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ABSTRACT
Two-step crystallization via a metastable intermediate phase is often regarded as a non-classical process that lies beyond the framework of
classical nucleation theory (CNT). In this work, we investigate two-step crystallization in colloid–polymer mixtures via an intermediate liquid
phase. Using CNT-based seeding simulations, we construct a kinetic phase diagram that identifies regions of phase space where the critical
nucleus is either liquid or crystalline. These predictions are validated using transition path sampling simulations at nine different relevant
state points. When the critical nucleus is liquid, crystallization occurs stochastically during the growth phase, whereas for a crystalline critical
nucleus, the crystallization process happens pre-critically at a fixed nucleus size. We conclude that CNT-based kinetic phase diagrams are a
powerful tool for understanding and predicting “non-classical” crystal nucleation mechanisms.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0251560

I. INTRODUCTION

Crystal nucleation can be facilitated by the formation of a
metastable intermediate phase, a phenomenon commonly known
as two-step nucleation. This mechanism can increase the crys-
tal nucleation rate by several orders of magnitude,1,2 making it
undoubtedly relevant for understanding and predicting crystal-
lization in both natural and industrial processes. Two-step nucle-
ation is often described as “non-classical” because the stable crystal
phase does not form directly.3–10 This non-classical view necessi-
tates extending classical nucleation theory (CNT), such as modi-
fying the free-energy landscape,11–14 or accounting for anisotropic
kinetic effects.15 In doing so, it is easy to overlook that standard
CNT still remains a powerful tool for understanding and pre-
dicting nucleation processes. For example, the CNT-based seeding
approach16 efficiently approximates homogeneous nucleation barri-
ers and rates using computer simulations. The seeding approach has
been demonstrated to capture nucleation trends for a wide range of
systems, thermodynamic conditions, and particle interactions.16–20

It is also possible to construct “kinetic phase diagrams,” provid-
ing insights into the nucleation and growth of metastable crystal
polymorphs.21,22

However, during homogeneous nucleation from a gas, solution,
or dilute suspension, the intermediate phase is typically a disor-
dered phase, such as a liquid or amorphous solid, rather than a
metastable crystal polymorph. This two-step mechanism has been
observed in various complex systems, such as methane hydrates,23

zeolites,24–26 NaCl,13 insulin,27 lysozyme,3 Lennard-Jones,28–30 lat-
tice models,12,31,32 and colloidal systems.33–38 Although two-step
nucleation via a disordered phase is observed in a wide range of
systems and significantly impacts the crystal nucleation rate, it has
never been investigated whether CNT-based seeding simulations
can be successfully applied to this “non-classical” process.

We investigate this question using computer simulations of a
model for colloid–polymer mixtures. This system is chosen because
the effective attraction strength and range between the colloids
can be easily tuned, yielding rich phase behavior. For example,
brute-force simulations of colloid–polymer mixtures have revealed
regions of phase space where different phase transition phenomena
occur, including one-step and two-step nucleation, glass or gel for-
mation, spinodal decomposition, and the formation of metastable
liquid phases.33,34 Furthermore, the larger time and length scales
of colloids facilitate experimental observations of the nucleation
process.
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In this work, we employ extensive seeding16 and transition path
sampling39 simulations to study crystal nucleation from a dilute sus-
pension of colloids with polymer-induced attractions. Using seeding
simulations and classical nucleation theory, we predict a kinetic
phase diagram of nucleation. This kinetic phase diagram describes
regions of phase space where the critical nucleus is either crystalline
or liquid, roughly corresponding to the regions of one-step and two-
step crystallization. Of course, these predictions need to be validated
with independent, unbiased methods. For this purpose, we use tran-
sition path sampling to capture the nucleation mechanism at nine
different state points around the boundary of the above-mentioned
regions. Our findings indicate that CNT provides valid predictions
of crystallization mechanisms even in the case of “non-classical”
two-step nucleation.

II. MODEL SYSTEM
We consider a model system of hard-core colloids and poly-

mer depletants introduced independently by Asakura and Oosawa40

and by Vrij.41 In such a system, the polymers are considered as
ideal chains that induce an entropic attractive depletion inter-
action between the colloids, which we model with an effective
Asakura–Oosawa–Vrij (AOV) pair potential between the colloids.42

The pair potential is determined by the polymer reservoir packing
fraction ϕ and the size ratio q = σp/σ between the polymer diameter
σp and the colloid diameter σ. In the pair-potential approximation,
the effective attractive interaction energy uAOV(r) between a pair of
colloids at a distance r/σ < 1 + q is given by

βuAOV(r) = −ϕ
(1 + q)3

q3 [1 −
3

2(1 + q)
r
σ
+

1
2(1 + q)3 (

r
σ
)

3
], (1)

where β = 1/(kBT) represents the inverse thermal energy. As the
polymers are considered as an ideal gas, no interactions are present
between colloids at distances r/σ ≥ 1 + q. By using this pair potential
approximation, we reduce the computational complexity of our sim-
ulations by avoiding the explicit simulation of polymers. We focus
on the case q = 0.6 and vary the polymer reservoir packing fraction
ϕ from 0 to 1. Note that the attraction strength is directly propor-
tional to ϕ, with the maximum potential well depth considered being
3.3kBT at ϕ = 1. To model the hard-core interaction between the col-
loids, we use the pseudo-hard-sphere potential βupHS(r) introduced
in Ref. 43. This is a Weeks–Chandler–Andersen (WCA)-like poten-
tial that acts as a steeply repulsive potential for particles at distances
r/σ < 1.02. By using a higher set of exponents (49 and 50) than a
standard WCA potential (6 and 12), the pseudo-hard-sphere poten-
tial is more steeply repulsive than a standard WCA potential and
closely mimics the hard-sphere equation of state such that rescal-
ing with an effective hard-sphere diameter is not necessary.43 The
total pair potential βu(r) = βuAOV(r) + βupHS(r) is simply given by
the sum of the Asakura–Oosawa–Vrij and the pseudo-hard-sphere
potential. The minimum of the total potential is also located at
r/σ ≈ 1.02. We perform molecular dynamics and Langevin dynam-
ics simulations of particles interacting with this pair potential u(r).
The calculations for the equilibrium phase diagram are performed
using molecular dynamics simulations in the isobaric–isothermal

FIG. 1. Equilibrium phase diagram of a colloid–polymer mixture with a size ratio
of q = σp/σ = 0.6, where σp represents the polymer diameter and σ represents
the colloid diameter, shown in the colloid packing fraction η—polymer reservoir
packing fraction ϕ plane, with η presented on a linear (a) and on a logarithmic
scale (b). Solid lines represent stable binodals, dashed lines indicate metastable
binodals, and dotted lines correspond to spinodals. The labels G, L, and X denote
the gas, liquid, and crystalline solid phases, respectively.

(NPT) ensemble, while seeding and transition path sampling sim-
ulations are carried out using Langevin dynamics in the grand-
canonical (μVT) ensemble. See Appendix A for more simulation
details.

III. EQUILIBRIUM PHASE DIAGRAM
We first determined the equilibrium phase diagram using free-

energy calculations and the Gibbs–Duhem integration of the binodal
lines (see Appendix B for more details). In Fig. 1, we show the equi-
librium phase diagram in the (η, ϕ)-plane, where η is the colloid
packing fraction and ϕ is the polymer reservoir packing fraction.
Above the critical point, which is marked with a black square at
η = 0.21 and ϕ = 0.50, one can distinguish between a dilute colloidal
fluid and a dense colloidal fluid. We will refer to these phases as the
gas and liquid phases, respectively, in analogy to molecular systems.
The stable binodals, metastable binodals, and spinodals are repre-
sented by solid, dashed, and dotted lines, respectively. The triple
point is located at ϕ = 0.59 with a liquid phase density of η = 0.45,
in good agreement with Ref. 42. The letters G, L, and X refer to the
regions where the gas (G), liquid (L), and crystalline solid (X) phases
are stable. We have also marked the coexistence regions, for example
L+X indicates the region where liquid–crystal coexistence is stable.
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To reach our goal of studying the effectiveness of CNT for two-
step nucleation processes, we investigate crystal nucleation from the
supersaturated gas phase. Using the equilibrium phase diagram, we
can already identify the regimes where nucleation from the gas phase
is possible. In Fig. 1(b), we have plotted η on a logarithmic scale, with
the focus on ϕ > 0.5, to highlight the low-packing-fraction region
above the critical point. At very low colloid packing fractions η,
the region marked “G” corresponds to the stable gas phase, where
nucleation is impossible. As we increase η, we cross the gas–crystal
binodal and enter a region labeled “G+X,” where the gas phase is
metastable with respect to gas–crystal coexistence and the gas–liquid
coexistence is unstable. Therefore, nucleation of the crystal phase is
possible in this regime. At even higher η, we cross the gas–liquid
binodal and reach the region labeled “G+X (G+L),” where the gas
phase is metastable with respect to both gas–crystal and gas–liquid
coexistences (indicated by the round brackets). Here, the liquid state
is metastable and the system thermodynamically prefers gas–crystal
coexistence. Finally, crossing the dotted spinodal line, we enter the
spinodal regime, where the gas phase is unstable with respect to
spinodal decomposition.

From now on, we will focus on the regions “G+X” and
“G+X (G+L)” between the gas–crystal binodal and the gas spin-
odal. According to the equilibrium phase diagram, the gas phase in
these regions is metastable and will eventually relax into gas–crystal
coexistence. However, the nucleation mechanism in these regions is
unclear, as is the role of a two-step nucleation process.

IV. NUCLEATION BARRIERS FROM SEEDING
SIMULATIONS

To unravel the nucleation mechanism, we perform extensive
seeding simulations to calculate the free-energy barriers for the
nucleation of the liquid and crystal phases from the metastable gas
phase. The seeding technique16 relies on classical nucleation the-
ory (CNT) to obtain approximations of the free-energy barriers
for nucleation. To explain the relevant CNT equations, consider a
metastable gas (“parent”) phase and a “child” phase (liquid or crys-
tal) at the same chemical potential μ in the grand canonical (μVT)
ensemble. According to CNT, the change in grand potential (or
free-energy difference) ΔΩ associated with the formation of a liq-
uid or crystal nucleus consisting of n particles from the metastable
gas phase is given by

ΔΩ(n) = −v(n)Δp + a(n)γ. (2)

Here, γ is the interfacial tension and Δp is the pressure difference
between the bulk gas phase and the child phase at chemical potential
μ. In the grand-canonical ensemble, Δp serves as the driving force for
nucleation, similar to Δμ in the isobaric–isothermal (NPT) ensem-
ble. Assuming a spherical shape, the volume v(n), surface area a(n),
and radius r(n) of the nucleus can be computed from the number of
particles n in the nucleus and the density ρ of the bulk child phase
as v(n) = n/ρ, r(n) = (3n/4πρ)1/3, and a(n) = 4πr(n)2. The height
ΔΩ∗ of the nucleation barrier and the interfacial tension γ are related
to the size n∗ of the critical nucleus as

ΔΩ∗ =
1
2

v(n∗)Δp, (3a)

γ =
1
2

r(n∗)Δp. (3b)

Note that the absolute value of the interfacial tension, as given by
Eq. (3b), depends on the spherical-shape assumption. However, the
value of the nucleation barrier, as given by Eq. (3a), is also valid for
any other shape.44,45 The key point is that we can compute ΔΩ∗ and
γ from Δp and n∗.

The idea of the seeding approach16 is to use simulations to iden-
tify the critical nucleus size n∗ and use the CNT equation (3a) to
approximate the nucleation barrier. The seeding approach uses a
series of “seeds”—nuclei of varying sizes—and uses simulations to
identify the conditions for which these seeds are critical. To be more
precise, we obtain a spherical seed by cutting a spherical region from
a bulk liquid or face-centered cubic (fcc) crystal phase. This seed is
then inserted into the metastable gas phase. Next, we use grand-
canonical Langevin dynamics simulations with varying chemical
potentials μ to observe whether this seed grows or shrinks. In this
way, we find the chemical potential μ∗ for which the seed grows and
shrinks with equal probability. In other words, the seed is critical at
this chemical potential. Note that our approach is slightly different
from Ref. 16, because we vary the chemical potential instead of the
pressure or temperature.

We have illustrated the seeding approach16 for a series of crys-
tal and liquid seeds simulated at a polymer reservoir packing fraction
ϕ = 0.8 in Fig. 2. Two exemplary seeds are shown in Fig. 2(a), where
the colloidal particles are shown in a darker color if they have more
nearest neighbors. The left one corresponds to a crystal seed, and
the right one corresponds to a liquid seed. When the seed is crit-
ical, it grows and shrinks with equal probability. To illustrate this,
we plot the nucleus size n as a function of time for ten indepen-
dent simulations of the example crystal seed in Fig. 2(b). We observe
five trajectories where the nucleus grows and five trajectories where
it shrinks. Using a series of crystal and liquid seeds, we obtain
n∗ as a function of μ. In Figs. 2(c)–2(f), each symbol corresponds
to a different seed. To compute the barrier height, we also need the
pressure difference Δp shown in Fig. 2(d). Δp is obtained from the
equations of state p(μ) of the bulk gas, liquid, and crystal phases;
see Appendix B for more details. The CNT approximations given in
Eq. (3) for the interfacial tension γ and barrier height ΔΩ∗ are shown
with symbols in Figs. 2(e) and 2(f). Figure 2 illustrates for ϕ = 0.8
how liquid and crystal seeds can be used to obtain the nucleation
barriers as a function of the chemical potential.

We have performed extensive seeding simulations for the
nucleation of both the liquid and crystal phases with polymer reser-
voir packing fractions varying between ϕ = 0.6 and ϕ = 1.0. In total,
we obtained around 75 critical crystal seeds and 75 critical liquid
seeds, with sizes ranging from 500 to 5000 particles. In other words,
for both phases, we have an approximation of the critical nucleus size
n∗ for 75 different state points (μ, ϕ). Using Eq. (3), we can approxi-
mate the barrier height and interfacial tension for each of these state
points. To fit and extrapolate the barrier and interfacial tension as a
function of μ and ϕ, we first fit the interfacial tension with the fitting
function,

γ(μ, ϕ) = γ0 ⋅ (ϕ − ϕ0)
ν
⋅ (1 − γpΔp(μ, ϕ)), (4)

where γ0, ϕ0, ν, and γp are fitting parameters. We chose this fitting
function in order to include a scaling law dependence46

(ϕ − ϕ0)
ν
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FIG. 2. Illustration of the seeding method at a polymer reservoir packing fraction of ϕ = 0.8. (a) Crystal (left) and liquid (right) seeds are inserted into a metastable gas phase.
The external surfaces of the seeds are shown, and particles are shown in a darker color if they have more nearest neighbors. Particles in the surrounding gas phase are not
shown for visual clarity. (b) For each seed, the chemical potential is identified at which the seed is critical, i.e., where it grows and shrinks with equal probability. To this end,
we plot the nucleus size n as a function of time measured in units of Δt = 0.001

√

βmσ2 for ten independent simulation trajectories. Using the critical nucleus size n∗ (c) and
the pressure difference Δp (d), we calculate the interfacial tension γ (e) and nucleation barrier ΔΩ∗ (f) as a function of the chemical potential μ, which is plotted relative to
the chemical potential μgx at gas–crystal coexistence.

on the polymer reservoir packing fraction ϕ and a linear depen-
dence16 on the pressure difference Δp(μ, ϕ). Next, the barrier height
ΔΩ∗ can be computed from the fitted interfacial tension and the
pressure difference Δp using the CNT equation,

ΔΩ∗(μ, ϕ) =
16πγ(μ, ϕ)3

3∣Δp(μ, ϕ)∣2
, (5)

which follows from Eq. (3). We compute the barrier height from the
fitted interfacial tension instead of fitting the barrier height directly,
because the lower variation in the interfacial tension results in a
more stable fit and extrapolation.16 Note that the fits are based on
ϕ ≥ 0.6, so any predictions below the triple point at ϕ = 0.59 are
based on extrapolations of the fits. In Figs. 2(e) and 2(f), the solid
lines represent the fits given by Eqs. (4) and (5) applied to ϕ = 0.8.
We see that the fits capture the seeding data well. Equations (4) and
(5) are fitted separately for the crystal and liquid phases.

Importantly, the fits allow us to approximate γ and ΔΩ∗ for
both phases as a function of the chemical potential μ and the poly-
mer reservoir packing fraction ϕ. The key result of our seeding
simulations is that we obtain the free-energy barrier height ΔΩ∗
for the nucleation of both the liquid and crystal phases across the
entire metastable gas regions “G+X” and “G+X (G+L)” of the phase
diagram.

V. KINETIC PHASE DIAGRAM
We can leverage our knowledge of the nucleation barrier

ΔΩ∗ to construct a “kinetic” phase diagram for nucleation. To be
precise, for the entire metastable gas region, we determine the phase
that has the lowest nucleation barrier from the gas phase, which
indicates the structure of the most probable critical nucleus. If the

liquid phase has a lower nucleation barrier, then the critical nucleus
will be (most likely) liquid; if the crystal phase has a lower nucle-
ation barrier, the critical nucleus will be predominantly crystalline.
In Fig. 3, we show the regions where these two scenarios occur in the
phase diagram. The blue region indicates where the critical nucleus
is liquid, while the red region represents where the critical nucleus
is crystalline. Aside from these colored regions, the phase diagram
shows the same stable binodals (solid lines), metastable binodals

FIG. 3. Kinetic phase diagram of colloid–polymer mixtures with a size ratio
σp/σ = 0.6 in the colloid packing fraction η—polymer reservoir packing fraction
ϕ plane. The kinetic phase diagram focuses on nucleation from the metastable
gas phase, denoting the regions where the critical nucleus is crystalline or liquid,
as predicted by classical nucleation theory and seeding simulations. The labels
(a)–(i) mark the nine state points examined using transition path sampling; see
Fig. 5. Similarly to Fig. 1, solid lines represent stable binodals, dashed lines denote
metastable binodals, and dotted lines indicate spinodals.
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(dashed lines), and spinodals (dotted lines) as in Fig. 1(b). For a low
colloid packing fraction η, the dominant mechanism is the forma-
tion of critical crystal nuclei. As η increases, the primary mechanism
shifts to the formation of liquid critical nuclei. The boundary divid-
ing these two kinetic regimes intersects the triple point and gradually
diverges from the gas–liquid binodal. Below the triple point, only
liquid critical nuclei are formed.

Both above and below the triple point at ϕ = 0.59, there is a
large region where the critical nucleus is liquid. This indicates that a
metastable liquid phase rather than a stable crystal phase nucleates
from the gas phase in the blue region above the triple point. The for-
mation of a metastable liquid phase occurs because the liquid–gas
interfacial tension is lower than the crystal–gas interfacial tension.
Since the liquid phase is metastable with respect to the crystal phase
above the triple point, the liquid nuclei will grow and eventually
crystallize. To assess the stability of the liquid phase above the triple
point, we measured the crystal nucleation rate from the liquid phase
using brute-force molecular dynamics simulations; see Appendix E
for more details. We performed these simulations on bulk liquids
under gas–liquid coexistence conditions because the density of the
metastable liquid that nucleates from the gas phase will be very close
to that of the liquid phase at gas–liquid coexistence. From the triple
point at ϕ = 0.59 up to ϕ ≈ 0.75, the crystallization rate is very low,
and spontaneous crystallization is not observed from a bulk liquid.
Therefore, if a critical liquid nucleus forms in a metastable gas for
ϕ ⪅ 0.75, this leads to a metastable liquid phase that does not crystal-
lize within the time scale of our brute-force simulations. In contrast,
for ϕ ⪆ 0.75, we observe spontaneous crystallization of bulk liquids.
Furthermore, we find that the crystallization rate increases exponen-
tially with the polymer reservoir packing fraction ϕ. Consequently,
if a critical liquid nucleus forms in a metastable gas for ϕ ⪆ 0.75, this
leads to a growing liquid droplet that will crystallize within a reason-
able time scale. In short, as ϕ increases, the liquid phase is further
from the triple point and becomes less stable with respect to crys-
tallization. In other words, the driving force for crystal nucleation
increases with ϕ along the metastable gas–liquid binodal.

VI. NUCLEATION MECHANISM FROM TRANSITION
PATH SAMPLING

Our kinetic phase diagram predicts the regions where the
critical nucleus is crystalline or liquid. However, it is essential to
validate these CNT-based predictions through independent tests. In
addition, the kinetic phase diagram does not provide information
about the entire formation mechanism, just the phase of the criti-
cal nucleus. Most intriguingly, if a critical nucleus is crystalline, does
that imply that the pre-critical nuclei are also crystalline?

The boundary between the two kinetic regimes in the kinetic
phase diagram is close to the gas–crystal and gas–liquid binodals.
Therefore, the free-energy barrier for nucleation from the metastable
gas phase is high near this dividing boundary. Given the high nucle-
ation barriers involved, it is infeasible to validate the CNT-based
predictions and study the nucleation mechanism with brute-force
simulations. Instead, we perform transition path sampling simula-
tions to obtain unbiased insights into the nucleation mechanism.
Transition path sampling is an enhanced sampling technique specifi-
cally designed to efficiently sample transition pathways of rare events

such as nucleation.39 In contrast to other enhanced sampling meth-
ods such as umbrella sampling, metadynamics, and forward-flux
sampling, transition path sampling is independent of the choice of
order parameter used to measure the progress of a transition.39 For
example, in metadynamics simulations, the selected order parameter
directly biases the particle dynamics. This choice of order parameter
has been shown to be particularly crucial for two-step nucleation
processes.8,47 For transition path sampling, the only requirement is
that the order parameter distinguishes the initial state from the final
state, in our case the gas phase from the condensed phases. As long
as this is satisfied, the system is free to choose the nucleation mech-
anism that is most probable. Therefore, to eliminate the influence
of the order parameter on our results, we choose to use transition
path sampling. Generally speaking, this method generates an ensem-
ble of transition pathways through Monte Carlo “shooting” moves,
where each trial shooting move generates a new pathway based on a
previous pathway.39 For each shooting move, a single frame from
the previous pathway is selected as a “shooting point.” From the
shooting point, the equations of motion are integrated forward and
backward in time, thus generating a new pathway. If the new path-
way remains a valid transition pathway, the move is accepted, and
the new pathway replaces the previous one; otherwise, the previous
path is retained. In this way, the sampled path ensemble gradually
converges toward the correct nucleation mechanism.

We select nine (ϕ, η) state points in our kinetic phase diagram
that are near the boundary between the two kinetic regimes. These
state points are indicated by black circles in Fig. 3 and correspond to
three different polymer reservoir packing fractions ϕ = 0.8, 0.9, 1.0.
For each ϕ, we investigate three different chemical potentials corre-
sponding to the critical chemical potentials of three liquid seeds. The
liquid seeds have nucleus sizes of n∗ ≈ 100 [state points labeled (c),
(f), and (i)], n∗ ≈ 200 [(b), (e), and (h)], and n∗ ≈ 500 [(a), (d), and
(g)]. We initialize the transition path sampling simulations with the
seeded liquid nuclei. In this way, it is easy to generate initial tran-
sition pathways at the selected state points, and since they originate
from the liquid seeds, these initial transition pathways lead to the
formation of a liquid nucleus. Starting from these initial transition
pathways, we generate new transition pathways using transition path
sampling with the aimless shooting algorithm48,49 (see Appendix D
for further details). The result of our transition path sampling sim-
ulations is a converged ensemble of 20–100 decorrelated nucleation
pathways for each state point. In addition, due to the nature of the
aimless shooting algorithm, the accepted shooting points serve as a
proxy for the critical nuclei. Therefore, we also obtain an ensemble of
critical nuclei for each state point. Next, we use polyhedral template
matching (PTM)50 to quantify the number of crystalline particles
ncrystal in each nucleus in all nucleation pathways (see Appendix F
for further details).

Our analysis reveals two distinct nucleation mechanisms cor-
responding to the two regimes of the kinetic phase diagram: one
nucleation mechanism corresponding to a critical crystal nucleus
and the other corresponding to a critical liquid nucleus. In Fig. 4, we
illustrate the two nucleation mechanisms by focusing on two state
points in the kinetic phase diagram: state points (a) and (c). For
each mechanism, we show representative snapshots of the nuclei,
the crystallinity ncrystal/n as a function of the nucleus size n, and the
nucleation barrier ΔΩ(n) for nucleation. To be specific, the snap-
shots show examples of pre-critical, critical, and post-critical nuclei
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FIG. 4. Two mechanisms for two-step nucleation corresponding to a critical crystal nucleus [state point (a), left] and critical liquid nucleus [state point (c), right]. The
mechanisms are illustrated here for two [(a) and (c)] of the nine state points investigated using transition path sampling. At the top, snapshots are shown of pre-critical,
critical, and post-critical nuclei. Liquid-like particles are depicted in dark blue and reduced in size, while crystalline particles are shown in red. In the middle (a1) and (c1),
the crystallinity, defined as the fraction of crystalline particles ncrystal/n, is plotted as a function of the nucleus size n. The average crystallinity as a function of the nucleus
size is represented by a black line, while the average crystallinity and average size of the critical nuclei are indicated by a red or a blue cross. Five different transition
pathways are shown in light gray to illustrate their variation. At the bottom (a2) and (c2), the free-energy barrier βΔΩ for the formation of crystal or liquid nuclei is shown.
The nucleation barriers correspond to the predictions from classical nucleation theory (CNT), where the gas–liquid and gas–crystal interfacial tensions are measured using
seeding simulations.

from the transition path sampling simulations. Liquid-like particles
are depicted in dark blue and reduced in size, while crystalline par-
ticles are shown in red. The black solid lines in Figs. 4(a1) and 4(c1)
represent the average crystallinity ncrystal/n of nuclei as a function
of size. We compute the average crystallinity by grouping all con-
figurations from the transition path sampling simulations according
to their size. For each group, we compute the average crystallinity
ncrystal/n. In addition, the red and blue crosses in Figs. 4(a1) and
4(c1) show the average crystallinity and size of the critical nuclei.
To show the variation of the transition pathways, we also plot five
example nucleation pathways with light gray lines. Figures 4(a2) and
4(c2) show the free-energy barriers ΔΩ derived from the CNT equa-
tion (2), where the liquid–gas and crystal–gas interfacial tensions
γ are obtained from seeding simulations fitted using Eq. (4). We have
also marked the critical size for a liquid nucleus (blue dot) and the
critical size for a crystal nucleus (red dot) in Figs. 4(a2) and 4(c2).

First, we discuss the nucleation mechanism corresponding to a
critical crystal nucleus. This mechanism occurs when the free energy
of a critical crystal nucleus is lower than the free energy of a critical
liquid nucleus, as illustrated in Fig. 4(a2). In Fig. 4(a1), we, indeed,
see that the crystallinity ncrystal/n of the critical nucleus (red cross)
is high. Although the critical nucleus is crystalline, the pre-critical
nuclei that initially form from the metastable gas remain liquid. This
can be seen from the low average crystallinity ncrystal/n of the small-
est nuclei in Fig. 4(a1). The point at which the average crystallinity

reaches around 50% marks the stage when the pre-critical liquid
nuclei crystallize. From the five example pathways, we see that most
liquid nuclei crystallize at a similar size nx ≈ 80.

Second, we discuss the nucleation mechanism corresponding
to a critical liquid nucleus. This mechanism occurs when the free
energy of a critical liquid nucleus is lower than that of a critical crys-
tal nucleus. Indeed, we see in Fig. 4(c2) that the liquid nucleation
barrier (blue dot) is lower than the crystal nucleation barrier (red
dot). In Fig. 4(c1), we see that the average crystallinity of the crit-
ical nucleus (blue cross) is low, indicating that the critical nucleus
is, indeed, liquid. The average crystallinity starts to increase gradu-
ally during the post-critical growth phase of the nucleus. From the
five example pathways in Fig. 4(c1), we see that they all crystallize at
different nucleus sizes.

Note that there seems to be an asymmetry between the critical
crystal nucleus and critical liquid nucleus mechanisms. Pre-critical
crystallization occurs fast and roughly at the same size nx, while post-
critical crystallization is more stochastic. The latter can be explained
by an additional nucleation barrier for crystallization within the
growing liquid droplet. In the first mechanism instead, the system
has to form the crystal within the time the nucleus grows to the
critical size. Only those trajectories that exhibit this fast growing
crystallization will survive, while paths that take too long to form
a crystal either simply never become critical or will dissolve again
before they can.
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Now, we have discussed the qualitative features of the two
nucleation mechanisms; we present the same information for all
nine state points investigated using transition path sampling. In
Fig. 5, we show snapshots of critical nuclei, average crystallinities,
and nucleation barriers for each of the state points (a)–(i). Again,
the average crystallinities are computed from the transition path
sampling simulations, while the nucleation barriers are from the
CNT-based seeding predictions. Using Fig. 5, we can evaluate the

predictions of our kinetic phase diagram. The average crystallinity
ncrystal/n of the critical nuclei is high for state points (a), (b), and (d)
and almost zero for state points (c) and (e)–(i). This indicates that
the critical nucleus is crystalline for state points (a), (b), and (d) and
liquid for state points (c) and (e)–(i), which aligns well with the pre-
dictions of the kinetic phase diagram. Notably, state point (b) lies on
the boundary between the two kinetic regimes in the kinetic phase
diagram. In all other cases, the crystallinity of the critical nucleus

FIG. 5. Nucleation mechanisms for the nine state points (a)–(i) investigated using transition path sampling. For each state point, a representative snapshot is shown of a
critical nucleus. Furthermore, for each state point, we plot the average crystallinity ncrystal/n as a function of nucleus size n denoted by a black solid line and the critical size
represented by a blue or a red cross obtained by transition path sampling and the nucleation barriers βΔΩ predicted by classical nucleation theory and seeding. The vertical
dashed lines and red and blue dots mark the critical nucleus sizes predicted by classical nucleation theory and seeding. The state points are divided into two groups: those
with a critical crystal nucleus [(a), (b), and (d), light red background] and those with a critical liquid nucleus [(c) and (e)–(i), light blue background]. Please see the caption of
Fig. 4 for more details.
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clearly supports the predictions of the kinetic phase diagram. Fur-
thermore, the CNT prediction of the critical nucleus sizes (vertical
dashed lines and red and blue dots) compare very well to the criti-
cal nucleus sizes measured in transition path sampling (red and blue
crosses).

VII. DISCUSSION
With our kinetic phase diagram, we have demonstrated that

classical nucleation theory (CNT) combined with seeding simula-
tions can effectively predict the structure and size of the critical
nucleus. In this section, we explore the relationship between equi-
librium and kinetic phase diagrams, discuss the limitations of the
CNT-based approach, and propose potential extensions to better
capture the phenomenology of two-step nucleation.

A. Relation between equilibrium
and kinetic phase diagrams

We have mapped out the kinetic phase diagram for two-step
nucleation in colloid–polymer mixtures in the dilute colloidal gas
regime and validated this kinetic phase diagram using transition
path sampling simulations. This provides a unique opportunity
to compare the kinetic phase diagram (Fig. 3) with the equilib-
rium phase diagram [Fig. 1(b)], allowing us to test theoretical and
phenomenological predictions regarding the relationship between
equilibrium and kinetic phase diagrams.

For example, Ostwald’s step rule51 states that the less stable
phase will nucleate first. Stranski and Totomanow52 conjec-
tured instead that the phase that has the lowest nucleation
barrier will form first. Although both Ostwald’s step rule and
the Stranski–Totomanow conjecture are frequently invoked to
explain nucleation phenomena, they are not universally true.
For example, violations of both Ostwald’s step rule and the
Stranski–Totomanow conjecture have been demonstrated for
patchy particles31 and charged colloids.22,53 With our kinetic phase
diagram presented in Fig. 3, we can compare Ostwald’s step rule to
the Stranski–Totomanow conjecture. In the blue region above the
triple point, the liquid phase is less stable than the crystal phase, and
the critical nucleus is liquid. Thus, in this region, Ostwald’s step rule
is obeyed. In contrast, this rule does not appear to hold in the red
region. Here, although the liquid phase is less stable than the crys-
tal phase, the critical nucleus is crystalline. Ostwald’s step rule seems
to be violated because the barrier to the stable phase is lower than
that to the metastable phase. However, as Ostwald already noted,51,54

exceptions to this rule can occur when the transition to the stable
phase proceeds so rapidly that the metastable phase is not observed.
This likely explains the behavior in this region. While the critical
nucleus is crystalline, the initial pre-critical nuclei that form from the
metastable gas phase are liquid. This phenomenon, observed in tran-
sition path sampling simulations, aligns with the lower liquid–gas
interfacial tension. Such behavior is expected to persist throughout
the entire red region.55 Ostwald’s step rule is also not obeyed in the
blue region below the triple point. In principle, there is a metastable
crystal–gas coexistence region below the triple point. The crystal
phase is less stable than the liquid phase in this region, but the crit-
ical nucleus is liquid. Again, Ostwald’s step rule is violated because

the barrier to the stable phase is lower than that to the metastable
phase.

Evans, Poon, and Renth35,36,56 developed a theoretical proce-
dure to predict possible nucleation pathways from the equilibrium
phase diagram. In the context of this paper, their procedure assesses
whether the driving force for nucleation Δp is positive or negative,
which can be straightforwardly determined from the (metastable)
binodals. For this discussion, we focus on the two regions above
the triple point labeled “G+X” and “G+X (G+L)” in Fig. 1(b).
These regions are denoted as regions “E” and “F,” respectively, in
Ref. 56. In the G+X region located left of the gas–liquid binodal,
the driving force for the nucleation of the liquid phase is nega-
tive, while the driving force for the nucleation of the crystal phase
is positive. Reference 56 predicts that in this region, the crystal
phase forms directly from the gas phase due to the negative driving
force for liquid nucleation. This prediction aligns with our kinetic
phase diagram, where the critical nucleus is always crystalline in the
G+X region. However, we have observed that small initial pre-
critical nuclei can be liquid even if the critical nucleus is crystalline.
The critical nucleus size in the G+X region is very large, which lim-
ited our ability to perform transition path sampling simulations in
this region. Nonetheless, small pre-critical liquid nuclei are likely
to play a role here due to the lower gas–liquid interfacial tension.55

In the “G+X (G+L)” region between the gas–liquid binodal and the
gas spinodal, both driving forces are positive. Reference 56 predicts
that both direct crystal nucleation and a two-step nucleation mech-
anism via an intermediate liquid phase are possible here, but does
not predict which of the two is favored. In this paper, we refine
this prediction by measuring the interfacial tension in addition to
the driving force. Thus, by measuring the interfacial tension, we
determine which of the potential nucleation pathways suggested by
Ref. 56 actually occurs.

B. Crystallization of liquid nuclei
Can we extract more information from the CNT predictions

beyond the height of the nucleation barrier? In Fig. 5, we observe that
the free energy ΔΩ of very small liquid nuclei is consistently lower
than that of very small crystal nuclei. This difference arises because
the liquid–gas interfacial tension is lower than the crystal–gas inter-
facial tension. It also explains why the crystallinity of small nuclei
remains low in our transition path sampling simulations (Fig. 5).
Furthermore, for sufficiently large nuclei, the crystal nucleation bar-
rier eventually crosses the liquid nucleation barrier. In the case of
state points (h) and (i), this crossing occurs at a nucleus size larger
than 400, which is why it is not visible in the plot. This crossing indi-
cates that the crystal phase becomes the thermodynamically most
stable phase at these state points. These general observations pro-
vide further insights into why and where two-step crystallization
occurs: the key explanation is that the liquid–gas interfacial tension
is lower than the crystal–gas interfacial tension. However, there may
also be conditions where nuclei are crystalline from the start. This
would correspond to a situation where the crystallinity of nuclei
is high for all nucleus sizes. We do not observe such a “one-step”
scenario in our transition path sampling simulations. From the per-
spective of CNT, this “one-step” scenario could arise, for example,
if the crystal–gas interfacial tension were lower than the liquid–gas
interfacial tension.
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The next question is whether the CNT barriers can provide
a more specific prediction for the nucleus size at which a liq-
uid droplet crystallizes. Our transition path sampling simulations
indicate that the answer to this question is qualitatively different
for critical liquid nuclei and critical crystal nuclei. If the critical
nucleus is crystalline, our transition path sampling simulations sug-
gest that crystallization occurs at a specific size nx that depends on
the state point but is less influenced by the nucleation pathway. It
is tempting to speculate that this size nx corresponds to the point
where the nucleation barriers cross.55 The barrier crossings shown
in Fig. 5 occur at nx ≈ 240, 220, 310 for state points (a), (b), and
(d), respectively. Alternatively, Duff and Peters32 suggested that nx
corresponds to the point where the gradients of the nucleation bar-
riers dΔΩ/dn cross. They argue that these gradients represent the
size-dependent chemical potentials of the liquid and crystal nuclei,
making freezing favorable once the gradients cross. The gradient
crossings are predicted to occur at nx ≈ 70, 70, 90 for state points
(a), (b), and (d), respectively. Neither the barrier crossings nor the
gradient crossings consistently align with the values nx ≈ 80 for
state points (a) and (b) and nx ≈ 160 for state point (d) that we
obtained from transition path sampling. However, both the barrier
and gradient crossings qualitatively agree with the transition path
sampling results, showing that nx decreases with increasing polymer
reservoir packing fraction ϕ and is less strongly dependent on the
supersaturation.

If the critical nucleus is liquid, crystallization in the post-critical
regime becomes a rare-event process, occurring on time scales com-
parable to or longer than those required for the nucleus to grow.
In this case, while the precise nucleus size at which a droplet crys-
tallizes cannot be precisely predicted, the crystallization rate can
still be determined. In Appendix E, we use brute-force simulations
to measure the crystal nucleation rates of both liquid nuclei and
bulk liquid phases. We find that the crystal nucleation rate increases
exponentially with the polymer reservoir packing fraction ϕ. In addi-
tion, we find that the crystal nucleation rate is not affected by the
liquid–gas interface, indicating that crystal nucleation within liquid
droplets is a homogeneous nucleation process initiated in the bulk of
the liquid droplet rather than at the liquid–gas interface. Given the
large crystal–gas interfacial tension, it is expected that crystallization
occurs in the bulk of the liquid clusters. Once the clusters are fully
crystallized, we observe in Appendix E 1 peculiar fivefold symme-
try, where the colloids are arranged in five tetrahedral “wedges” that
together form a pentagonal bipyramid.

C. Limitations of the CNT-based kinetic predictions
The comparisons in Sec. VII B—between the nucleation bar-

rier crossings and the size nx at which the nucleus crystallizes—hint
at some limitations in using classical nucleation theory and seeding
simulations to capture (two-step) nucleation behavior. One limita-
tion of seeding is that the results are sensitive to the method used to
measure the size of the seeds.44,57 As seen in Eq. (3), the values of the
interfacial tensions and nucleation barriers are directly influenced by
the seed size n∗. We used the coordination number of each particle
to determine whether it is part of the nucleus; see Appendix C for
details. While we have verified that the kinetic phase diagram does
not change qualitatively, employing other methods to measure seed
sizes may yield slightly different results. In the future, this issue could

be addressed by employing a recently proposed seeding method.44

While this new method is not completely independent of how the
nucleus size is measured, it is far less sensitive to this choice than
standard seeding. This approach may also lead to more accurate pre-
dictions of the nucleus size nx at which the liquid droplet crystallizes.
Another possible check on the validity of the seeding simulations is
to compare the interfacial tension to direct computations for planar
crystal–gas and liquid–gas interfaces.16 In the case of the crystal–gas
interfacial tension, one of the challenges is that the interfacial ten-
sion is sensitive to the crystal orientation, whereas the interfacial
tension obtained from seeding is an orientational average. Please see
Ref. 58 for a recent review on the challenges of computing interfacial
tensions for crystal–fluid interfaces.

The simple form of the CNT in Eq. (2) for the free-energy
barrier allows for the determination of the interfacial tension and
barrier height using only the critical nucleus size. However, modi-
fications to Eq. (2) can capture the shape of the nucleation barrier
more accurately.11–14,44,59 These modifications may result in a free-
energy barrier that still depends solely on the nucleus size,44,59 or
they can be designed to represent a two-dimensional free-energy
surface that relies on two parameters, such as the nucleus size
and crystallinity.11,12 Possibly, the parameters of these extended
theories could be estimated from seeding simulations.44 The two-
dimensional free-energy surface proposed in Ref. 12 predicts a
composite cluster pathway, wherein the critical nucleus is neither
completely liquid nor completely crystalline, but rather a compos-
ite cluster of a crystal core completely surrounded by a liquid layer.
We do not observe the composite cluster pathway in our transition
path sampling simulations. Rather, the critical nuclei in our tran-
sition path sampling simulations are almost completely liquid or
almost completely crystalline. For state point (b), the crystallinity of
the critical nucleus is around 74%, but the nucleus is not completely
surrounded by a liquid layer. In their lattice model, Ref. 12 identified
the composite cluster pathway at state points that are intermedi-
ate between the two extremes of critical crystal and critical liquid
nuclei. If this behavior is also the case for our system, the composite
pathway would likely occur only in a small region of phase space,
such as between state points (d) and (e). Alternatively, the com-
posite cluster pathway may become more significant near the triple
point. In this region, the difference in the driving force for the nucle-
ation of the crystal or liquid phases reduces, while the difference in
interfacial tension remains. These conditions are more conducive to
triple-point wetting, making it more likely that the critical nucleus is
a composite cluster.

However, there are two complications for observing a compos-
ite critical nucleus near the triple point. First, as we see in Fig. 5,
the nucleus size needed to observe a critical crystal nucleus becomes
larger as we approach the triple point. For example, for polymer
reservoir packing fraction ϕ = 0.8, a nucleus of size 500 is not large
enough to crystallize. Therefore, to simulate crystalline or compos-
ite critical nuclei near the triple point, we need even larger system
sizes. NVT-seeding60 could be a suitable technique to explore these
large composite nuclei in the future. Second, the crystallization bar-
rier from the metastable liquid increases as we approach the triple
point, creating a barrier to the formation of both composite clusters
and completely crystalline nuclei. In our approach, we essentially
compare the free energy of a completely crystalline critical nucleus
with that of a completely liquid critical nucleus. If the crystallization
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barrier from the metastable liquid droplet is high, the formation of
the crystal nucleus is inhibited, even if the free energy of the crys-
talline critical nucleus is lower than that of the critical liquid nucleus.
These considerations are also relevant for two-step nucleation pro-
cesses where the intermediate phase is a gel, glass, or amorphous
solid rather than a liquid phase. In such processes, crystallization
may be inaccessible due to kinetic trapping. In addition, CNT is,
in principle, an equilibrium theory. For example, the driving force
Δp is based on the pressure difference between two bulk phases in
equilibrium at the same chemical potential. Therefore, special care
should be taken when applying CNT or seeding to non-equilibrium
states such as gels, glasses, or amorphous solids.

VIII. CONCLUSIONS
Two-step crystal nucleation via a metastable intermediate phase

is frequently described as a “non-classical” nucleation process. Using
seeding simulations, we can carefully measure the thermodynamic
parameters of classical nucleation theory for the competing phases.
In this way, we have constructed a kinetic phase diagram for
colloid–polymer mixtures that identifies regions of phase space,
where the critical nucleus is either liquid or crystalline. Our predic-
tions were validated using transition path sampling at nine different
state points. These results show that classical nucleation theory,
when combined with seeding simulations, can effectively capture
the “non-classical” two-step nucleation behavior of colloid–polymer
mixtures. Our transition path sampling simulations demonstrate
that the structure of the critical nucleus has a large impact on the
crystallization kinetics. When the critical nucleus is liquid, crystal-
lization occurs stochastically during the growth of the liquid droplet.
In this scenario, the lower interfacial tension of the liquid phase
with respect to the gas phase reduces the nucleation barrier, thereby
enhancing the nucleation rate. When the critical nucleus is crys-
talline, crystallization occurs from a liquid droplet that has not yet
reached the critical size. In this case, the nucleus size at which
crystallization occurs seems to depend on the state point; however,
this size does not vary significantly between different nucleation
pathways.

SUPPLEMENTARY MATERIAL

The supplementary material contains the code used to generate
and analyze the results of this paper.
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APPENDIX A: LANGEVIN AND MOLECULAR
DYNAMICS SIMULATIONS

All simulations were performed using the Large-scale
Atomic/Molecular Massively Parallel Simulator (LAMMPS) molec-

ular dynamics code.61 We employed a time step Δt = 0.001
√

βmσ2

to integrate the equations of motion, where m is the particle mass
(note that we use reduced units). Calculations for the equilibrium
phase diagram were conducted with molecular dynamics simula-
tions in the isobaric–isothermal (NPT) ensemble. The temperature
and pressure were kept constant using a Nosé–Hoover thermostat
and barostat with relaxation constants of 100Δt and 500Δt, respec-
tively. For the seeding simulations and transition path sampling,
we used hybrid Langevin dynamics/Monte Carlo simulations in the
grand-canonical (μVT) ensemble. The temperature was controlled
by the random forces from the underdamped Langevin dynamics,
with a relaxation constant of 100Δt. This damping/relaxation
constant also determines the friction term of the Langevin equation.
The chemical potential was maintained through grand canonical
Monte Carlo particle exchanges with an ideal gas reservoir, where
insertions and deletions were attempted with equal probability.62

In particular, 10 exchanges were attempted every 10 simulation
time steps. Insertions and deletions were attempted everywhere in
the simulation volume. When successfully inserted, the velocity
of a particle is randomly generated from the Maxwell–Boltzmann
distribution.

APPENDIX B: DETERMINATION OF THE EQUILIBRIUM
PHASE DIAGRAM
1. Binodals from Gibbs–Duhem integration

We determine the coexistence pressure pcoex as a function of
the polymer reservoir packing fraction ϕ using the Gibbs–Duhem
integration.63 This method relies on the fact that we can measure
the derivatives dμ/dϕ and dμ/dp directly within a simulation. To be
precise, the two derivatives are given by

dμ
dϕ
= ⟨

dupot

dϕ
⟩ ≡ λ, (B1)

dμ
dp
= (1/ρ). (B2)
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Here, upot represents the potential energy per particle and ρ denotes
the colloid number density. λ denotes the average of the derivative
dupot/dϕ, which can be readily calculated from the pair potential as
presented in Eq. (1) and summed over each pair of particles in the
system. We measure the two derivatives using molecular dynamics
simulations in the NPT ensemble with N = 4 × 103 particles and cal-
culate the differences Δλ = λα − λβ and Δ(1/ρ) = ρ−1

α − ρ−1
β between

the coexisting phases α and β. Along the coexistence curves, the pres-
sure and chemical potential of the coexisting phases should remain
equal. Therefore, the gradient of the coexistence curve is given by

dpcoex

dϕ
= −

Δλ
Δ(1/ρ)

.

We integrate this ordinary differential equation using an explicit,
third-order Runge–Kutta method with an adaptive step size.64

The integration of the fluid–crystal binodal starts at ϕ = 0 from
the (reduced) pseudo-hard-sphere coexistence pressure βpcoexσ3

= 11.65, as determined in Ref. 65. We start the integration of the
gas–crystal binodal from an initial point obtained from an Einstein
integration; see below. Subsequently, we determine the triple point
as the intersection of the fluid–crystal and gas–crystal binodals,
which occurs at βpσ3

= 0.0295 and ϕ = 0.59. Finally, the integration
of the gas–liquid binodal starts at the triple point.

We note that the binodals obtained from the Gibbs–Duhem
integration can be used to determine the chemical potential μ(p)
as a function of pressure. For a given polymer reservoir packing
fraction ϕ, the Gibbs–Duhem binodals provide the coexistence pres-
sures pcoex,gx and pcoex,gl for gas–crystal and gas–liquid coexistences,
respectively. At these coexistence pressures, the chemical poten-
tials of the coexisting phases are equal. Therefore, starting from
these pressures, we can easily integrate the equation of state p(ρ)
to obtain the (relative) chemical potentials of the gas, crystal, and
liquid phases. By inverting μ(p), we can also determine the pressure
difference Δp(μ) that we need for our seeding simulations.

2. Gas–crystal coexistence
To determine an initial point for the integration of the

gas–crystal binodal, we start by measuring the chemical potential
of the face-centered cubic (fcc) crystal phase at zero pressure and
a polymer reservoir packing fraction ϕ = 0.8 using non-equilibrium
Einstein integration.66 From this chemical potential μ(0) at zero
pressure, we can accurately approximate the chemical potential of
the crystal phase as μx(p) = μ(0) + p/ρ0, where ρ0 is the number
density of the crystal phase at zero pressure. This approximation fol-
lows from Eq. (B2) and the approximation that the crystal density
ρ is constant and equal to ρ0 in the considered pressure range. For
the gas phase, we can accurately approximate the chemical potential
using the ideal gas law βμg(p) = log(βpσ3

). In both cases, the chemi-
cal potentials are defined relative to the chemical potential of an ideal
gas at pressure βpσ3

= 1. By equating the chemical potentials of the
gas and crystal phases, we find the gas–crystal coexistence pressure
to be βpσ3

= 7.0 × 10−4 at ϕ = 0.8.

3. Spinodals from the equation of state
To determine the spinodals of the gas and liquid phases, we

used polynomial fits of the equations of state. To be specific, for each

phase, we first measured the equation of state p(ρ) using molecular
dynamics simulations in the NVT ensemble with N = 4 × 103 parti-
cles. We then fitted the equation of state in the metastable region
between the spinodal and binodal using a simple quadratic poly-
nomial. From this fit, we calculate the colloid number density ρ at
which the derivative dp/dρ vanishes. Since this is equivalent to the
point where d2G/dρ2

= 0, this criterion identifies the spinodal point.

4. Scaling law fits of the binodals and spinodals
Each dot in Fig. 1 represents data obtained as described above

from the Gibbs–Duhem integration (binodals) or from the equa-
tions of state (spinodals). The lines in Fig. 1 are fits and extrapo-
lations of these data points. To determine the critical point, we fit
the gas–liquid binodals as follows:

ηl(ϕ) + ηg(ϕ) = 2ηc + A(ϕ−1
− ϕ−1

c ),

ηl(ϕ) − ηg(ϕ) = B(ϕ−1
− ϕ−1

c )
β
,

i.e., the sum and difference of the liquid branch ηl(ϕ) and gas branch
ηg(ϕ) are fitted linearly and to a scaling law with an exponent
β = 0.32, respectively.62 The fitting parameters include the propor-
tionality constants A and B as well as the colloid and polymer
reservoir packing fractions (ηc, ϕc) at the critical point. However,
away from the critical point, particularly for ϕ ⪆ 0.65, we find that
the gas–liquid binodals and spinodals are less accurately described
by these scaling laws. Therefore, to fit and extrapolate all binodals
and spinodals in this region, we employ cubic spline fits. The gas
branches are generally fitted in log-space, i.e., log(ηg) is fitted as
a cubic spline. For the liquid phase, it is difficult to equilibrate
for ϕ > 0.8 as the liquid crystallizes rapidly. Therefore, we rely on
extrapolations of the cubic splines for the gas–liquid binodals in this
regime. The extrapolations are simple linear extrapolations based on
the gradient of the cubic splines at ϕ = 0.8.

APPENDIX C: DETERMINATION OF THE KINETIC
PHASE DIAGRAM
1. Preparation of seeds

We prepare liquid and crystal seeds of 15 different sizes, rang-
ing from 100 to 5 × 103 particles. While we only use seeds with at
least 500 particles to calculate the nucleation barriers, smaller seeds
are used as initial configurations for the transition path sampling
simulations. These seeds are prepared separately for each polymer
reservoir packing fraction ϕ between ϕ = 0.6 and ϕ = 1.0 in steps
of 0.05, resulting in ∼150 different seeds in total. To create a seed
of a given size n∗, we equilibrate the “child” phase (liquid or crys-
tal) at zero pressure and cut a spherical region from the bulk phase
containing around n∗ particles. We then insert the seed into a low-
density gas phase such that the volume of the gas phase is twenty
times larger than that of the seed. The seed is equilibrated in the
NVT ensemble for 100 000 time steps. This procedure often leads to
spontaneous crystallization of the liquid seed for ϕ ≥ 0.85, or spon-
taneous melting of a crystal seed for ϕ ≤ 0.75. These “transformed”
seeds are not considered when computing the interfacial tensions
γ or the nucleation barriers ΔΩ∗. Consequently, the liquid–gas inter-
facial tension is based on seeds with ϕ ≤ 0.85, while the crystal–gas
interfacial tension is determined from seeds with ϕ ≥ 0.75.
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2. Nucleus size metric
Inspired by previous work,57 we employ the following criterion

to measure the size n∗ of a seed. We first identify for each particle
the number of nearest neighbors using the solid-angle-based nearest
neighbor algorithm67 with anisotropy correction (ASANN).68 We
additionally require the cutoff radius determined by ASANN to be
at most 1.6σ. If a nucleus is crystalline, it is identified as the largest
cluster of particles with at least six nearest neighbors. This nearest-
neighbor threshold of six is midway between the average number of
nearest neighbors in the gas phase (zero) and the fcc crystal phase
(twelve). If a nucleus is liquid, we use a nearest-neighbor thresh-
old of five, which is midway between the gas phase (zero) and the
liquid phase (ten). In the analysis of the transition path sampling
simulations (Fig. 5), we use a nearest-neighbor threshold of five,
irrespective of crystallinity. Visual inspection of the crystal seeds
(Fig. 2) reveals that they are faceted. This threshold accounts for
particles located on the faces, edges, and corners of these facets.
In the example nuclei depicted in Fig. 2, only the particles shown
with the lightest beige color are excluded by the nearest-neighbor
threshold.

3. Critical conditions from active learning
The critical chemical potential μ∗, which corresponds to the

chemical potential at which a given seed becomes critical, is deter-
mined using the active learning procedure described in Ref. 22. We
will summarize this method here with appropriate modifications.
This procedure essentially employs a bisection method with logistic
regression taking care of the inherent stochasticity. For each seed, we
first determine a reasonable interval for the critical chemical poten-
tial, typically between the binodal and spinodal. Subsequently, we
repeat the following three steps:

1. Estimate the critical chemical potential, denoted as μ∗est, using
logistic regression.

2. Simulate the seed at the estimated chemical potential μ∗est for at
most 107 time steps, or until it grows to twice its size or shrinks
to a nucleus of fewer than ten particles.

3. Add (μ∗est, B) to the list of observations, where B ∈ {0, 1}
indicates whether a seed grew or melted.

In the first step, the estimated critical chemical potential is
defined as the chemical potential at which the regression predicts
a 50% probability of growth. Simulating at this estimated critical
chemical potential corresponds to the so-called uncertainty sam-
pling approach to active learning.69 The use of logistic regression
circumvents the need to estimate the growth probability at a sin-
gle chemical potential through multiple runs. The final estimate for
the critical chemical potential is obtained after fitting 20 observa-
tions obtained in the way just described. While this may seem a
small amount of observations to approximate the critical chemical
potential μ∗, we find that the growth probability of a seed typically
increases sharply from 0 to 1 within a small chemical potential range.
Therefore, the active learning procedure described above quickly
finds a reasonable estimate of the critical chemical potential. Instead
of using hundreds of simulations to pinpoint exactly the conditions
of 50% growth for a single seed, this procedure allows us to efficiently
approximate the critical conditions of many crystal and liquid seeds
for different polymer reservoir packing fractions.

APPENDIX D: TRANSITION PATH SAMPLING

Here, we provide the details of our transition path sampling
simulations. While the methodology closely follows that recently
described in Ref. 70, we repeat the explanation here with necessary
modifications to ensure that this paper is self-contained. Simulation
management is done with the PyRETIS software package.71

1. Aimless shooting
We employ the aimless shooting variant48,49 of transition path

sampling. In each shooting move, a “shooting point” (a time slice)
is selected from the previous trajectory, where the velocities of all
particles are completely resampled from the Maxwell–Boltzmann
distribution. Starting from this new shooting point, we simulate
forward and backward trajectories using grand-canonical Langevin
dynamics. A new transition path is accepted if one of the trajec-
tories ends in the metastable gas phase and the other ends in the
condensed phase. The trajectories can vary in length, with the simu-
lation stopping when one of the stable states is reached. To identify
these stable states, we calculate the nucleus size n every 10 000 time
steps by identifying the nucleus as the largest cluster of particles that
have at least two neighboring particles within a distance of r/σ < 1.6.
We define the gas phase as n < 10, while the condensed phase cor-
responds to n > 300 for simulations starting with a liquid seed of
n∗ = 100, n > 400 for those starting with n∗ = 200, and n > 700 for
those starting with n∗ = 500.

2. Shooting point selection
The selection of shooting points follows a procedure slightly

modified from that described in Ref. 48. The initial shooting point is
the critical liquid nucleus obtained from the seeding simulations. For
all subsequent shooting moves, the new shooting point tn is selected
by slightly perturbing the previously accepted shooting point to.
To be specific, tn is chosen randomly from the following candi-

dates: to, to ± 1ΔT, to ± 2ΔT, . . . , to ± 20ΔT, where ΔT = 10
√

βmσ2.
This ΔT should not be confused with the simulation time step,

Δt = 0.001
√

βmσ2. The length of the accepted trajectories varies
with the state point. The shortest trajectories are seen for ϕ = 0.8 and
n∗ = 200, where the average length is 120ΔT. The longest trajecto-
ries are observed at ϕ = 1.0 and n∗ = 500, where the average length is
1050ΔT. The time difference ∣tn − to∣ is typically much smaller than
the total trajectory length.

3. Path decorrelation
For each state point, 2000 shooting moves were performed,

yielding an average acceptance rate of 22%. The first 1000 moves
were used for equilibration, while the remaining 1000 were used
for production. We calculated the autocorrelation function of the
nucleus size n at the shooting point. To be more precise, we cal-
culated E[(nk+l − n̄)(nk − n̄)], where nk is the nucleus size at the
shooting point of shooting move k, n̄ is the average nucleus size
of shooting points, and l is the shooting point lag. Based on this
autocorrelation function, we estimated the decorrelation time to be
between 10 and 50 shooting moves, depending on the specific state
point. Consequently, we obtained between 20 and 100 decorrelated
nucleation pathways, depending on the state point.
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4. Reweighted transition path ensembles
Recently, Falkner et al.72 demonstrated that the aimless shoot-

ing move with flexible path lengths, as described above, is not
reversible and introduces a bias into the transition path ensemble.
To address this issue, they proposed a reweighting method where
each transition path is assigned a relative weight of 1/L, with L rep-
resenting the path length. To evaluate whether this issue affects our
results, we applied their reweighting procedure to our transition
path ensemble sampled with the aimless shooting point selection
method explained above. In addition, we repeated the transition
path sampling simulations with a different shooting point selec-
tion method: instead of perturbing the previously accepted shooting
point, we also performed a series of simulations where the shoot-
ing point was chosen uniformly and randomly from the previously
accepted transition path. In this case, we used a modified acceptance
criterion: a new transition path Xn is accepted if one of the trajec-
tories ends in the metastable gas phase and the other ends in the
condensed phase, with a probability pacc = min [1, L(Xo)/L(Xn)]).72

The acceptance rate with this procedure was significantly lower,
ranging from ∼5% to 10% for most state points but dropping below
1% for state point (a) because the trajectories at that state point are
very long. Thus, we obtained three different transition path ensem-
bles. For each ensemble, we recalculated the average crystallinity
ncrystal/n, as a function of nucleus size n.

In Fig. 6, we plot the crystallinity ncrystal/n for three different
transition path ensembles: (1) the ensemble sampled with aim-
less shooting (“aimless”), (2) the ensemble sampled with aimless
shooting and reweighted by the path length (“aimless reweighted”),
and (3) the ensemble sampled using uniform shooting point selec-
tion (“uniform”). Figure 6 shows that the qualitative conclusions
regarding the nucleation mechanisms are consistent across all path

FIG. 6. Average crystallinity ncrystal/n as a function of nucleus size n calculated
for three different transition path ensembles: (1) the ensemble sampled with aim-
less shooting (“aimless”), (2) the ensemble sampled with aimless shooting and
reweighted by the path length (“aimless reweighted”), and (3) the ensemble sam-
pled using uniform shooting point selection (“uniform”). The letters refer to the state
points indicated in the kinetic phase diagram shown in Fig. 3.

ensembles. The effect of reweighting seems minimal and is not dis-
cernible in Fig. 6. The trajectories sampled using uniform shooting
point selection seem to have slightly different crystallinities for state
points [(a)–(c) and (e)]. Because the acceptance rate for uniform
shooting point selection is significantly lower, it is possible that these
differences are a result from slower convergence and/or a limited
number of decorrelated pathways. Overall, we conclude that the
conclusions discussed in the main text are robust.

APPENDIX E: BRUTE-FORCE SIMULATIONS OF LIQUID
DROPLET CRYSTALLIZATION

In the transition path sampling simulations presented in the
main text, the liquid droplets are relatively small N < 700 when crys-
tallization occurs. For this reason, it is hard to determine whether or
not crystallization occurs at the surface of the droplet or whether
it is facilitated by heterogeneous nucleation at the liquid–gas inter-
face. To investigate this possibility further, we simulate large liq-
uid droplets of N = 5 × 103 colloids using brute-force molecular
dynamics simulations in the canonical (NVT) ensemble. In this
ensemble, the liquid droplets are metastable, showing no signifi-
cant growth or shrinkage over time. For polymer reservoir packing
fractions ϕ ⪆ 0.77, we observe spontaneous crystallization of these
metastable droplets within a reasonable simulation time. We use

FIG. 7. Bulk vs surface crystallization of liquid droplets. At the top, a representative
crystallization event of a liquid droplet of N = 5 × 103 colloids is shown. Liquid-like
particles are depicted in dark blue and reduced in size, while crystalline particles
are shown in red. At the bottom, we plot the crystal nucleation rate J measured
using brute-force simulations as a function of the polymer reservoir packing frac-
tion ϕ. The nucleation rate J is normalized by σ3 with σ being the colloid diameter

and by the simulation time step Δt = 0.001
√

βmσ2. The black squares represent
the crystal nucleation rate measured in bulk liquids, while the purple circles show
those measured in liquid droplets containing N = 5 × 103 colloids. The error bars
represent approximate 95% confidence intervals for the nucleation rates.
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polyhedral template matching (PTM)50 to identify crystalline par-
ticles as described in Appendix F. At the top of Fig. 7, we present
a representative crystallization event of a liquid droplet at ϕ = 0.78.
Liquid-like particles are depicted in dark blue and reduced in size,
while crystalline particles are shown in red. We see that crystalliza-
tion predominantly occurs in the bulk of the droplet rather than at
the liquid–gas interface.

1. Crystal nucleation rate in bulk liquids
and liquid droplets

To support this claim, we measure the crystal nucleation rate
using brute-force molecular dynamics simulations as a function of
the polymer reservoir packing fraction ϕ. For ϕ values between
0.77 and 0.81, we perform 16 simulations each for a pure bulk
liquid and a liquid droplet surrounded by a gas phase. The bulk liq-
uid contains N = 4 × 103 colloids, while the liquid droplets contain
N = 5 × 103 colloids. The bulk liquid is simulated at zero pressure in
the isobaric–isothermal (NPT) ensemble, whereas the liquid droplet
is simulated in the canonical (NVT) ensemble. In this way, both
systems are simulated under conditions close to gas–liquid coexis-
tence. We use the same methodology as in Ref. 18 to compute the
nucleation rate and its 95% confidence intervals from our simula-
tions. The nucleation rate density J is computed using the number
of observed crystallization events ℓ, the total simulation time t, and
the liquid volume V as

J = ℓ/(Vt).

For ϕ = 0.77, the nucleation rate is so low that only a few systems
crystallized: ℓ = 4 for bulk liquids and ℓ = 7 for liquid droplets. In all
other cases, ℓ = 15 or 16, i.e., almost all systems crystallized. For liq-
uid droplets, we approximated the liquid volume V as the number of

particles in the droplet divided by the liquid number density under
coexistence conditions.

In Fig. 7, we plot the crystal nucleation rate for bulk liquids
(black squares) and liquid droplets (purple circles). The error bars
represent 95% confidence intervals and are at most approximately
half an order of magnitude. If crystallization were a heterogeneous
nucleation process facilitated by the liquid–gas interface, the crys-
tal nucleation rate should be significantly higher for liquid droplets
than for bulk liquids. However, the crystal nucleation rate in bulk
liquids is consistent with that in liquid droplets within our error bars.
Therefore, our nucleation rate measurements support our claim that
crystallization in droplets occurs in the bulk of the droplet rather
than at the liquid–gas interface.

2. Fivefold symmetry clusters
When analyzing the brute-force crystallization events of liquid

droplets containing N = 5 × 103 colloids, we find that the crystallized
clusters show a peculiar fivefold symmetry. This fivefold symmetry
is consistently seen in clusters formed at polymer reservoir pack-
ing fractions ϕ = 0.77, 0.78, 0.79. However, for ϕ = 0.8, the clusters
show a random hexagonal close-packed (rhcp) structure instead.
In Fig. 8, we show a crystal cluster formed at ϕ = 0.78. This figure
presents visualizations of the cluster from two orthogonal perspec-
tives in different rows. The particles are colored according to their
local crystal structure, as classified using polyhedral template match-
ing (PTM);50 see Appendix F for details. Dark green particles are
fcc-like, while yellow particles are hcp-like. Panels (a) and (d) show
the external surface of the cluster, while panels (b) and (e) provide
a cross-sectional view, where we slice the cluster into half to show
its internal structure. Finally, panels (c) and (f) show only fcc-like
particles in the core of the cluster.

FIG. 8. Fivefold symmetry in a spon-
taneously crystallized cluster of N = 5
× 103 colloids. The top row (a)–(c) and
bottom row (d)–(f) show different per-
spectives of the same cluster. Panels
(a) and (d) show the external surface,
panels (b) and (e) show a cut through
the center, and panels (c) and (f) show
the central arrangement of five tetrahe-
dra forming a pentagonal bipyramid. The
local crystal structure is classified using
the polyhedral template matching (PTM)
algorithm. Dark green particles are fcc-
like, yellow particles are hcp-like, and
liquid-like particles are not shown.
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The core of the clusters (c) and (f) is an arrangement of five
tetrahedral-shaped domains of fcc-like particles. Together, these
tetrahedral domains form a pentagonal bipyramid. Hcp layers are
observed between the tetrahedral domains and as additional surface
layers (b) and (e). The structure of this cluster is reminiscent of the
clusters observed for hard spheres self-assembling under spherical
confinement.73 In spherical confinement, hard spheres can self-
assemble into both icosahedral clusters and decahedral clusters.73,74

Although Refs. 73 and 74 observe a preference for icosahedral clus-
ters, we only observe decahedral clusters like the one shown in
Fig. 8. Our simulations differ from those of spherically confined hard
spheres in two ways. First, we consider polymer-induced attractions
between the hard spheres. Second, the spherical confinement in our
system arises from the polymer-induced attractions between the col-
loids, rather than from a hard external wall. As a result, the spherical
confinement in our system is much “softer,” which also helps explain
the absence of heterogeneous nucleation in our simulations. Our
results are also reminiscent of fivefold-twinned crystals observed
in various systems, such as nucleation from bulk hard-sphere sys-
tems,75 gold nanoparticles,76 and many other metals.77 In fact, in
our bulk liquid simulations, we observe fivefold-twinned crystals
that closely resemble those found in Ref. 75. Our results suggest that
the fivefold symmetry can be further stabilized by polymer-induced
spherical confinement, which could serve as an interesting starting
point for future research.

APPENDIX F: POLYHEDRAL TEMPLATE MATCHING

Polyhedral template matching (PTM)50 identifies local crystal
structures by matching the positions of a set of particles to reference
templates corresponding to various crystal phases. For face-centered
cubic (fcc) and hexagonal close-packed (hcp) structures, the tem-
plate consists of 13 particles: a central particle and its 12 nearest
neighbors, arranged according to the fcc or hcp crystal lattice. We
use a root-mean-square deviation (RMSD) threshold of 0.12 for the
PTM algorithm. In Fig. 8, we identify the central particle of a recog-
nized set as either fcc-like or hcp-like. For the main text, we define
a particle as “crystalline” if it is part of one of the 13 particles in a
recognized fcc or hcp set. By classifying all 13 particles in the set as
crystalline, we also include particles located on the crystal surface as
crystalline.
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