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Figure S1: SU8-rod characterization (a,b) Optical microscopy images of the SU8-rods in (a)
Bright field and (b) fluorescence modes. (c) SEM images of the SU8-rods. (d,e) Histograms of
the SU8-rods for the diameter and length in 𝜇m
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Figure S2: Control experiments with SU8 spheres Fluorescence images of SU8-spheres with
area fraction 𝜙c ≈ 0.38 under different AC electric field conditions, forming isolated cluster
at the same conditions where the rods form an interconnected network. The scale bars depict
50𝜇m.
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Figure S3: Characterization of planar network Probability density function of pore areas of
the SU8-rod network structure for (a) 8 Vpp at different frequencies and (b) 4 kHz at increasing
voltages. Dependence on the network thickness LN of (c) number of standing rods Nrod,s and (d)
connectivity G. The color coding in (c) and (d) indicated th increasing voltage from dark red to
light red.
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Figure S4: Numerical estimation for increasing area fractions of non-interacting and pla-
nar rods. (a) Probability of cluster formation as a function of area fractions 𝜙c for homogenous
(blue) and polydisperse of ≈ 30% (magenta) systems. (b) Corresponding images of randomly
distributed and oriented rods for a homogenous systems of planar rods. Each cluster is depicted
in a different colour. Red colour depicts a fully connected cluster on the field of view.
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Figure S5: Characterization of EHD flows around the rods Integrated intensities of tracers
measured over 60 s at 1 kHz (a,b) and 5 kHz (b) and 2 kHz (d). The color coding represents the
intensity levels in an 8-bit format from 𝐼min (dark green - 0) to 𝐼max (bright green - 255). The
white arrows indicate the direction of the tracers away (a) or towaeds (b) the rod.
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Figure S7: Monte Carlo (MC) simulations at high surface coverage. A mosaic of typical
MC configurations after 105 MC steps per rod, viewed along the positive 𝑧 axis. Rods are
colored by orientation: red, green, and blue indicate alignment along the 𝑥-, 𝑦-, and 𝑧-directions,
respectively. The Péclet number and dipole strength 𝛾 are varied in a system of 𝑁 = 300 rods
with aspect ratio 𝐿∕𝜎 = 8 at a surface coverage of 𝑁𝜎∕𝑙2 = 0.8. All simulations are initialized
with rods in an upright configuration.
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Figure S8: Monte Carlo (MC) simulations at low surface coverage. A mosaic of typical MC
configurations after 105 MC steps per rod, viewed along the positive 𝑧 axis. Rods are colored
by their orientation: red, green, and blue indicate alignment along the 𝑥-, 𝑦-, and 𝑧-directions,
respectively. The Péclet number and dipole strength 𝛾 are varied in a system of 𝑁 = 150 rods
with aspect ratio 𝐿∕𝜎 = 8 at a surface coverage of 𝑁𝜎∕𝑙2 = 0.4. All simulations are initialized
with rods lying flat. To better visualize clustering, each configuration is replicated once along
both the 𝑥 and 𝑦 directions.
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S1. Monte Carlo Simulation of Dipolar Rods under Confinement

The system under investigation involves a combination of steric and electrostatic interactions

and consists of colloidal rods confined between two parallel conducting walls. Due to the di-

electrophoretic effect, each colloid acquires a dipole moment aligned perpendicular to the elec-

trodes, i.e. along the direction of the external electric field. To model this behavior, each rod

is represented as a rigid linear chain of hard spheres of diameter 𝜎, with each bead carrying a

point dipole moment fixed along the 𝑧-axis. The dipole-dipole interaction between two point

dipoles separated by a center-to-center distance 𝑟 and with relative orientation 𝜃 is given by

𝑈dipole = 𝛾𝜎3(1 − 3 cos2 𝜃)∕(2𝑟3), where 𝛾 is the dimensionless dipolar strength (see main text).

We use rods with an aspect ratio 𝐿∕𝜎 = 8, corresponding to the average length observed in the

experimental system.

Each Monte Carlo step consists of a trial translation and rotation of a randomly selected

rod. Rotations are performed using small random quaternions to enhance computational effi-

ciency. The rods are confined between two conducting walls along the 𝑧-direction, with hard-

wall boundary conditions, while periodic boundary conditions are applied in the 𝑥 and 𝑦 direc-

tions.

Dipolar interactions are anisotropic and long-ranged, requiring the use of Ewald summation.

While Ewald summation is traditionally formulated for fully periodic three-dimensional systems,

our system is confined in the 𝑧-direction. The lack of periodicity in the 𝑧-direction is resolved by

noting that a perpendicular electric field between conducting electrodes induces an infinite series

of image dipoles. We exploit this by explicitly constructing mirror images of all rods across the

confining planes, effectively restoring periodicity along the 𝑧-direction and enabling the use of

standard 3D Ewald summation. The real-space contribution is damped using the complementary

error function, while the reciprocal-space sum is computed over a lattice of wavevectors. To

improve efficiency, optimized bookkeeping is employed to incrementally update the reciprocal-
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space energy after each Monte Carlo move, significantly reducing computational cost.

Although the experimental system has a thickness of approximately 120𝜎, we use a simula-

tion box of height 20𝜎, corresponding to an effective thickness of 40𝜎 when accounting for the

mirror image system. This reduction significantly enhances computational efficiency without

compromising physical accuracy, as the dipoles are strongly attracted to the confining walls and

exhibit negligible interaction with their distant images.

The computational cost remains high, accounting for mirror images and inter-rod interac-

tions, each rod comprises 16 interacting dipolar beads, resulting in a total of 2400 dipoles for a

system of 𝑁 = 150 rods.

In experiments, rods are predominantly observed to lie flat against the confining wall. To re-

produce this behavior, we introduce a gravitational potential that biases rods toward the bottom

electrode. To avoid introducing multiple independent parameters such as diffusion coefficients,

particle mass, or gravity strength, we characterize the influence of gravity using a single dimen-

sionless Péclet number, Pe = 𝑣𝑠𝜎∕𝐷, which quantifies the ratio of sedimentation velocity to

diffusion. The gravitational potential is then expressed as 𝑈𝑔 = Peℎ, where ℎ is the height of a

bead above the bottom wall.

Supplementary Fig. S7 presents MC simulation snapshots at a surface coverage of 𝑁𝜎∕𝑙2 =

0.8, where 𝑙 denotes the lateral box length. We explore a range of Péclet numbers, 0.4 ≤ Pe ≤

1.2, and dipolar field strengths, 0.6 ≤ 𝛾 ≤ 2.0. All simulations are initialized with rods in an

upright configuration. We observe that higher Péclet numbers require stronger fields to main-

tain this orientation. Importantly, at this density, clustering of flat-lying rods is not observed,

regardless of their effective weight or the applied field strength.

To better capture the behavior of the system, we subsequently reduced the surface coverage

to 𝑁𝜎∕𝑙2 = 0.4, consistent with typical experimental conditions, and extended the range of field

strengths to 2 ≤ 𝛾 ≤ 20. As shown in Supplementary Fig. S8, this setup reveals that increasing
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the field strength in a system initialized with flat-lying rods promotes dipolar clustering. This

configuration enables a controlled investigation of clustering and alignment transitions.

S2. Analysis of porous structures

The pore area Ap recognition is performed with an image analysis where we detect all connected

regions (voids, i.e. pores) in the binary image that meet specified size and shape criteria, which

were set to isolate only relevant pore spaces. Any detected regions below a specific area threshold

(e.g., noise or irrelevant gaps) were excluded from the analysis to ensure accurate pore size

measurement. This threshold was chosen based on the known dimensions of the particles.

Moreover, the thickness of the network (LN) is defined as the diameter of the largest sphere

that fits inside the object and contains the point as 𝜏(𝑝) = 2max({𝑟 ∣ 𝑝 ∈ sph(�⃗�, 𝑟) ⊆ Ω, �⃗� ∈ Ω})

To achieve a smoother, more uniform surface, this method reduces irregularities by adjusting

the thickness values of surface voxels. The main advantage of using this method is its ability to

provide localized, consistent measurements of structural thickness, even in complex, irregular

geometries.

S3. Percolation estimation

As noted in previous works, 𝜙p decreases when the polydispersity increases for a fixed average

rod length. Specifically, in our system, the percolation threshold is governed by the weight-

average rod length ⟨𝐿⟩𝑤, which is greater than the mean length �̄� due to the longer rods con-

tributing more heavily to connectivity. This leads to a reduction in 𝜙p as the polydispersity

increases. This relationship can be expressed as [1]

𝜙𝑝 =
1
2

𝐷
⟨𝐿⟩𝑤

1
Δ
𝐷
− 1

,

where ⟨𝐿⟩𝑤 = ∫ 𝑑𝐿𝐿2𝑃 (𝐿)
∫ 𝑑𝐿𝐿𝑃 (𝐿)

, and Δ is the maximum separation between rods. For a Gaussian
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distribution, the weight-average length is ⟨𝐿⟩𝑤 ≈ �̄�+ 𝜎2

�̄�
, which shows that even small variances

lead to a decrease in the 𝜙p. In our system, with a mean rod length of L= 6.2 𝜇m, and standard

deviation of 2.43 𝜇m, we estimate at least a 20% reduction in the 𝜙p due to polydispersity. More-

over, the presence of attractive interactions further reduces the 𝜙p and influences the network

structure, as described by the expression:

𝜙𝑝 =
1
2
𝐷
𝐿

1
Δ
𝐷
− 1

⋅
1

𝐼∥ + 𝐼⟂
,

where 𝐼∥ and 𝐼⟂ account for the orientation-dependent contributions to connectivity. The

polydispersity not only reduces 𝜙p but also alters the network topology, as longer rods act as

structural backbones, while shorter rods fill gaps and improve packing.

For a monodisperse system of non-interacting rods, the percolation threshold can be approx-

imated using the expression [2]:

𝜙mono
𝑐 ≈ 4.5

𝐿∕𝐷
, (1)

as for rods with L/D<10 𝜙c ≈ (L∕D)−1. The factor 4.5 was approximated from Monte

Carlo simulation fittings of the data for two-dimensional overlapping and non-interacting rods,

as reported in the literature [2, 3]. For rods with an aspect ratio of 𝐿∕𝐷 = 10, this yields a

threshold of 𝜙mono
𝑐 ≈ 45 %. However, our system includes a significant polydispersity of ±20%,

which lowers the percolation threshold. This is because longer rods in a polydisperse distribution

enhance connectivity by bridging gaps that shorter rods cannot span.

To account for the effect of polydispersity, we use a correction factor. Studies on systems

with moderate polydispersity have shown that the percolation threshold decreases approximately

by 20% compared to the monodisperse case. Thus, we apply a correction factor of 0.8 to adjust

for the increased connectivity:
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𝜙𝑐 ≈ 𝜙mono
𝑐 × 0.8 = 4.5

10
× 0.8 ≈ 0.35 (2)

This implies that the critical area fraction for our polydisperse system is approximately

𝜙𝑐 ≈ 35%. At this percolation threshold, the rods can establish sufficient connectivity to form a

spanning cluster in the 2D system, thereby achieving percolation.

S4. Supplementary Movies

MovieS1: Fluorescence movie of quasi-2D suspension of Brownian rods sedimented to the

bottom electrode with the electric field off.

MovieS2: Movie of the network formation by turning on the AC field from a Brownian isotropic

configuration to a network formation at 2 kHz and 6 Vpp.

MovieS3: Movies the quasi 2D-network at an equilibrium state at various field conditions, at 6

Vpp and 4, 6 and 8 kKz from left to right.

MovieS4: Movie of a single rod surrounded by tracer particles (polystyrene particles 700 nm

diameter) to map the electrohydrodynamic flow fields around the rod at various field conditions.

MovieS5: Monte Carlo simulations movie of a 2D planar configuration of rods (color depicts

orientations) at low field strength conditions.

MovieS6: Monte Carlo simulations movie of a 2D planar configuration of rods (color depicts

orientations) at high field strength conditions hinting at the rod interaction and formation of a

network.
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