition of nearest neighbors, we follow the
definition of d6(i, j) given in Ref. 69 and the definitions of ql, wl, ql,
and wl given in Ref. 29.

APPENDIX C: NEURAL NETWORK
FEATURE IMPORTANCE

In this Appendix, we perform a sensitivity analysis to identify
the most important features of the 195 input features for the ML1
and ML2 schemes in polymorph classification. To do this, we apply
the permutation sensitivity analysis.70,71 For each feature, we mea-
sure the decrease in classification accuracy on the test set, when the

FIG. 9. Feature importance of the 195 input features of the neural networks used in
the ML1 and ML2 schemes for polymorph classification. The 195 features include
15 non-averaged bond order parameters ql for each number of nearest neighbors
k ranging from 2 to 14. The feature importance is determined using a permutation
sensitivity analysis.70,71

values of that feature are randomly permuted. The reduction in clas-
sification accuracy serves as a measure of the feature’s importance to
the classifier.

In Fig. 9, we show the permutation feature importance for all
195 features used in the ML1 and ML2 schemes. These 195 features
include 15 non-averaged bond order parameters ql for each number
of nearest neighbors k ranging from 2 to 14, as described in the main
text. The feature importance is shown in grayscale according to the
colorbar on the right of the plots. More important features are shown
in darker shades, reflecting a significant decrease in classification
accuracy.

For both ML1 and ML2, we observe that the most impor-
tant features correspond to k = 12 and k = 14 nearest neighbors,
which makes sense given that fcc and hcp have 12 nearest neighbors
and bcc has 14 nearest and next-nearest neighbors. Features with
k = 8, 9, 10, 11, 13 are also relatively important. Bond order para-
meters of almost all degrees l contribute to the classification, but
l = 5 appears to be particularly important for the classification prob-
lem. Overall, we see that ML1 and ML2 rely on a similar set of
features, with a strong dependence on k ≥ 8. If we define a feature as
“relevant” when the decrease in classification accuracy exceeds 1%,
we find that slightly less than half of the features are relevant to the
classification problem.
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APPENDIX D: FLUCTUATIONS AND STABILITY
OF THE BCC PHASE

The bcc crystal phase is known to be mechanically unstable
for Lennard-Jones particles.58 The mechanical instability is easily
observed when using an anisotropic barostat; as in this case, the
bcc phase quickly transitions to a mixture of fcc and hcp structures.
In contrast, with an isotropic barostat or in the canonical (NVT)
ensemble, the bcc phase seems metastable. Eshet, Bruneval, and
Parrinello57 demonstrated that simulations with an isotropic baro-
stat can result in a new metastable crystal phase. They refer to this
new phase as the I43d or “distorted bcc” phase. However, we have
not observed significant differences in the stability between bcc or
I43d under our simulation conditions: both phases rapidly convert,
almost instantaneously, to a mixture of fcc and hcp when using an
anisotropic barostat.

When using an isotropic barostat, we observe that both bcc
and I43d display significantly larger fluctuations around their ideal
lattice positions compared to fcc and hcp phases. In Fig. 10, we
show the distribution of distances from the ideal lattice positions
for bulk crystal phases under our simulation conditions when using
an isotropic barostat. The mean distance from the ideal positions is
shown as a vertical line for each phase. For the fcc and hcp phases,
the mean distance is around 10% of the nearest neighbor distance,
around 20% for bcc, and as large as 24% for I43d. These large fluctu-
ations naturally lead to large fluctuations in the bond orientational
order parameters.

Reference 20 suggested that the wide w4-distribution of a ther-
mally equilibrated bcc phase points to fluctuations between bcc and
I43d. When applying polyhedral template matching to the bcc phase
equilibrated with an isotropic barostat (with a RMSD cutoff of 0.12),
we find that around 50% of the particles are classified as locally bcc-
like. Smaller fractions of fcc and hcp particles, around 5%–10% each,
are also identified, while around 40% are not classified as fcc, hcp, or
bcc. We obtain similar results with our ML1 scheme. Thus, the bcc
phase equilibrated with an isotropic barostat appears to correspond
either to the I43d phase or a heterogeneous mixture of fcc, hcp, bcc,
and I43d. Further structural characterization of this state would be
an interesting topic for future research. Unfortunately, none of the

FIG. 10. Distribution of distances from ideal lattice positions for thermally equili-
brated fcc, hcp, bcc, and I43d phases under our simulation conditions. Distances
are normalized by the nearest neighbor distance in the ideal lattices. The vertical
lines correspond to the average distance for each phase.

local structure detection schemes we employed in this paper were
specifically designed to identify the I43d phase. Although our ML1
scheme could be extended to include the I43d phase, it would be
impossible to compare the resulting classification to any of the other
methods.
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