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CONSTRAINTS ON THE DISTRIBUTION OF
TILES

Here, we investigate the theoretical constraints on the
tile compositions of 12-fold symmetric square-triangle-
rhombus tilings in the thermodynamic limit. To this end,
we follow the approach of Refs. [1-3]. We consider a large
patch of tiling, consisting entirely of squares, equilateral
triangles, and rhombi, all with identical edge lengths.
Such a tiling can be described by its area fractions of
squares, triangles, and rhombi of different orientations.
In particular, we denote the total area fractions of each
type of tile as
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with the subscripted area fractions o;, 7;, and p; denoting
the fraction of patch area covered by squares, triangles,
and rhombi of orientation ¢, respectively. We denote a
square of orientation i as an S; square, and similarly T;
and R; for triangles, and rhombi. Illustrations of each of
the tile orientations can be seen in Table S1. In total, this
corresponds to 13 degrees of freedom. In the following,
we derive constraints on this set of parameters in order to
make predictions about the tile concentrations for general
random square-triangle-rhombus tilings.

Constraints 1: Simply-connected tiling

The first assumption we make about our tiling that it
is free of holes and overlaps. In other words, there are
no tile shapes other than squares, triangles, or rhombi,
and that all space enclosed by the perimeter of the tiling
is covered by exactly one tile. This leads to our first
constraint on the tile concentration:

o+1+p=1, (S2)

which simply states that all of space must be covered by
tiles.

Constraint 2: Global uniformity

The second assumption we make about our patch of
tiling is that it is globally uniform: if we take a large

enough sub-patch of the tiling, it should have approxi-
mately the same tile concentrations as the overall patch,
regardless of the location of the sub-patch.

As shown in Ref. [1], the global uniformity condition
gives rise to the following constraint:

det (B) = (det B), (S3)

where B is the hyperslope of the mapping from the
parallel-space to the perpendicular-space representation
of the tiling. The hyperslopes of the individual tiles are
given in Table S1 (see also Ref. [3]).

For the square-triangle-rhombus tilings, the average
hyperslope-determinant is given by
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Similarly, the determinant of the average hyperslope is
given by

det (B) = 12(p1p3 — p1pa + p1ps + p2pa
— p2ps + p2p6 + pape + P3ps — P3p6)
+6(p103 + p201 + p302 + paos + pso1 + pso2)
— 41170 + ToT3 + T3T4 + TaT1)
+ 3(0102 + 0203 + 0301)
+72 (0 +p)2

Constraint 3: Rotational symmetry

Finally, in order to restrict ourselves to quasicrystalline
tilings with 12-fold symmetry, we impose that for each
tile, all orientations occur equally frequently:
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As aresult of this, the right-hand side of Eq. S5 vanishes,
and hence Eq. S3 reduces to:

g; =

T— (0 +p)=0. (S7)



Finally, combining equations (S2) and (S7) yields the the-
oretical constraints on the area fractions [3]:
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TABLE S1: The properties of the different tile orientations
encountered in a square-triangle-rhombus tiling. The areas
are given for edges of length a. The hyperslopes are the Ja-
cobian matrices of the mapping of vertices between parallel
and perpendicular space.

METHODS

In this section we introduce the details of the open
boundary simulations and describe the analysis methods
for the square-triangle-rhombus tilings. We start by de-
scribing our model, in particular, how the open bound-
aries and tile biasing are introduced. Then, we describe
how the initial square-triangle tiling is generated. Next,
we introduce the vertex and swap moves for the Monte
Carlo simulation. Finally, we explain how the simulation
data is analysed, i.e., how the unbiasing and thermody-
namic integration is performed to obtain the configura-
tional entropy of square-triangle-rhombus tiling.



Open Boundaries and Tile Biasing

Putting quasicrystals into a periodic simulation box
necessarily breaks the inherent aperiodicity of the qua-
sicrystal, making it difficult to unravel in simulations
whether defects appear due to kinetic trapping or their
influence on the free energy of the system. In an effort
to address this, we introduce a new simulation method
designed to explore square-triangle-rhombus tilings un-
der open boundary conditions by incorporating a con-
fining line tension, denoted by . Specifically, in our
simulations we consider a single patch of square-triangle-
rhombus tiling on a quascrystalline lattice, and include a
boundary contribution to the potential energy, given by

Us =L, (59)

where L denotes the circumference of the tiling. This
contribution biases the system towards compact config-
urations while letting the tiling evolve to most favorable
boundary shape for a given value of . Note that in
the thermodynamic limit (N — o0), the effects of the
boundary are expected to vanish and hence in this limit
our results should become independent of our choice of
.
To control the tile composition of the system, we in-
troduce a chemical potential-like energy contribution for
every tile type,

(S10)

Ur = Z €T,

teT

where €;, n; are the energy contribution and the num-
ber of tile type t. The set of tile types is defined as
T = {5, T, R} representing squares, triangles and rhombi
respectively. Using this biasing potential, we can explore
the free energies of different tile compositions by changing
the energy contribution of each tile type. For the purpose
of this paper we focus on systems where eg = ep = 0,
and hence only vary eg.

With both energy contributions, Egs.(S9,510), com-
bined, we arrive at the total energy that we use to simu-
late the system,

U=Up+Ur =L+ erng. (S].l)

Having established the model, we proceed with the in-
troduction of the simulation details.

Markov-Chain Monte Carlo Simulation

Here we consider Markov Chain Monte Carlo (MCMC)
simulations of tilings with a fixed number of vertices and
let the number of squares, triangles, and rhombi fluctu-
ate. We use two types of MC moves: (i) vertex moves
and (ii) swap moves. The vertex moves enable local re-
arrangements of the tiling and the swap moves enable
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FIG. S1. Possible connected neighbor positions of a vertex.

non-local transport of vertices. We provide the details of
these moves in the following.

Vertex Moves

To construct a vertex move, first, we need to identify
every possible position a vertex can have with respect to
its neighbours. When we consider every orientation of
the allowed tiles, we find that the relative position of two
connected vertices can assume twelve possible vectors as
shown in Figure (S1) where every subsequent vector is
a /6 rotation of the previous. Therefore we perform
our simulation on a quasicrystalline lattice where each
potential vertex location is connected to 12 others. One
way to construct a vertex move is to choose a pair of
existing connected vertices and rotate one of the vertices
around the other by an angle of 7/6 clockwise or counter-
clockwise. This type of vertex move enables tile propa-
gation in the bulk and tile creation/annihilation at the
boundary. However, this move should be implemented
with care to allow only square, triangle, and rhombus
tiles to exist and obey detailed balance. Our implemen-
tation of the vertex move consists of eight steps:

1. Choose a random vertex, 4, in the tiling to displace.

2. Choose a random direction out of the 12 possible di-
rections that a connected neighbor of vertex i could
occupy.

3. If there is a vertex in the randomly chosen direc-
tion, identify it as the vertex j. Otherwise reject
the move. Vertex j is the pivot of vertex i’s rota-
tion.

4. Choose a random rotation direction, i.e., clockwise
or counter-clockwise. Rotate vertex ¢ around vertex
J by m/6 in the chosen direction.

5. If vertex i overlaps with another vertex, reject the
move.



FIG. S2. The red vertex attempts to rotate clockwise around
the blue vertex by an angle of /6. (a) The move results in a
valid tiling and may be accepted. (b) The move results in an
invalid tiling and is rejected.

6. Check the tiles which are altered by vertex i’s move-
ment. If there is an invalid tile, i.e., a tile which
is not a square, a triangle or a rhombus, reject the
move. An example is depicted in Figure (S2)

7. Check if the tiling remains connected. If the tiling
separated into multiple disconnected pieces, reject
the move.

8. Accept the move with probability,

Pace(i = f) = min (1, e*ﬂ<Uf*Ui>) : (S12)
where U, s are the potential energies of the initial
and final state given by Eq. (S11). Note that 5 =
1/kpT is the inverse thermal energy.

Since this implementation of the vertex moves propagates
the tiles in the bulk without changing the tile counts or
the boundary length, valid bulk moves are always ac-
cepted. A sample vertex move in bulk is depicted in Fig-
ure S3(a). Moreover, the fluctuations on the boundary
facilitate the creation and the annihilation of different
tiles. Therefore, the dynamics of the MCMC algorithm
can be summarized by (i) tile creation/annihilation at
the boundary and (ii) propagation of tiles in the bulk.
However, due to many validation steps in the algorithm,
the majority of the proposed moves end up being invalid,
resulting in relatively low acceptance rates.

Swap Mowves

To improve the equilibration times we propose another
type of move which we call a swap move. To construct
this move, we focus on the pentagonal patches in the
square-triangle-rhombus tiling. In our system there is
only one allowed pentagonal patch, whose internal angles

FIG. S3. Sample vertex moves in (a) bulk and at (b) the
boundary.

(a) (b)

FIG. S4. The decompositions of the pentagonal patch: (a)
the house configuration and (b) the R*T configuration.

are (/3,27 /3,7/2,7/2,2m/3). As shown in Figure (S4),
this pentagonal region has two different decompositions:
(i) it can be decomposed into a square and a triangle,
which we call the “house” configuration or (ii) it can be
decomposed into two rhombi and a triangle, which we
refer as the “R2T™ configuration.

After we identify these patches in the tiling, we per-
form the move by swapping a random pair of disjoint
house and R?T patches as seen in Fig(S5). Therefore,
we implement the swap moves in three steps as:

1. Identify all house configurations in the tiling and
randomly choose one.

2. Identify all R?>T configurations in the tiling and
randomly choose one.

3. If the chosen house and R?T configurations are not
disjoint, reject the move. Otherwise, accept the
move and swap the configurations.

As the number of house and R?T configurations do
not change with swap moves, detailed balance is trivially
satisfied. Moreover, since the swap moves do not change



FIG. S5. An example of the swap move.

either the tile counts or the boundary length, they do not
cause a potential energy change and are always accepted
if they are valid. This results in a high acceptance rate.
The non-local nature of the swap moves enables rapid
rhombi propagation from boundary to bulk. This pro-
motes local bulk rearrangements via vertex moves and
speeds up the equilibriation process.

In the following subsection, we explain how we use
the simulation results to calculate the configurational en-
tropy of the square-triangle-rhombus tiling.

Configurational Entropy Calculation

To calculate the configurational entropy of the square-
triangle-rhombus tiling, we first calculate the free energy
of the tiling using thermodynamic integration with the
pure square-triangle tiling as the reference state. Thus,
the free energy of the square-triangle-rhombus tiling is
given by

F(Na v Tv GR) = qu—tr(Na e T) - AF(Na s Tv GR)
(S13)
where the free energy difference AF(N,~,T;eg) is
Na s Ta 6R)
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where (...) represents an ensemble average. The free
energy difference depends on the ensemble average of the
number of rhombi, <nR>NmT,e’R’ in the tiling. Therefore,
we need the functional form of this quantity to perform
the thermodynamic integration.

The family of the functions that can describe the num-
ber of rhombi has three physical constraints that we
need to impose: number of rhombi has to (i) decrease
monotonically with increasing eg, (ii) approach N when
er — —oo, and (iii) decay to 0 exponentially when as
€r — 00. When we impose these constraints and in-
spect our simulation results shown in Figure (S6), we see
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FIG. S6. The ensemble average of the number of rhombi with
respect to varying rhombi biasing potential.

that the number of rhombi is well fitted by a case of the
generalized logistic function given by

N
(1 + euRB(eR*HR))l/VR 7

<nR>N,'y,T,6R = (S15)

where pp is the offset energy, and vr > 0 is the shape
parameter. Here, we observe the offset energy, and the
shape parameter are parameters that depend on the sys-
tem size and line tension listed in Table S2.

Then, we can obtain the closed form expression for the
free energy difference by plugging Eq.(S15) into Eq.(S14)
and performing the integral. This yields,

NkgT

VR
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where o = (1+ e”l“’~/3(€"%_’“:‘))71 and B,(a,b) is the in-
complete Beta function defined as
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To calculate the entropy, we recall the fundamental
identity, FF = U—TS, relating the energy and the entropy
to the free energy. Then, we can rewrite the free energy
difference AF(N,~,T;eR) as

AF(Na s T7 ER) - AU(Na s T7 eR) - TAS(Nv ER))
= ernr(N,v,T;€r)
+7 [L(Na,YaTv OO) - L(N?77T7 eR)]
= T'[Ssq—1r = S(Ns€r)],

(S17)
where in the first line of the second step, we used egng —
0 as eg — oo. Furthermore, the configurational entropy
of the square-triangle tiling per vertex is exactly calcu-
lated in the literature [4, 5] using Bethe ansatz to be

Ssqftr

97T — 1og(108) — 2v/3 log (2 + \/5) =0.12005524 . ...
Nkp
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FIG. S7. The ensemble average of the boundary length with
respect to varying rhombi biasing potential.

Then, we can rearrange Eq.(S17) to obtain the configu-
rational entropy of the square-triangle-rhombus tiling as
a function of the measurable quantities as

o Ssqftr _ ﬁER

SWien) = (NR) N .1
Nkg N 1o hheR
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where (nR>NmT7ER and AF(N,~,T;eg) are given by Eq.
(S15) and Eq. (S16) respectively. To calculate the con-
figurational entropy from our simulations, we still need a
function describing the behavior of the boundary length,
(L) N .7, pp- Similar to the number of rhombi, the bound-
ary length is also bounded from above and below. In
particular, the bounds are given by

V27N < Lja < 2N —2,

where a is the tile edge length, the lower and the upper
bounds are the circular rhombus tiling and linear chain
limits, respectively. Upon inspection of our simulation
data as seen in Figure S7, we observe that the bound-
ary length follows a generalized logistic function as well.
Therefore, we parameterize the tiling boundary length as

Lo —V2TN

(1 + e*wﬁ(ﬁﬁfﬂL))VL ’

=V2rN +

(L)N -y Toer (519)

where L, is the boundary length at the square-triangle
tiling limit, py is the offset energy, vy > 0 is the shape
parameter, and w > 0 is the tail parameter. Similar to
the number of rhombi, we observe that the fit parame-
ters depend on the system size and line tension as listed
in Table S2. Then, when we plug Egs.(S15, S16, S19)
into Eq.(S18), we get the configurational entropy per ver-
tex parameterized by the rhombus biasing potential eg.

Moreover, the size dependence, IV, drops out in the infi-
nite system limit since entropy per vertex is an intensive

N |Bya||Bpr| vr | Bup | Vp |Bpr| vi |Loeo| w
996 | 3 [/0.23[0.74(-0.35{0.74]/1.90(0.16]0.13[1.49
996 | 4 {/0.28(0.73|-0.29|0.72|1.76(0.19]0.12|1.39
996 | 5 (/0.30(0.74(-0.28(0.72|1.08{0.35|0.12|1.15
996 | 6 (/0.34|0.73(-0.25/0.72{1.8410.21|0.12|1.29
2121| 3 {/0.25|0.74|-0.34|0.72|0.09|0.62|0.09|0.98
2121 4 1/0.26(0.74|-0.33{0.72]0.74]0.41|0.08|0.99
2121 5 [/0.28]0.74]-0.31|0.71|0.52]0.51{0.08|1.04
2121 6 |/0.30{0.73]-0.29|0.71{0.66|0.46|0.08|1.02
4123| 3 ||0.23]0.75|-0.36{0.73]1.10|0.29|0.07|1.28
4123| 4 |/0.27]0.74|-0.33|0.71{0.94|0.36|0.06|0.98
4123 5 (/0.26|0.74]-0.34|0.72{1.75|0.19(0.06 |1.31
4123| 6 ||0.280.74|-0.31{0.71]1.19/0.30|0.06 |1.07
8004| 3 |/0.24|0.75|-0.37(0.72]0.76|0.39|0.05|1.06
8004| 4 ||0.25|0.74|-0.35[0.71]0.76|0.39|0.04|1.08
8004| 5 (/0.26|0.75(-0.35/0.71{0.9810.34|0.04|1.02
8004| 6 {/0.27|0.74|-0.34]0.71{1.01|0.34|0.04|1.10
TABLE S2. Fit parameters of Egs.(515,519, S20) for the

simulation data at different system sizes and line tensions.

variable. Thus, we define the configurational entropy per
vertex as

sten) = 2R,

Finally, we parameterize the area fraction of rhombi
similar to ng as

1
(1 + eVpﬁ(eR*l"p))

<p>N,'y,T,eR = /v, (520)

where the fit parameters are listed in Table S2. Then the
configurational entropy per vertex, s(p), is fully charac-
terized by Eq.(S518) and Eq.(S20).
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