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increasingly crucial for understanding and controlling zeolite
self-assembly. Molecular dynamics (MD) simulations have
provided insights into the zeolite self-assembly process, while
artificial intelligence (AI) and optimization algorithms have
advanced the design of stable zeolite frameworks. Here, we
combine accelerated MD simulations with evolutionary
computing techniques to facilitate the self-assembly of target
frameworks within a coarse-grained zeolite model.

Efficiently screening for optimal conditions for the self-
assembly of a target zeolite framework is prohibitively expensive
when relying on systematic experimentation or forward
modeling. The exploration of such combinatorial design
parameter spaces has motivated the surge of inverse design
methods. Inverse design is a bottom-up approach that involves
adjusting the properties of building blocks, such as particle shape
and particle interactions, as well as the thermodynamic
conditions, to achieve the desired properties of the self-
assembled material. Many inverse design frameworks have
been proposed in recent decades.13 For instance, Torquato and
coworkers used inverse statistical mechanical methods to
develop isotropic potentials that facilitate the formation of
various colloidal lattices.13−15 Other researchers have also
designed potentials and conditions to identify quasicrystals
through inverse design techniques.16,17 However, porous
materials such as zeolites and metal−organic frameworks
(MOFs) pose unique challenges for inverse design due to
their relatively complex topologies compared to simpler
crystalline materials. Some studies have identified novel
thermodynamically stable porous materials by leveraging
existing data sources, such as the IZA-SC, and employing
artificial intelligence, without considering the self-assembly
mechanisms. For instance, porous materials have been designed
using generative adversarial neural networks18,19 variational
autoencoders20 diffusion models21 and other machine learning
methods.22 While previous work has employed optimization
strategies to design the self-assembly of open crystals23 to the
best of our knowledge, a generic, robust inverse design
framework capable of optimizing the self-assembly of complex
zeolitic frameworks does not currently exist.

An iterative inverse-design framework for zeolite self-
assembly requires computational efficiency that is difficult to
achieve with atomistic models. Recently, Molinero et al.
proposed a novel and concise coarse-grained model for zeolites
consisting of tetrahedral network-former T particles and
structure-directing agent S particles.24 The T particles are
parametrized based on the mW water model25 which in turn is a
special parametrization of the Stillinger-Weber (SW) model.26

The T-S model considers two-body interactions between T-T,
T-S and S-S pairs, as well as an additional three-body interaction
between T particles to capture tetrahedrality. This coarse-
grained T-S model has been reported to reproduce several
known structures, including the SGT zeolite framework and the
sII clathrate, and a zeolite analog of the FIR-3027 metal−organic
framework dubbed Z124,28 along with various other phases.29

Due to the complexity of phases introduced by many-body
interactions, binary components, and a broad range of adjustable
interaction parameters, this model has the potential to
reproduce a wide diversity of zeolite frameworks.30 The T-S
model is also highly tunable, with free parameters such as
particle size, interaction strength and range, tetrahedrality,
making it well-suited for the inverse design of the self-assembly
of desired zeolites.

In this work, we devise an innovative inverse design workflow
capable of identifying optima in a multidimensional parameter
space for the self-assembly of desired zeolite frameworks. To our
knowledge, this is the first framework to robustly deliver self-
assembly for such a variety of target zeolite phases. Our
workflow utilizes the coarse-grained T-S model to represent
interactions between T and S particles and to propagate their
dynamics. To determine promising parameter values in the T-S
zeolite model, we employ an evolutionary approach � the
covariance matrix adaptation evolution strategy (CMA-ES)31�
which is a robust, population-based, gradient-free optimizer.
The parameters we optimize correspond to the effective size and
the attraction strength between T-T, T-S and S-S pairs of
particles, the strength of the tetrahedrality in T particles, and the
temperature. To ensure that the identified potential parameter
values can lead to self-assembly into the target framework, the
fitness of the optimizer is determined from a nucleation
perspective. To accelerate the nucleation and growth of our
framework even further, we employ enhanced sampling
techniques, i.e., our own variation of seed-pinning32,33 to favor
nucleation events that are typically rare in standard MD
simulations. To this end, we introduce a seed, i.e., a small
crystallite of the desired zeolite into a fluid mixture and monitor
its growth to evaluate the fitness of the parameters. To
determine this tendency to grow, we measure fluctuations in
the environment similarity order parameter34 with respect to the
target framework as cataloged in the IZA-SC database.
Additionally, we implemented a novel algorithmic approach to
reduce the computational cost of sampling and measuring
nucleus size fluctuations, thereby increasing the efficiency of the
inverse design.

This paper is organized as follows. In the Results section, we
present our results for the Z1 and SGT zeolite frameworks, as
well as newly discovered parameters for SOD, sI clathrate, CFI,
and a novel, previously uncatalogued, framework Z5. Next, we
provide our conclusions in the Conclusions section. Finally, in
the Methods section, we describe each of the methodology’s
elements, including the T-S zeolite model, the inverse design
workflow, the CMA-ES optimizer, the environment similarity
order parameter, and the seed-pinning method.

RESULTS
Reproducing Self-assembly Parameters for Known

Target Phases. Framework-Type Z1 Zeolite. We start our
investigation by reverse-engineering the framework-type Z1
within a coarse-grained zeolite model consisting of a binary
mixture of T and S particles. Our goal is to identify the optimal
set of design parameters that facilitates the self-assembly of Z1
within this mixture using the protocol as outlined in Methods
section.

The zeolite Z1, as examined in ref 29, has a T particle
structure, derived from the Zn atom positions in the unit cell of
the MOF FIR-30.35 We obtain the coordinates of the 120 Zn
atoms in the unit cell of MOF FIR-30 from the Supporting
Information of ref 27. These 120 Zn atoms are represented by
the red particles in Figure 1a. We then scale the coordinates so
that the nearest neighbor distance between Zn atoms is set to 3.3
Å, matching the typical T-T interparticle distance. To convert
the 3-coordinated particles at the surface of the triangular
channels to the 4-coordinated particles as observed in Z1, we
add 16 additional T particles, represented by the green particles
in Figure 1a. This adjustment brings the total number of T
particles in the FIR-30 unit cell to 136, closely resembling the Z1
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structure, which contains 132 particles. Using this modified unit
cell, we create a supercell of FIR-30, from which we extract a
crystalline seed consisting of 50 particles as shown in Figure 1b
for the seed-pinning simulations. Additionally, we identify the
unique environments for evaluating the environment similarity
order parameter. The total number of unique environments of
Z1 is as large as 136 with typically 55−75 particles in each
environment.

For our inverse design protocol, we consider the following
seven design parameters, � TT, � TS, � SS, � TS, � SS, �, and
temperature T. The values of these parameters are sampled at
each generation from a multivariate Gaussian distribution
according to the CMA-ES algorithm as outlined in the Methods
section. For each set of parameters, also called sample, we run a
short MD simulation of 1 ns, where a crystalline seed is

immersed in a disordered fluid using the seed-pinning method.
This short but effective sampling time is chosen to balance
computational efficiency with the need to evaluate a vast number
of samples across multiple generations. A typical example of the
initial and final configurations of such a seed-pinning simulation
is shown in Figure 1c,d. The environment similarity order
parameter is then used to evaluate the fitness of each sample.
This information is used by the CMA-ES optimizer.

We run the evolution strategy for 50 generations, and present
the results of this reverse-engineering process in Figure 2. This

maximum number of generations is determined arbitrarily as a
compromise between limiting computational cost while still
producing successful parameters for self-assembly. Although the
average fitness value increases gradually over time, we identified
several high-fitness samples that stand out throughout the
process. Additionally, the evolution of the design parameters is
shown in Figure 2, indicating that the inverse design protocol
converges toward a specific range of parameter values, where
high-fitness values are found. For instance, in the high-fitness
solutions, � TS, � SS, � SS, and � converged to 5.0 Å, 5.3 Å, 0.022 eV,
and 24.3, respectively�values close to the previously reported
5.13 Å, 5.13 Å, 0.029 eV, and 23.15, respectively.36 However, the
interaction strengths � TT, � TS, and the temperature T, converged
to 0.653 eV, 0.081 eV, and 698 T, which are significantly higher
than those reported in ref 36 indicated by the horizontal black
dashed lines in Figure 2.

To validate our inverse-design protocol, we perform unbiased
self-assembly simulations using the top eight highest-fitness
parameter combinations. Three of these parameter combina-
tions, listed in Table 1, spontaneously nucleate and grow into
Z1, as shown in Figure 1e−g. Compared to the parameters
reported in ref 36, our solutions exhibit larger � TT and � TS, which

Figure 1. (a) The unit cell of the MOF FIR-30 framework,35

consisting of 120 Zn atoms of FIR-30 (shown in red) and 16
additional particles (shown in green).29 This FIR-30 unit cell,
composed of 136 particles, is used to create a supercell, with
coordinates scaled so that the neighbor distance of the Zn atoms is
3.3 Å, matching the typical T-T interparticle distance. (b) A
crystalline seed of 50 particles is extracted from this FIR-30
supercell. (c) The initial configuration at 0 ns and (d) the final
configuration at 1 ns of a seed-pinning simulation for the highest-
fitness sample from the 29th generation of the inverse design
protocol for Z1. The radius of the shown T particles is proportional
to their environment similarity (ES) to the target framework, as
indicated by the colorbar. For clarity, S particles are not shown. (e−
g) The Z1 framework obtained from an unbiased self-assembly
simulation using the highest-fitness solution from the 29th
generation. (e) The intertwined structure of T and S particles. (f)
The porous structure formed by T particles. (g) The gyroid network
formed by S particles.

Figure 2. Evolution of the design parameters for Z1, with each point
colored according to its fitness. The color bar is normalized based on
the minimum and maximum values of fitness. The dashed orange
lines represent the parameter boundaries, while the dashed black
lines correspond to the values of ref 36.
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explains their ability to self-assemble into Z1 at elevated
temperatures. Additionally, the self-assembly simulations
showed no mesophases during the nucleation pathway of Z1,
aligning with a recently published rescaled zeolite model where
the temperature is below 636 K.36 Overall, our optimized design
parameters closely match previous results, as shown in Table 1.

Cage-Type SGT Zeolite. We now use our inverse design
protocol to find the optimal set of design parameter values that
facilitate the self-assembly of the cage-type SGT zeolite within
the coarse-grained zeolite model of T and S particles. SGT is a
typical high-purity silica zeolite with a predominantly tetrahedral
structure and, according to our classification method, falls under
the cage-type zeolites. We obtain the coordinates of the T
particles for SGT from the IZA database37 and present the
structure in Figure 3a). We assume that each large cage contains
one S particle. Given that the SGT unit cell consists of 64 T
particles and 4 large cages, the composition � T is set at 64/(64 +
4) ≈ 0.94. For the inverse design process, we use a small seed of
20 T particles, as shown in Figure 3b, chosen as the minimal size
necessary to induce nucleation. In addition, we identify the
unique environments for evaluating the environment similarity
order parameter. The number of unique environments for SGT
is 32 as shown in Table 8. We follow the same inverse design
protocol as described in the Methods section for the inverse
design of Z1, and consider again seven design parameters, � TT,
� TS, � SS, � TS, � SS, �, and T, sampled from a multivariate Gaussian
distribution according to the CMA-ES algorithm. For each set of
parameters, we run a short MD simulation of 1 ns using the seed-
pinning method. Figure 3c,d shows the initial and final
configurations for the parameter combination corresponding
to generation 44 of a seed-pinning simulation. The fitness of
each sample is evaluated using the environment similarity order
parameter, and these fitness values are then used by the CMA-ES
optimizer. We run the evolution strategy for 50 generations, with
the results for the evolution of the design parameters presented
in Figure 4.

The evolution of the design parameters reveals high-fitness
solutions across a broader range of values compared to Z1,
suggesting that the self-assembly conditions for SGT are less
restrictive. Additionally, we observe that the inverse design
protocol converges for only a few design parameters, within a
specific range where high fitness values are found. For example,
T, � TS, and � converge to 686 K, 5.4 Å, and 24.7, respectively,
within the high-fitness solutions, while � TT, � TS, � SS, and � SS
exhibit considerable variability.

To validate the wide variability in the parameter values of the
high-fitness solutions, we run unbiased self-assembly simula-
tions using the top ten highest-fitness solutions. We identify six
solutions that spontaneously crystallize into SGT within 50 ns.
We present the corresponding parameter values in Table 2.
Previously reported parameters that facilitated SGT self-
assembly match those of Z1, except for a higher � T.29 Note
that these parameters are based on the T-S model without
rescaling the T-T distance.36

Our optimized values for � TT and � in the high-fitness
solutions closely match previous results29 which is expected, as
SGT is primarily a pure silica zeolite with strong tetrahedral
interactions between T particles. However, the values for � SS and
� SS differ significantly. The optimized � SS values range from 5.09
to 7.61 Å, accompanied by a gradual increase in � SS from 0.044 to
0.079 eV. The larger interaction distance, � SS, necessitates a

Table 1. High-Fitness Solutions That Spontaneously Self-assemble into the Framework-Type Z1 Zeolite within 50 ns

Solution in T (K) � TT (eV) � TS (eV) � SS (eV) � TS (Å) � SS (Å) � Fitness

Gen 11 699 0.630 0.083 0.023 4.94 5.07 24.52 0.38
Gen 19 698 0.672 0.080 0.020 5.05 5.45 24.51 0.31
Gen 29 698 0.657 0.081 0.024 5.09 5.38 23.91 0.39
Ref 36 <654 0.537 0.069 0.029 5.13 5.13 23.15

Figure 3. (a) The structure of the perfect SGT framework.37 (b) A
crystalline seed composed of 23 T particles. (c) The initial
configuration is at 0 ns, and (d) the final configuration is at 1 ns
of a seed-pinning simulation for the highest-fitness sample from the
44th generation of the inverse design protocol for SGT. The radius
of the shown T particles is proportional to their environment
similarity (ES) to the target framework, as indicated by the colorbar.
For clarity, S particles are not shown. (e) The SGT framework
obtained from an unbiased self-assembly simulation using the
highest-fitness solution from the 44th generation. This config-
uration shows an AB random stacking structure.
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stronger interaction strength, � SS, to achieve an effective shaping
effect. This indicates that rather than narrow optimization
valleys, there are broader channels in the optimization space,
where trade-offs between parameters allow various types of S
particles to guide the formation of the same T particle
framework.

Discovering Self-assembly Parameters for Known
Target Phases. Cage-Type SOD Zeolite and Byproducts.
After the successful reproduction of Z1 and SGT, our inverse
design protocol has proven its effectiveness in targeting
frameworks known to self-assemble within the T-S model. We
now aim to design frameworks that have not yet been
reproduced using the T-S model. We start with SOD, one of
the simplest zeolite frameworks, characterized by only six unique
environments. The SOD unit cell contains 12 T particles and
includes 2 cages, resulting in a T particle composition of � T =
12/(12 + 2) ≈ 0.86. The perfect SOD crystal and the crystalline
seed used for seed-pinning are shown in Figure 5a,b,
respectively.

In Figure 6, we present the evolution of the fitness values
during the optimization process for SOD self-assembly. We use a
seed of size 23 T particles. Similar to the trends observed in the

evolution of Z1 and SGT, a consistent high fitness across all
samples within a generation is not achieved due to the rare event
nature of nucleation. However, from generation 25 onward, a
significant number of samples per generation exhibits a high
fitness. In comparison to the optimized parameters for Z1 and
SGT, the value of � TT decreases, indicating that a weaker
tetrahedral interaction strength facilitates the formation of 4-
membered and 6-membered rings in SOD.39 Additionally, � SS
converges to approximately 8 Å, which is close to the distance
between S particles in the SOD framework. Two high-fitness

Figure 4. Evolution of the design parameters for SGT, with each
point colored according to its fitness. The color bar is normalized
based on the minimum and maximum values of fitness. The dashed
orange lines represent the parameter boundaries.

Table 2. High-Fitness Solutions That Spontaneously Self-assemble into the Cage-Type SGT Zeolite within 50 ns

Solution in T (K) � TT (eV) � TS (eV) � SS (eV) � TS (Å) � SS (Å) � Fitness

Gen 13 664 0.558 0.079 0.044 5.08 5.09 24.85 0.21
Gen 23 696 0.562 0.081 0.055 5.09 5.47 24.55 0.33
Gen 36 695 0.619 0.070 0.074 5.54 6.99 25.00 0.27
Gen 43 681 0.588 0.079 0.068 5.48 6.78 25.00 0.64
Gen 44 694 0.589 0.089 0.075 5.49 7.25 24.21 0.56
Gen 46 688 0.568 0.070 0.079 5.43 7.61 24.76 0.30
Ref 29 0.537 0.069 0.029 5.13 5.13 23.15

Figure 5. (a) The structure of the perfect SOD framework.38 The
black box indicates the unit cell. (b) A crystalline seed composed of
23 T particles. (c) The initial configuration at 0 ns and (d) the final
configuration at 1 ns of a seed-pinning simulation for the highest-
fitness sample from the 40th generation of the inverse design
protocol for SOD. The radius of the shown T particles is
proportional to their environment similarity (ES) to the target
framework, as indicated by the colorbar. For clarity, S particles are
not shown. (e) The SOD framework obtained from an unbiased self-
assembly simulation using the high-fitness solution from the 40th
generation. To our knowledge, there are no previously reported
parameters for SOD in the T-S model.

ACS Nano www.acsnano.org Article

https://doi.org/10.1021/acsnano.4c17597
ACS Nano 2025, 19, 17423−17437

17427



samples were obtained in the 40th and 41st generations, as
shown in Table 3. Both of these samples show very similar
parameter values and successfully produced a SOD framework
in an unbiased self-assembly simulation. Figure 5c shows the
nucleated SOD framework using the parameters from the 40th
generation. When comparing these optimized SOD parameters
to those for ZI and SGT, we observe significant differences in
� TT across the different frameworks. This observation aligns with
the literature, which indicates that the selection of framework is
primarily governed by the interaction between T particles, with
� TT playing a key role in determining the phase behavior of this
model.40 Similarly, � TS is optimized to geometrically support the
target framework, generally matching the radius of the inscribed
sphere in the SOD cage when a single S particle is present.

During the inverse design of SOD, when using a seed of 19
rather than 23 T particles, we unexpectedly discovered the
formation of the sI clathrate�also known by the zeolite code
name MEP. As shown in Figure 7, the evolution of the fitness
yielded only two high-fitness solutions. In unbiased self-
assembly simulations, both of these solutions resulted in the
formation of the sI clathrate rather than the intended SOD
structure. Silica clathrates form a distinct subset of zeolites
characterized by rings that are too small to allow the free
movement of guest molecules within the crystal. However, it is
precisely this property that makes them highly researched for gas
storage applications. Molinero previously succeeded in
reproducing sII clathrate (also known as MTN) in previous
work.29

The structure of the sI clathrate shows that there is one S
particle in each cage, regardless of whether it is a small cage, 512,
or a large cage, 512 62, as shown in Figure 8c. Consequently, the
T particle composition, � T = 46/(46 + 8) ≈ 0.85, is similar to
that of SOD. Compared to the parameters optimized for SOD,
the main differences lie in � SS and �. The lower value of � SS
facilitates the formation of an anisotropic distribution of S
particles in the clathrate structure (Table 4).

Hole-Type CFI Zeolite. We now turn our attention to the
inverse design of CFI within our coarse-grained T-S model. CFI
is a porous framework with one-dimensional channels, i.e., a
hole-type framework. To our knowledge, no T-S model
parameter sets have been optimized for the self-assembly of
CFI. The CFI unit cell consists of 32 T particles and assumes the
presence of 2 S particles, resulting in a composition of � T = 32/
(32 + 2) ≈ 0.94.41 The structure can be characterized by slices
perpendicular to the channel direction. Therefore, for the
inverse design, we employ a crystalline seed consisting of a
single-particle-thick layer that spans the entire simulation box
rather than a spherical seed, as illustrated in Figure 9b.
Furthermore, due to the significant differences in S−S distances
within and between the channels, a lower value of � SS, i.e., the
strength of the isotropic two-body interaction between S
particles, is required. Therefore, we reduce the optimization
range of � SS from 0.02−0.09 to 0.01−0.05 eV. We again use the
same inverse design recipe as described previously.

Figure 6. Evolution of the design parameters for SOD, with each
point colored according to its fitness. The color bar is normalized
based on the minimum and maximum values of fitness. The dashed
orange lines represent the parameter boundaries.

Table 3. High-Fitness Solutions That Spontaneously Self-assemble into the Cage-Type SOD Zeolite within 50 ns

Solution in T (K) � TT (eV) � TS (eV) � SS (eV) � TS (Å) � SS (Å) � Fitness

Gen 40 700 0.403 0.090 0.089 4.75 8.03 23.36 0.64
Gen 41 698 0.382 0.089 0.087 4.66 8.12 22.65 0.63

Figure 7. Evolution of the design parameters for SOD with a
crystalline seed of 19 T particles and a lower temperature range. All
the points are colored according to their fitness. The color bar is
normalized based on the minimum and maximum values of fitness.
The dashed orange lines represent the parameter boundaries.
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We present the evolution of fitness values during the
optimization process for CFI self-assembly in Figure 10. We
observe a clear trend of increasing fitness with stronger
tetrahedral interactions, as indicated by the continuous rise in
both � TT and �. This is consistent with the highly tetrahedral
nature of the CFI framework. We select the highest fitness
sample from the 30th generation, see Table 5. Compared to the
interaction parameters for cage-type zeolites, e.g., SGT and
SOD, a higher value of � TS ≈ 6 Å, which closely matches the
radius of the largest 14-membered ring, provides strong
geometric support for the CFI framework. An unbiased
simulation using this parameter set successfully self-assembles
into the CFI framework, revealing a two-step nucleation
pathway for its crystallization, as shown in Figure 9e−i. As
illustrated in Figure 9g, parallel strings of S particles initially
guide the formation of a hexagonal mesophase, where T particles
arrange into a locally disordered hexagonal structure that retains
long-range order. A nucleation site subsequently forms within
this structure. As shown in Figure 9i, the nucleus rapidly grows,
transforming the entire crystal into the CFI framework within 1
ns (see Supporting Information).

Discovering Self-assembly Parameters for New
Phases. Hole-Type AFI Zeolite and Novel Z5 Zeolite. As
demonstrated by the discovery of the sI clathrate structure
during the inverse design of the SOD zeolite, the unbiased self-
assembly test can occasionally yield a polymorph distinct from
the targeted framework when using seed-pinning. In this section,
we report the discovery of an uncataloged framework during the
inverse design of the hole-type AFI framework.42 AFI is a one-

dimensional porous zeolite characterized by its large 12-
membered ring as shown in Figure 11a. The AFI unit cell
contains 24 T particles and assumes the presence of 2 S particles,
resulting in a composition of � T = 24/(24 + 2) ≈ 0.92. Similar to
the CFI case, we use a crystalline seed of a single-particle-thick

Figure 8. (a) The structure of the perfect sI clathrate. (b) A
crystalline seed composed of 19 T particles. (c) The sI clathrate
obtained from an unbiased self-assembly simulation using the high-
fitness solution from the 22nd generation and a zoom-in diagram.

Table 4. High-Fitness Solutions That Spontaneously Self-assemble into the sI Clathrate within 50 ns

Solution in T (K) � TT (eV) � TS (eV) � SS (eV) � TS (Å) � SS (Å) � Fitness

Gen 22 645 0.404 0.079 0.059 4.37 7.98 16.99 0.57
Gen 23 650 0.394 0.078 0.051 4.46 8.68 18.25 0.64

Figure 9. (a) A partial view of the perfect CFI structure. (b) A
crystalline seed consisting of a single-particle-thick layer. (c) The
initial configuration at 0 ns and (d) the final configuration at 1 ns of a
seed-pinning simulation for the highest-fitness sample from the 30th
generation of the inverse design protocol for CFI. The radius of the
shown T particles is proportional to their environment similarity
(ES) to the target framework, as indicated by the colorbar. (e−h)
The CFI structure obtained from an unbiased self-assembly
simulation using the highest-fitness sample from the 30th
generation. (e) An amorphous mixture of T and S particles. (f) A
metastable hexagonal mesophase, where chains of S particles
support the channels. (g) A nucleation site forms within this
structure, highlighted by the dashed circle. (h) Growth of the CFI
framework. (i) The fully developed CFI framework spans the entire
system. To our knowledge, there are no previously reported
parameters for CFI in the T-S model.
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layer in our inverse design simulations. We follow again our
inverse design protocol to optimize the seven design parameters
for the self-assembly of AFI. The number of unique environ-
ments is NE = 24. The evolution of the design parameters, as
shown in Figure 12, suggests that some optimal parameter values
may lie outside the predefined ranges, i.e., T, � TT, � SS, and � have
reached upper or lower boundaries, and the fitness has reached a
plateau. In an additional run, with expanded parameter ranges
for � SS and �, we find there is no significant improvement in
fitness. We selected the highest-fitness parameter combination,
as presented in Table 6.

When tested in an unbiased self-assembly simulation, this
parameter set leads to the discovery of a new zeolite framework
not cataloged in IZA, as illustrated in Figure 11e. This new
porous zeolite, which we label Z5, features the largest 12-
membered ring, consistent with the target AFI framework.
However, the substructures within the T framework differ
significantly. A more similar T substructure can be found in the
IZA database, i.e., the SFH framework43 as shown in Figure 11b.
However, the key difference is that the SFH framework contains
two additional rectangular rings along the large 12-membered
ring, which are absent in the Z5 framework. Furthermore, unlike
the two-step nucleation pathway observed for the CFI
framework, the crystallization of Z5 occurs without any
intermediate mesophases.

The fact that the final structure obtained from unbiased self-
assembly simulations differs from that obtained in biased
seeding simulations, despite using the same parameters, suggests
the existence of multiple nucleation pathways. These pathways

may diverge or converge before or after reaching the seed size,
which limits our control over growth in unbiased simulations.
For example, in Figure 11c,d, we show that the layers adjacent to
the AFI seed exhibit an AFI-like structure with no Z5-like
formations, whereas the unbiased test results in the emergence
of a Z5 structure. The diversity of space groups introduced by
the tetrahedral many-body interactions also introduces potential
competition between frameworks, particularly those with similar
pore diameters, such as in AFI, CFI, and Z5. In our case, during
the final 30 generations of optimization, the AFI structure
consistently maintains a slightly lower potential energy than Z5,
by approximately 0.3 kBT per particle, allowing for close
competition between the two phases.

Figure 10. Evolution of the design parameters for CFI, with each
point colored according to its fitness. The color bar is normalized
based on the minimum and maximum values of fitness. The dashed
orange lines represent the parameter boundaries.

Table 5. High-Fitness Solution That Spontaneously Self-assembles into the Hole-Type CFI Zeolite within 200 ns

Solution in T (K) � TT (eV) � TS (eV) � SS (eV) � TS (Å) � SS (Å) � Fitness

Gen 30 640 0.693 0.070 0.032 6.36 8.05 24.47 0.79

Figure 11. (a) The structure of the targeted AFI framework. (b) The
structure of the SFH framework, which is the closest match to the Z5
framework. The rings formed by green particles in the SFH
framework are absent in the Z5 framework. (c) The initial
configuration at 0 ns and (d) the final configuration at 1 ns of a
seed-pinning simulation for the highest-fitness sample from the 47th
generation of the inverse design protocol for AFI. The radius of the
shown T particles is proportional to their environment similarity
(ES) to the target framework, as indicated by the colorbar. (e) The
newly discovered Z5 framework, assembled using the highest-fitness
solution from the 19th generation.
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CONCLUSIONS
In conclusion, we have developed and presented an efficient and
robust inverse design workflow capable of identifying optimal
interaction parameters and thermodynamic conditions for the
self-assembly of complex crystal structures. In this method, the
design parameters are iteratively optimized using the covariance
matrix adaptation evolution strategy, and the seed-pinning
technique is implemented using steered molecular dynamics
simulations to accelerate the sampling of nucleation events of
the target structure. To evaluate the fitness of a sample, the
growth of the target structure is monitored using the
environment similarity order parameter with respect to the
target phase. In this work, we have applied this inverse design
workflow to facilitate the self-assembly of target zeolite
frameworks within a coarse-grained model for silica and a
structure-directing agent. Using this method, we have
successfully optimized the design parameters for the sponta-
neous self-assembly of a known framework-type Z1 and a known
cage-type SGT zeolite. Interestingly, the interaction parameters
and thermodynamic conditions differ from those identified in
previous work.24,27−29 Additionally, we reproduced a cage-type
SOD and a hole-type CFI zeolite as obtained from the IZA
database. Remarkably, we also discovered the sI clathrate
structure and a zeolite framework not cataloged in the IZA
database during the inverse design of the SOD and AFI zeolite,
respectively. Thus, the unbiased self-assembly simulations can

occasionally yield polymorphs distinct from the targeted
frameworks in seed-pinning simulations.

To summarize, our methodology not only enables the
screening of synthesis protocols but also facilitates the discovery
of undiscovered, hypothetical zeolites. More specifically, our
inverse design protocol may give insights in the required coarse-
grained interaction parameters of the structure directing agent,
i.e., the size and attraction strength of the organic cation, to favor
the self-assembly of a specific zeolite. Using a coarse-to-fine-
grained mapping approach such as a generative adversarial
network44 the precise molecular details of the structure directing
agent may be obtained. This will be explored in future work.
Similarly, a subsequent extension of our framework could
explore nonspherical shapes, e.g., rods, for the coarse-grained S
particles.

The accelerating role of seed-pinning is essential, as earlier
versions of our method without enhanced sampling could only
achieve successful self-assembly of Z1, but no other frameworks,
within similar computational budgets. Additionally, we note that
selecting the shape and size of seeds for different frameworks
involves some subjectivity, and the value of � requires fine-
tuning to ensure that the seeds do not melt. In this study, we
fixed the composition, which is reasonable for cage-like
frameworks. However, for pore structures, a strict number of S
particles in a unit cell is not necessary. Given that zeolite
synthesis involves careful control of SDA concentrations45

including composition as a design parameter would be a logical
extension. Our self-assembly simulations also indicate that
higher fitness values do not consistently yield better perform-
ance; successful self-assembly can still occur with solutions that
have lower fitness values. Additionally, the optimization process
is inherently stochastic, so identical parameters and initial
conditions may still lead to different final solutions.

Finally, our inverse design framework is inherently adaptable
to other self-assembling systems such as other complex open
crystals, metal−organic frameworks, quasicrystals, and liquid
crystals. Many of these systems exhibit multiple competing self-
assembly pathways, which our framework can address by
tracking both target phases and byproducts. The key require-
ments for implementing our methodology are accurate
structural data to define environment similarities and a
computationally efficient particle interaction model for
enhanced sampling MD. As structural data becomes increasingly
accessible for a wide range of molecules and materials, the
impact and applicability of our framework will grow. These
contributions underscore the robustness and versatility of our
approach, paving the way for future research in self-assembling
materials and enabling the development of theoretical models
and practical applications.

METHODS
In this section, we describe the key elements of our inverse
design workflow. First, we present the coarse-grained T-S model
used to determine particle interactions and compute forces for
running molecular dynamics (MD) simulations. This model is
parametrized by the range and strength of interactions, as well as
the strength of tetrahedrality and temperature. Second, we

Figure 12. Evolution of the design parameters for the hole-type AFI
zeolite framework, with each point colored according to its fitness.
The color bar is normalized based on the minimum and maximum
values of fitness. The dashed orange lines represent the parameter
boundaries.

Table 6. High-Fitness Solution That Spontaneously Self-assembles into the Z5 Framework within 200 ns

Solution in T (K) � TT (eV) � TS (eV) � SS (eV) � TS (Å) � SS (Å) � Fitness

Gen 19 604 0.699 0.070 0.022 5.95 6.82 24.93 0.16
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explain how these model parameters are iteratively optimized
using the covariance matrix adaptation evolution strategy
(CMA-ES). Since CMA-ES requires a fitness function to
guide the optimization, we show how we measure proximity
to a target zeolite structure using the environment similarity
order parameter.34 To further speed-up the inverse-design
pipeline, we introduce a seed-pinning technique that accelerates
the sampling of nucleation events, allowing us to rapidly assess
fluctuations in the environment similarity order parameter-
based fitness. Finally, we provide specific details on the
simulation parameters and protocol.

Zeolite Model. The coarse-grained zeolite model proposed
by Molinero et al. is a binary mixture consisting of T and S
particle types. The T particles, which exhibit tetrahedral
interactions, represent the tetrahedrally coordinated atoms,
such as silicon (Si), aluminum (Al), or other heteroatoms. The S
particles, on the other hand, represent the structure-directing
agent (SDA), typically an organic cation. The interactions
between these particles are described by the Stillinger-Weber
(SW) potential26 and the potential energy U of the system reads

(1)

where rij = |rij| is the distance between particle i and j with rij = ri

− rj, � ijk is the angle between rij and rik, and represents the
two-body interaction applied to both T and S species

(2)

where �� denotes the particle pair types TT, TS, or SS, and
where

(3)

The three-body interaction applied to solely the T
particle species is denoted by

(4)

with

(5)

The three-body interaction term favors the formation of a
tetrahedral structure when � 0 = 109.47°. The exponential terms
	 and 
 ensure that both the potential and its derivatives
smoothly approach zero at a cutoff distance of r = a�. The
tetrahedrality parameter � determines the strength of the
tetrahedral interaction. In our work, the values of A, B, p, q, �, and
a are consistent with those in the original SW potential26 shown
in Table 7.

To achieve an average T-T bond length that matches closer to
the Si−Si distance in zeolites and also aligns with Molinero’s
recent works36,46 we use the value of � TT = 2.7275 Å. The values
of � TT and � are related to the specific elements and composition
of the framework components, meaning that the framework
particles can exhibit varying bonding strength or tetrahedral
character depending on the Si/Al ratio or the presence of other

heteroatoms.40 Similarly, � SS and � SS depend on the SDA. The
values of � TS and � TS reflect the interaction strength and range
between the framework components and the SDA. The
parameters related to the S particles can be tuned by modifying
the chemistry of the SDA in experiments. Therefore, the design
parameters include � TT, � TS, � SS, � TS, � SS, �, and temperature T.

Inverse Design Workflow. To optimize the design
parameter values of the coarse-grained T-S model for the self-
assembly of a target zeolite, we implement an iterative process
described in this section. Our inverse design workflow involves
three key steps: (i) selecting a set of design parameter values
from the CMA-ES optimizer (see Methods section on
Covariance Matrix Adaptation Evolutionary Strategy); (ii)
initiating an MD simulation in the disordered fluid phase with
these parameters, using the seed-pinning method to accelerate
the nucleation and growth of the target phase (see Methods
section on Seed-Pinning via Steered Molecular Dynamics); and
(iii) calculating the fitness value from the resulting MD
trajectory�specifically, the environment similarity order
parameter relative to the target zeolite�and feeding this
information back to the optimizer to refine the design parameter
values for the next iteration. In this study, we choose as design
parameters, temperature T, interaction strengths between
different species � TT, � TS, � SS, interaction ranges between
different species � TS, � SS, and the strength of tetrahedrality �.
The following subsections provide an in-depth explanation of
these three steps, as schematically illustrated in Figure 13.

Covariance Matrix Adaptation Evolutionary Strategy.
In this work, we use the covariance matrix adaptation evolution
strategy (CMA-ES) to optimize the fitness value, which

Table 7. Interaction Parameters of the SW Potential26

Described by in eq 2 and in eq 4

Parameter Value Parameter Value

A 7.049556277 B 0.6022245584
p 4 q 0
� 1.2 a 1.8

Figure 13. Schematic of the inverse design method. The workflow
consists of the following steps: (i) selecting a set of design parameter
values using the CMA-ES optimizer; (ii) inserting a seed of the
target zeolite into a fluid phase and initiating a short-time molecular
dynamics (MD) simulation, using the seed-pinning method; (iii)
determining the fitness value by monitoring the environment
similarity with respect to the target zeolite during the MD
simulations. This fitness value is then fed back into the CMA-ES
optimizer, which refines the design parameter values for the next
iteration.
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measures how closely the system resembles the target phase.
CMA-ES is a well-established, population-based, gradient-free
stochastic optimization algorithm for real-valued, nonconvex,
and nonlinear functions.31 The method operates without
requiring gradient information and has been applied in inverse
design studies.16,17,40

CMA-ES is an iterative algorithm that samples from a
multivariate Gaussian distribution and adapts the mean vector
and covariance matrix at each iteration to reach the optimal
solution. In each iteration, often referred to as a generation, the
algorithm draws n samples from a d-dimensional multivariate
Gaussian distribution, where d represents the number of design
parameters. The fitness function is then evaluated for these
samples, and the outcomes are ranked in descending order. The
top k samples are selected as the best candidates and form the set
�. Based on these best candidates, the algorithm updates the
mean vector � ∈ Rd and the covariance matrix � ∈ Rd×d to
adjust the Gaussian distribution toward the optimal solution.
This iterative process continues until a convergence criterion is
met. Below is a brief description of each step in an iteration.

(1) A population of n = 4 + ⌊3 ln d⌋ random samples47 is
drawn from a normal distribution, where d represents the
dimension of the parameter space, i.e., the number of
design parameters. Each sample or individual is generated
as , where � (g) is the mean
vector, � (g) is the step size, and � (g) is the covariance
matrix at generation g.

(2) Each sample is evaluated using the fitness function

, and the samples are ranked according to their
fitness values.

(3) The mean vector � (g+1) is then updated as a weighted sum
of the top k samples with the highest fitness

(6)

where denotes the i-th ranked sample, wi is the
respective weight, and cm is a learning rate, typically set to
1.

(4) The covariance matrix � (g) is updated to adapt the shape
of the distribution

where c1 and ck are learning rates for the covariance matrix
adaptation, , and is
the evolution path given by

(8)

with , and cc the decay rate for the
cumulation of the path.

(5) The step size � (g) is adjusted based on the evolution path
to control the overall scale of the search

(9)

where c� and d� are learning rates for the step-size
adaptation, and represents the expected
length of a random vector sampled from a standard
normal distribution.

This process is repeated iteratively until a stopping criterion is
met, such as reaching the maximum number of generations,
achieving a target fitness value, or observing stagnation in the
optimization progress. Please refer to ref 48 for a detailed
description of this algorithm.

In this work, since there are seven design parameters, the
initial population size is 9 = 4 + ⌊3 ln 7⌋. The design parameters
are normalized based on their upper and lower bounds. As initial
guess, we set the values of the vector � (0) in the middle between
the upper and lower bounds for each design parameter. The
initial step size � (0) is set to 0.16, such that 99.7% of the samples
lie within a range of 3� ≈ 0.5 from the center of the normalized
design space, providing wide coverage in the initial generation.
We performed this algorithm using a Python implementation49

and we use its default setting for the rest of the parameters. While
CMA-ES can be used for global optimization by restarting with
different initial guesses and population sizes, we exclude this
from the scope of our current study due to the high
computational cost. A global optimization of the design
parameters, accompanied by full free-energy calculations of
the nucleation process, could be performed as a refinement step
following the implementation of our strategy.

Seed-Pinning via Steered Molecular Dynamics. In this
section, we present the enhanced sampling methods used to
accelerate nucleation and growth of the zeolite in the MD
simulations. Nucleation is typically a rare event within affordable
time scales in MD simulations. To better capture nucleation
events within limited simulation times, various enhanced
sampling methods have been developed, e.g., umbrella
sampling50 forward flux sampling51 seeding32,33 and variational
umbrella seeding52 among others. The seeding approach
involves inserting a small seed or crystalline cluster into the
fluid medium. This crystal seed helps to overcome the high free-
energy barrier associated with nucleation. This method is
straightforward to implement and can be used to calculate
nucleation rates in accordance with classical nucleation
theory.53−55 However, in an inverse design setting, where the
simulation parameters are initially far from optimal for zeolite
self-assembly, the seed will often melt in the vast majority of
simulations, providing little information about the fitness. To
overcome this challenge, we propose a variant of the seeding
approach called the seed-pinning method. Similar to the
traditional seeding approach, a crystal seed is placed in the
amorphous phase. The difference is that, similar to ref 56, a
restraining potential is applied to the seed size to prevent the
seed from melting while allowing growth. This method of
allowing only seed growth significantly reduces the nucleation
barrier. Samples with favorable design parameters will continue
to grow, while those with unfavorable design parameters will
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fluctuate around the restrained nucleus size. By monitoring
these fluctuations the fitness of the sample can be evaluated. In
the following, we will discuss how to measure these fluctuations
and apply the restraint to the seed size.

Due to the intricate structure of zeolite frameworks,
traditional methods like Steinhardt bond-orientational order
parameters57 are insufficient for distinguishing zeolite-like T
particles from amorphous T particles. Some level of distinction
can be achieved by calculating bond-orientational order
parameters for T particles with specific coordination numbers24

but this is not straightforward to generalize across all framework
types. To solve this problem, we employ an order parameter
called environment similarity (ES)34 to identify zeolite-like T
particles. To evaluate the ES, an environment is defined as the
closest n neighbors of a given particle. ES compares the current
environment, �, around a particle i to a reference environment,
� 0, using a normalized kernel defined as

(10)

where � i are the coordinates of the particles, � is a broadening
parameter to account for thermal fluctuations, and n is the
number of particles in the environment �. By definition,

. In general, a particle can have multiple distinct
environments in a crystal of a specific lattice, denoted as � 1, � 2, ...,
� N dE

, where NE denotes the number of possible environments. In
this case, we adopt a best-match strategy to determine the
environment, with the kernel defined as the maximum similarity
among the NE reference environments

(11)

The largest value of among the environments � l ∈ X is
selected as the ES when � is sufficiently large. Therefore, the ES
order parameter ranges between 0 and 1.

The data for the unique environments is extracted from the
IZA58 and CDCC databases59 using the Environment Finder
tool.60 In general, we set a cutoff of 10 Å to search for unique
environments, which is sufficient to capture the structural
features needed for accurate zeolite identification. The number
of distinct environments NE are listed in Table 8 and vary from 6
for SOD to 136 for Z1. The number of particles n in an
environment typically varies from 55 to 75. Considering the
notable fluctuations at high temperatures, the value of � is set to
0.5 Å.

It is worth noting that this order parameter is not rotationally
invariant. This means that even if the identified particles have the
same structure as the reference environment, a high ES value will
not be obtained if the orientation is inconsistent. As a result, our
protocol is limited to zeolites that are aligned with the chosen
references. However, we address this by starting with an aligned
seed and applying restraints to it to preserve that alignment. To
further restrain the seed size, we bias the number of particles N′
with an ES order parameter greater than a threshold, (�) ,
using a rational switching function to ensure that N′ is
continuous and differentiable.

First, we insert a seed composed solely of T particles,
extracted from the target zeolite framework, into the amorphous
mixture system. For all cases, a seed is cut to include as many T-
T bonds as possible while keeping the pores open. We then
apply a harmonic potential to the seed particles to restrain the ES
order parameter50

(12)

where � is a dimensionless constant, Nseed is the initial number of
T particles in the seed, and is the number of T particles
from the original seed that retains an ES order parameter above a
given threshold, k′. This bias is only applied to the seed particles
that originally formed the seed, which has two advantages: first,
the T particles that are not originally in the seed are free to either
remain in the amorphous phase or nucleate, and second, the
computational cost for calculating the ES and its gradient is
invested only on a reduced number of T particles. For the fitness
calculation, the ES is evaluated for all particles, but this quantity
does not need to be computed at every time step. While it is in
principle possible to calculate the nucleation free energy ΔG
using seed-pinning, our goal is to enhance sampling around the
nucleation barrier and use the fluctuations to assess the fitness
for a given set of design parameters. Once a high fitness is
achieved, the optimal design parameters are tested in a self-
assembly simulation without any seed or bias.

Simulation Protocol. In this study, we categorize all zeolite
frameworks into three types based on channel dimensionality:
cage-type (channel dimensionality = 0), where S particles are
confined within cages and cannot move freely; hole-type
(channel dimensionality ≥ 1), where S particles are mobile;
and framework-type, which includes both cages and holes
(channels). This workflow was first applied to reproduce a
framework-type Z1, and a cage-type SGT37 zeolite, as
documented in previous studies.24,27−29 The Z1 zeolite
structure is based on the structure of the MOF FIR-3035 see
for more details section on Z1. Subsequently, we focused on

Table 8. Simulation Set-Up and Design Parameter Boundaries for Each Framework�

Framework NU NE NS Nseed � � T T (K) � TT (eV) � TS (eV) � SS (eV) � TS (Å) � SS (Å) �

Z1 132 136* 1056 50 5 0.74 [600, 700] [0.3, 0.7] [0.05, 0.09] [0.02, 0.09] [4, 7] [4, 8] [15, 25]
SGT 64 32 1024 23 20 0.94 [600, 700] [0.3, 0.7] [0.05, 0.09] [0.02, 0.09] [4, 7] [4, 8] [15, 25]
SOD 12 6 768 23 20 0.86 [600, 700] [0.3, 0.7] [0.05, 0.09] [0.02, 0.09] [4, 7] [6, 10] [15, 25]
AFI 24 24 1920 192 10 0.92 [600, 700] [0.3, 0.7] [0.05, 0.09] [0.02, 0.09] [4, 7] [4, 9] [15, 25]
CFI 32 16 2048 256 5 0.94 [600, 700] [0.3, 0.7] [0.05, 0.09] [0.01, 0.05] [4, 7] [4, 9] [15, 25]

aHere, NU represents the number of T particles in a unit cell, NE denotes the number of unique environments, and NS is the total number of T
particles within the seed-pinning simulation box. Nseed indicates the seed size, � denotes the dimensionless constant used in eq 12, T the
temperature, � TT, � TS, and � SS the interaction strength between TT, TS, and SS particle pairs, respectively, and � TS and � SS the interaction scale
between TS and SS particle species, respectively. *: the number of environments for Z1 is determined from scaled FIR-30 unit cells, which contain
a larger number of particles.
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reproducing a cage-type SOD38 and hole-type CFI41 and AFI
obtained from the IZA database.

For cage-type and framework-type zeolites, the number of S
particles per cage is estimated based on geometric constraints,
typically assuming one S particle per cage. A supercell is then
constructed for each zeolite using unit cells from the IZA
database, typically containing about a thousand T particles to
balance computational efficiency and finite-size effects. Next, a
seed is extracted from the supercell. The pseudospherical seed is
selected based on two key principles: first, it must remain open
rather than forming a closed cage, allowing the passage of S and
T particles; second, its shape and size are tailored to the target
zeolite framework. Table 8 presents the specific settings for each
framework. While larger seeds may promote crystal growth in
MD simulations without bias, crystallization often does not
occur in self-assembly tests using the same design parameters
due to a high nucleation barrier ΔG. This is expected, as a
smaller seed more closely resembles unbiased nucleation
conditions from a purely fluid phase. We have also tested even
smaller seeds, but in those cases, no nucleation events occurred
during our short MD runs. In general, the seed size is initially set
to contain approximately a quarter of the T particles in the target
unit cell and is increased only if nucleation does not occur during
evolution. We do not systematically search for the critical
nucleus size due to computational constraints when designing
multiple different phases. Therefore, the seed should be kept as
small as possible while still effectively inducing nucleation. The
seed is then embedded in a simulation box with dimensions
identical to the supercell, and with additional T and S particles
randomly placed according to the target composition.
Subsequently, a one-nanosecond MD simulation is performed
in the isobaric−isothermal (NPT) ensemble at a pressure of p =
0 bar and a time step of 5 fs. The pressure is controlled
isotropically in all three Cartesian coordinates, with the masses
of both T and S particles set to 28.0855 u, equivalent to the mass
of silicon. The average fraction of T particles with an
environment similarity (ES) (�) > 0.5 during the last quarter
of the simulation trajectory is used as the fitness value for the
optimizer, which then initiates the next iteration. This approach
allows the fitness to be interpreted as the fraction of T particles
in a target-like environment within the system. Fluctuations
around the pinned seed size-whether positive or negative-
indicate the nucleation free-energy gradient, providing insight
into how favorable nucleation is from the small seed, thereby
providing a valid fitness estimation. While the fitness estimation
remains noisy during short evolution runs due to the stochastic
nature of nucleation, extending the sampling time would
significantly increase computational costs. Since CMA-ES is
robust to noise, we opt not to extend the sampling time.

After 50 rounds of MD simulations, high-fitness solutions are
tested in self-assembly simulations using larger system sizes,
without the use of any seeds or biases, to assess their
effectiveness. In these tests, the pressure is controlled
independently along each of the three Cartesian coordinates.
These unbiased self-assembly tests are essential. Given the
stochastic nature of the nucleation event from the pinned seed,
there is no minimum fitness value that can guarantee that
nucleation will occur in an unbiased run, or that it will reach the
same target phase. Therefore, in our pipeline, a high fitness
parameter combination found during evolution is always
validated by an unbiased test.

All simulations are conducted using LAMMPS (version 2 Aug
2023)61 with biasing implemented through PLUMED (version
2.8.3).62,63 Snapshots are rendered using the OVITO software.64
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Phys. Chem. 1926, 119, 277−301.
(55) Becker, R.; Doring, W. Kinetische Behandlung der Keimbildung
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