Erik Maris MSc

Leonard S. Ornstein Laboratory, room 0.12
Princetonplein 1, 3584 CC Utrecht
P.O. Box 80 000, 3508 TA Utrecht
The Netherlands
phone: +31 (0)30 253 2925
secretariat: +31 (0)30 253 2952

David de Wied building, 4th floor study area
Universiteitsweg 99, 3584 CG Utrecht
phone: +31 (0)6 2273 6361
e-mail: j.j.e.maris@uu.nl

 

Research

Supervisors: Dr. Florian Meirer and Dr. Freddy Rabouw
Promotor: Prof. dr. ir. Bert Weckhuysen

 

Rational catalyst design is the holy grail of modern catalysis, which requires a thorough understanding of structure–performance relationships. Microscopy and spectroscopy both play a pivotal role in the study of these relationships through the visualization of the diffusive species, such as reaction products, and the pore network of a catalyst particle [1]. Direct relations can be investigated via spatial correlation of complementary imaging techniques, which has been proven to be a valuable tool for biological samples [2]. The rapid developments in 3D super-resolution fluorescence microscopy, 3D X-ray microscopy, and 3D electron microscopy techniques hold great promise for the development of correlative microscopy to study inorganic materials [3–5]. The aim of this research project is the development and use of correlative microscopy to study structure–performance relationships in single porous catalyst particles.

 

References:

[1] I.L.C. Buurmans & B.M. Weckhuysen, Nat. Chem. 4, 873–886 (2012)
[2] M. Hauser et al.Chem. Rev. 117, 7428–7456 (2017)
[3] A. von Diezmann et al.Chem. Rev. 117, 7244–7275 (2017)
[4] F. Meirer et al., J. Am. Chem. Soc. 137, 102–105 (2015)
[5] D.A.M. de Winter et al.ACS Catal. 6, 3158–3167 (2016)