Prof. dr. ir. Marjolein Dijkstra

Leonard S. Ornstein Laboratory, room 0.64
Princetonplein 1, 3584 CC Utrecht
P.O. Box 80 000, 3508 TA Utrecht
The Netherlands
phone: +31 (0)30 253 3270
secretariat: +31 (0)30 253 2952
e-mail: m.dijkstra@uu.nl
phone: +31 (0)30 253 1122

Publications

Years
2023, 2022, 2021, 2020, 2019, 2018, 2017, 2016, 2015, 2014, 2013, 2012, 2011, 2010, 2009, 2008, 2007, 2006, 2005, 2004, 2003, 2002, 2001, 2000, 1999, 1998, 1997, 1996, 1995, 1994, 1993, 1992

2023

  1. Steering self-organisation through confinement
    N.A.M. Araújo, L.M.C. Janssen, T. Barois, G. Boffetta, I. Cohen, A. Corbetta, O. Dauchot, M. Dijkstra, W.M. Durham, A. Dussutour, S. Garnier, H. Gelderblom, R. Golestanian, L. Isa, G.H. Koenderink, H. Löwen, R. Metzler, M. Polin, C.P. Royall, A. Šarić, A. Sengupta, C. Sykes, V. Trianni, I. Tuval, N. Vogel, J.M. Yeomans, I. Zuriguel, A. Marin and G. Volpe, Soft Matter 19 (9), 1695-1704 (2023). DOI: 10.1039/D2SM01562E.
  2. Coulombic surface-ion interactions induce nonlinear and chemistry-specific charging kinetics
    W.Q. Boon, M. Dijkstra and R. van Roij
    Physical Review Letters 130 (5), 058001 (2023). DOI: 10.1103/PhysRevLett.130.058001. Supporting information: PDF.
  3. Dynamics of supercooled liquids from static averaged quantities using machine learning
    S. Ciarella, M. Chiappini, E. Boattini, M. Dijkstra, L.M.C. Janssen, Machine Learning: Science and Technology 4 (2), 025010 (2023). DOI: 10.1088/2632-2153/acc7e1.
  4. Coarse-Grained Many-Body Potentials of Ligand-Stabilized Nanoparticles from Machine-Learned Mean Forces G. Giunta, G. Campos-Villalobos and M. Dijkstra, ASC Nano 17 (23), 23391-23404 (2023). DOI: 10.1021/acsnano.3c04162. Supporting information: PDF.
  5. Brute-force nucleation rates of hard spheres compared with rare-event methods and classical nucleation theory
    W. Gispen and M. Dijkstra, The Journal of chemical physics 159 (8), 086101 (2023). DOI: 10.1063/5.0165159
  6. Crystal Polymorph Selection Mechanism of Hard Spheres Hidden in the Fluid
    W. Gispen, G.M. Coli, R. van Damme, C.P. Royall and M. Dijkstra, ACS Nano 17 (9), 8807-8814 (2023). DOI: 10.1021/acsnano.3c02182.
  7. A colloidal viewpoint on the sausage catastrophe and the finite sphere packing problem
    S. Marín-Aguilar, F. Camerin, S. van der Ham, A. Feasson, H. Rao Vutukuri and M. Dijkstra, Nature Communications 14 (1), 7896 (2023). DOI: 10.1038/s41467-023-43722-0. Supporting information. 
  8. Real-Time In Situ Observation of CsPbBr3 Perovskite Nanoplatelets Transforming into Nanosheets
    A. Prabhakaran, Z. Dang, R. Dhall, F. Camerin, S. Marín-Aguilar, B. Dhanabalan, A. Castelli, R. Brescia, L. Manna, M. Dijkstra, M.P. Arciniegas
    ACS Nano 17 (14), 13648-13658 (2023). DOI: 10.1021/acsnano.3c02477.
  9. The effect of shape, polydispersity, charge, and fraction of crystallite bundles on the pitch of cellulose nanocrystal suspensions
    T. Sewring and M. Dijkstra, The Journal of Chemical Physics 159 (19), 194902 (2023). DOI: 10.1063/5.0167362.
  10. Exploiting anisotropic particle shape to electrostatically assemble colloidal molecules with high yield and purity
    Y. Shelke, S. Marín-Aguilar, F. Camerin, M. Dijkstra, and D.J. Kraft, Journal of Colloid and Interface Science 629 part A, 322-333 (2023). DOI: 10.1016/j.jcis.2022.08.158. Supporting information: MP4 1, MP4 2, MP4 3, MP4 4, MP4 5, MP4 6, MP4 7, MP4 8, PDF.
  11. Flexible Colloidal Molecules with Directional Bonds and Controlled Flexibility
    Y. Shelke, F. Camerin, S. Marín-Aguilar, R.W. Verweij, M. Dijkstra, D.J. Kraft, ACS Nano 17 (13), 12234-12246 (2023). DOI: 10.1021/acsnano.3c00751
  12. Shape-induced crystallization of binary DNA-functionalized nanocubes cholesteric
    Y. Zhang, G. Giunta, H. Liang, M. Dijkstra, The Journal of Chemical Physics 158 (18), 184902 (2023). DOI: 10.1063/5.0148139

2022

  1. Ion current rectification and long-range interference in conical silicon micropores
    M. Aarts
    , W.Q. Boon, B. Cuénod, M. Dijkstra, R. van Roij, and E. Alarcon-Llado,
    ACS Applied Materials and Interfaces, 14 (50), 56226-56236 (2022). DOI: 10.1021/acsami.2c11467. Supporting information: PDF
  2. Coupling between splay deformations and density modulations in splay-bend phases of bent colloidal rods
    C. Anzivino, R. van Roij, and M. Dijkstra, Physical Review E 105 (2), L022701 (2022). DOI: 10.1103/PhysRevE.105.L022701. Supporting information: PDF.
  3. Pressure-sensitive ion conduction in a conical channel: Optimal pressure and geometry
    W.Q. Boon, T.E. Veenstra, M. Dijkstra and R. van Roij, Physics of Fluids 34 (10), 101701 (2022). DOI: 10.1063/5.0113035 . Supporting information: PDF.
  4. Machine-learning effective many-body potentials for anisotropic particles using orientation-dependent symmetry functions
    G. Campos-Villalobos, G. Giunta, S. Marín-Aguilar, and M. Dijkstra, The Journal of Chemical Physics 157 (2), 024902 (2022). DOI: 10.1063/5.0091319. Supporting material: PDF, TXT.
  5. Modeling the cholesteric pitch of apolar cellulose nanocrystal suspensions using a chiral hard-bundle model
    M. Chiappini, S. Dussi, B. Frka-Petesic, S. Vignolini, and M. Dijkstra
    The Journal of Chemical Physics 156 (1), 014904 (2022). DOI: 10.1063/5.0076123. Supporting information: PDF.
  6. Inverse design of soft materials via a deep learning–based evolutionary strategy
    G.M. Coli, E. Boattini, L. Filion, and M. Dijkstra, Science Advances 8 (3), eabj6731 (2022). DOI: 10.1126/sciadv.abj6731.
  7. Kinetic phase diagram for nucleation and growth of competing crystal polymorphs in charged colloids
    W. Gispen and M. Dijkstra, Physical Review Letters 129 (9), 098002 (2022). DOI: 10.1103/PhysRevLett.129.098002. Supporting information: code.ZIP, PDF.
  8. Splay-bend nematic phases of bent colloidal silica rods induced by polydispersity
    R.
    Kotni
    , A. Grau-Carbonell, M. Chiappini, M. Dijkstra, and A. van Blaaderen,
    Nature Communications 13 (1), 7264 (2022). DOI: 10.1038/s41467-022-34658-y. Supporting information: PDF.  
  9. Guiding the self-assembly of colloidal diamond
    S. Marín-Aguilar, F.
    Camerin, and M. Dijkstra, The
    Journal of Chemical Physics, 157 (15), 154503 (2022). DOI: 10.1063/5.0109377. Supporting information: PDF, MP4 1, MP4 2, MP4 3, MP4 4, MP4 5
  10. Machine learning of implicit combinatorial rules in mechanical metamaterials
    R. van
    Mastrigt, M. Dijkstra, M. van Hecke, and C. Coulais,
    Physical Review Letters 129 (19), 198003 (2022). DOI: 10.1103/PhysRevLett.129.198003. Supporting information: PDF. 
  11. Structural diversity in three-dimensional self-assembly of nanoplatelets by spherical confinement
    D. Wang, M. Hermes, S.
    Najmr, N. Tasios, A. Grau-Carbonell, Y. Liu, S. Bals, M. Dijkstra, C.B. Murray, and A. van Blaaderen,
    Nature Communications 13 (1), 6001 (2022). DOI: 10.1038/s41467-022-33616-y. Supporting information: PDF 1, PDF 2, PDF 3, HTML 1, HTML 2, HTML 3, HTML 4, HTML 5, HTML 6, HTML 7, HTML 8, HTML 9, HTML 10, HTML 11, HTML 12, HTML 13, HTML 14, HTML 15, HTML 16, HTML 17, HTML 18, HTML 19, HTML 20, HTML 21, HTML 22, MPG 1, MPG 2, MPG 3, MPG 4, MPG 5 

2021

  1. Chains of cubic colloids at fluid–fluid interfaces
    C. Anzivino, G. Soligno, R.van Roij and M. Dijkstra, Soft Matter 17 (4), 965-975 (2021). DOI: 10.1039/d0sm01815e. Supporting information: PDF 1, PDF 2, PDF 3, PDF 4, PDF 5, PDF 6, PDF 7, PDF 8.
  2. Nonconventional phases of colloidal nanorods with a soft corona
    G. Campos-Villalobos, M. Dijkstra and A. Patti, Physical Review Letters 126 (15), 158001 (2021).  DOI: 10.1103/PhysRevLett.126.158001. Supporting information: PDF.
  3. Machine learning many-body potentials for colloidal systems
    G. Campos-Villalobos, E. Boattini, L. Filion and M. Dijkstra, The Journal of Chemical Physics 155 (17), 174902 (2021). DOI: 10.1063/5.0063377.
  4. Machine learning free-energy functionals using density profiles from simulations 
    P. Cats, S. Kuipers, S. de Wind, R. van Damme, G.M. Coli, M. Dijkstra and R. van Roij, APL Materials 9, 031109 (2021). DOI: 10.1063/5.0042558.
  5. A generalized density-modulated twist-splay-bend phase of banana-shaped particles
    M. Chiappini and M. Dijkstra, Nature Communications 12, 2157 (2021). DOI: 10.1038/s41467-021-22413-8. Supporting information: PDF1, PDF2.
  6. An artificial neural network reveals the nucleation mechanism of a binary colloidal AB13 crystal
    G.M.Coli and M. Dijkstra, ACS Nano 15 (3), 4335-4346 (2021). DOI: 10.1021/acsnano.0c07541. Supporting information: PDF, MP4
  7. From predictive modelling to machine learning and reverse engineering of colloidal self-assembly
    M. Dijkstra and E. Luijten, Nature Materials 20, 762-773 (2021). DOI: 10.1038/s41563-021-01014-2
  8. Oscillatory shear-induced bcc-fcc martensitic transformation in a colloidal suspension with long-range repulsive interactions
    G. Fiorucci and M. Dijkstra, The Journal of Chemical Physics 154 (16), 164903 (2021). DOI: 10.1063/5.0045537
  9. Spontaneous organization of supracolloids into three-dimensional structured materials
    M-A. Moradi, E.D. Eren, M. Chiappini, S. Rzadkiewicz, M. Goudzwaard, M.M.J. van Rijt, A.D.A. Keizer, A.F. Routh, M. Dijkstra, G. de With, N. Sommerdijk, H. Friedrich and J.P. Patterson, Nature Materials 20 (4), 541-547 (2021). DOI: 10.1038/s41563-020-00900-5. Supporting information: PDF, Video 1, Video 2, Video 3, Video 4, Video 5, Video 6, Video 7.
  10. Liquid flow reversibly creates a macroscopic surface charge gradient
    P. Ober, W.Q. Boon, M. Dijkstra, E.H.G. Backus, R. van Roij and M. Bonn, Nature Communications 12, 4102 (2021). DOI:
  11. Quantitative 3D real-space analysis of Laves phase supraparticles
    D. Wang, E.B. van der Wee, D. Zanaga, T. Altantzis, Y. Wu, T. Dasgupta, M. Dijkstra, C.B. Murray, S. Bals and A. van Blaaderen, Nature Communications 12, 3980 (2021). DOI: 10.1038/s41467-021-24227-0. Supporting information: PDF 1, PDF 2, HTML 1, HTML 2, HTML 3, HTML 4, HTML 5, HTML 6, HTML 7, HTML 8, HTML 9, HTML 10, HTML 11, HTML 12, HTML 13, HTML 14, HTML 15, AVI 1, AVI 2, AVI 3, AVI 4, AVI 5, AVI 6.

2020

  1. A Landau–de Gennes theory for twist-bend and splay-bend nematic phases of colloidal suspensions of bent rods
    C. Anzivino, R. van Roij, and M. Dijkstra, The Journal of chemical Physics 152, 224502 (2020). DOI: 10.1063/5.0008936.
  2. Helicoidal dynamics of biaxial curved rods in twist-bend nematic phases unveiled by unsupervised machine learning techniques
    M. Chiappini, A. Patti, and M. Dijkstra, Physical Review E 102 (4), 040601(R)(2020). DOI: 10.1103/PhysRevE.102.040601. Supporting information: PDF.
  3. Speeding up dynamics by tuning the noncommensurate size of rodlike particles in a smectic phase
    M. Chiappini, E. Grelet, and M. Dijkstra, Physical Review Letters 124 (8), 087801 (2020). DOI:10.1103/PhysRevLett.124.087801. Supporting information: PDF, AVI.
  4. Tuning the glass transition: enhanced crystallization of the laves phases in nearly hard spheres
    T. Dasgupta, G. M. Coli, and M. Dijkstra, ACS Nano 14 (4), 3957-3968 (2020). DOI: 10.1021/acsnano.9b07090. Supporting information: PDF, AVI.
  5. Classifying crystals of rounded tetrahedra and determining their order parameters using dimensionality reduction
    R. van Damme, G.M. Coli, R. van Roij, and M. Dijkstra, ACS Nano 14 (11), 15144-15153 (2020). DOI: 10.1021/acsnano.0c05288. Supporting information: PDF, ZIP, TXT.
  6. Shaping colloidal bananas to reveal biaxial, splay-bend nematic, and smectic phases
    C. Fernández-Rico, M. Chiappini, T. Yanagishima, H. de Sousa, D.G.A.L. Aarts, M. Dijkstra, and R.P.A. Dullens,
    Science 369 (6506), 950-955 (2020). DOI: 10.1126/science.abb4536.
  7. The effect of hydrodynamics on the crystal nucleation of nearly hard spheres
    G. Fiorucci, G.M. Coli, J.T. Padding, and M. Dijkstra, The Journal of Chemical Physics 152 (6), 064903 (2020). DOI: 10.1063/1.5137815. 
  8. Predicting the phase behavior of mixtures of active spherical particles
    B. van der Meer, V. Prymidis, M. Dijkstra, and L. Filion, The Journal of Chemical Physics 152 (14), 144901 (2020). DOI: 10.1063/5.0002279 .
  9. High antisite defect concentrations in hard-sphere colloidal Laves phases
  10. Role of topological defects in the two-stage melting and elastic behavior of active Brownian particles
    S. Paliwal and M. Dijkstra, Physical Review Research 2 (1), 012013 (2020). DOI:10.1103/PhysRevResearch.2.012013. Supporting Information: PDF, AVI 1, AVI 2, AVI 3, AVI 4, AVI 5.
  11. Binary icosahedral clusters of hard spheres in spherical confinement
    D. Wang, T. Dasgupta, E.B. van der Wee, D. Zanaga, T. Altantzis, Y. Wu, G.M. Coli, C.B. Murray, S. Bals, M. Dijkstra and A. van Blaaderen, Nature Physics 17, 128–134 (2021). DOI: 10.1038/s41567-020-1003-9 Supporting information: PDF, HTML 1, HTML 2, HTML 3, HTML 4, HTML 5, HTML 6, HTML 7, HTML 8, HTML 9, AVI 1, AVI 2, AVI 3, AVI 4, AVI 5.

2019

  1. Equilibrium configurations and capillary interactions of Janus dumbbells and spherocylinders at fluid–fluid interfaces
    C. Anzivino, F.Chang, G. Soligno, R. van Roij, W.K. Kegel, and M. Dijkstra, Soft Matter 15 (12), 2638-2647 (2019). DOI:10.1039/C8SM02361A. Supporting information: PDF.
  2. Unsupervised learning for local structure detection in colloidal systems
    E. Boattini, M. Dijkstra, and L. Filion The Journal of Chemical Physics 151 (15), 154901 (2019). DOI: 10.1063/1.5118867.
  3. Biaxial, twist-bend, and splay-bend nematic phases of banana-shaped particles revealed by lifting the “smectic blanket”
    M. Chiappini, T. Drwenski, R. van Roij, and M. Dijkstra, Physical Review Letters 123 (6), 068001 (2019). DOI: 10.1103/PhysRevLett.123.068001. Supporting information: PDF.
  4. Interparticle torques suppress motilityinduced phase separation for rodlike particles
    R. van Damme, J. Rodenburg, R. van Roij, and M. Dijkstra, The Journal of Chemical Physics 150 (16), 164501 (2019). DOI:10.1063/1.5086733. Supporting information: PDF.
  5. From simple liquids to colloids and soft matter
    R. Evans, D. Frenkel, and M. Dijkstra, Physics Today 72 (2), 38-39 (2019). DOI: 10.1063/PT.3.4135
  6. Small asymmetric Brownian objects self-align in nanofluidic channels
    G. Fiorucci, J.T. Padding, and M. Dijkstra, Soft Matter 15 (2), 321-330 (2019). DOI: 10.1039/c8sm02384k.
  7. Thermal stability and electronic and magnetic properties of atomically thin 2D transition metal oxides
    H. van Gog, W.-F. Li, C. Fang, R.S. Koster, M. Dijkstra, and M. van Huis, npj 2D Materials and Applications 3, 1-12 (2019). DOI:10.1038/s41699-019-0100-z. Supporting information: PDF, AVI.
  8. Inverse design of charged colloidal particle interactions for self assembly into specified crystal structures
    R. Kumar, G.M. Coli, M. Dijkstra, and S. Sastry, The Journal of Chemical Physics 151 (8), 084109 (2019). DOI: 10.1063/1.5111492.

2018

  1. Towards the colloidal Laves phase from binary hard-sphere mixtures via sedimentation
    T. Dasgupta and M. Dijkstra, Soft Matter 14, 2465-2475 (2018). DOI:10.1039/c8sm00237a.
  2. On the stability and finite-size effects of a columnar phase in single-component systems of hard-rod-like particles
    S. Dussi, M. Chiappini, and M. Dijkstra, Molecular Physics Frenkel Special Issue (2018).
  3. Hard Competition: Stabilizing the Elusive Biaxial Nematic Phase in Suspensions of Colloidal Particles with Extreme Lengths
    S. Dussi, N. Tasios, T. Drwenski, R. van Roij and M. Dijkstra, Physical Review Letters 120, 177801 (2018). DOI:10.1103/PhysRevLett.120.177801. Supporting information: PDF.
  4. Revealing a vacancy analog of the crowdion interstitial in simple cubic crystals
    B. van der Meer, R. van Damme, M. Dijkstra, F. Smallenburg and L. Filion, Physical Review Letters 121 (25), 258001 (2018). DOI: 10.1103/PhysRevLett.121.258001. Supporting information: PDF.
  5. Crystallization of Nanocrystals in Spherical Confinement Probed by in Situ X-ray Scattering 
    F. Montanarella
    J.J. GeuchiesT. DasguptaP.T. PrinsC. van OverbeekR. DattaniP. BaesjouM. DijkstraA.V. PetukhovA. van Blaaderen and D. Vanmaekelbergh, Nano Letters 18, 3675-3681 (2018). DOI:10.1021/acs.nanolett.8b00809. Supporting info: PDF, AVI 1, AVI 2.
  6. Chemical potential in active systems: predicting phase equilibrium from bulk equations of state?
    S. Paliwal, J. Rodenburg, R. van Roij and M. Dijkstra, New Journal of Physics 20, 015003 (2018). DOI:10.1088/1367-2630/aa9b4d.
  7. Ratchet-induced variations in bulk states of an active ideal gas
    J. Rodenburg, S. Paliwal, M. de Jager, P.G. Bolhuis, M. Dijkstra and R. van Roij, The Journal of Chemical Physics 149, 174910 (2018). DOI:10.1063/1.5048698.
  8. Self-assembly of cubic colloidal particles at fluid–fluid interfaces by hexapolar capillary interactions
    G. Soligno, M. Dijkstra and R. van Roij, Soft Matter 14, 42-60 (2018). DOI: 10.1039/C7SM01946G. Supporting information: PDF.
  9. Interplay between spherical confinement and particle shape on the self-assembly of rounded cubes
    D. Wang, M. Hermes, R. Kotni, Y. Wu, N. Tasios, Y. Liu, B. de Nijs, E.B. van der Wee, C.B. Murray, M. Dijkstra and A. van Blaaderen, Nature Communications 8, 2228 (2018). DOI:10.1038/s41467-018-04644-4. Supporting information: PDF, HTML 1, HTML 2, HTML 3, HTML 4, HTML 5, HTML 6, HTML 7, HTML 8, HTML 9, MOV 1, MOV 2.

2017

  1. Self-assembly of polyhedral metal–organic framework particles into three-dimensional ordered superstructures
    C. Avci, I. Imaz, A. Carné-Sánchez, J.A. Pariente, N. Tasios, J. Pérez-Carvajal, M.I. Alonso, A. Blanco, M. Dijkstra, C. López, and D. Maspoch, Nature Chemistry 10, 78-84 (2017). DOI: 10.1038/nchem.2875. Supporting Information: PDF.
  2. Fabrication of Colloidal Laves Phases via Hard Tetramers and Hard Spheres: Bulk Phase Diagram and Sedimentation Behavior
    G. Avvisati, T. Dasgupta, and M. Dijkstra, ACS Nano 11, 7702–7709 (2017). DOI: 10.1021/acsnano.7b00505. Supporting Information: PDF.
  3. Efficient shapes for microswimming: From three-body swimmers to helical flagella 
    B. Bet, G. Boosten, M. Dijkstra, and R. van Roij, The Journal of Chemical Physics 146, 084904 (2017). DOI: 10.1063/1.4976647. Supporting Information: PDFMOV 1MOV 2MOV 3MOV 4MOV 5MOV 6.
  4. Growth of defect-free colloidal hard-sphere crystals using colloidal epitaxy 
    T. Dasgupta, J. R. Edison, and M. Dijkstra, The Journal of Chemical Physics 146, 074903 (2017). DOI: 10.1063/1.4976307.
  5. Sessile Nanodroplets on Elliptical Patches of Enhanced Lyophilicity 
    I. Dević, G. Soligno, M. Dijkstra, R. van Roij, X. Zhang, and D. Lohse, Langmuir 33, 2744–2749 (2017). DOI: 10.1021/acs.langmuir.7b00002.
  6. Connectedness percolation of hard deformed rods
    T. Drwenski, S. Dussi, M. Dijkstra, R. van Roij and P. van der Schoot, The Journal of Chemical Physics 147, 224904 (2017) DOI: 10.1063/1.5006380
  7. Density functional theory and simulations of colloidal triangular prisms 
    M. Marechal, S. Dussi, and M. Dijkstra, The Journal of Chemical Physics 146, 24905 (2017). DOI: 10.1063/1.4978502.
  8. Diffusion and interactions of point defects in hard-sphere crystals
    B. van der Meer, M. Dijkstra, and L.C. Filion, The Journal of Chemical Physics 146, 244905 (2017). DOI: 10.1063/1.4990416.
  9. Non-equilibrium surface tension of the vapour-liquid interface of active Lennard-Jones particles
    S. Paliwal, V. Prymidis, L. Fillion and M. Dijkstra, The Journal of Chemical Physics 147, 084902 (2017) DOI: 10.1063/1.4989764
  10. Novel Pyrochlorelike Crystal with a Photonic Band Gap Self-Assembled Using Colloids with a Simple Interaction Potential
    H. Pattabhiraman, G. Avvisati, and M. Dijkstra, Physical Review Letters 119, 157401 (2017). DOI: 10.1103/PhysRevLett.119.157401. Supporting Information: PDF.
  11. Periodic layers of a dodecagonal quasicrystal and a floating hexagonal crystal in sedimentation-diffusion equilibria of colloids
    H. Pattabhiraman and M. Dijkstra, The Journal of Chemical Physics 147, 104902 (2017). DOI: 10.1063/1.4993521.
  12. The effect of disorder of small spheres on the photonic properties of the inverse binary NaCl-like structure
    H. Pattabhiraman and M. Dijkstra, Journal of Physics: Condensed Matter 28, 385101 (2017). DOI: 10.1088/1361-648X/aa7ea9.
  13. On the formation of stripe, sigma, and honeycomb phases in a core–corona system
    H. Pattabhiraman and M. Dijkstra, Soft Matter 13, 4418-4432 (2017). DOI: 10.1039/c7sm00254h.
  14. Phase behaviour of quasicrystal forming systems of core-corona particles 
    H. Pattabhiraman and M. Dijkstra, The Journal of Chemical Physics 146, 114901 (2017). DOI: 10.1063/1.4977934.
  15. The effect of temperature, interaction range, and pair potential on the formation of dodecagonal quasicrystals in core-corona systems 
    H. Pattabhiraman and M. Dijkstra, Journal of Physics: Condensed Matter 29, 094003  (2017). DOI :10.1088/1361-648X/aa5530.
  16. Van’t Hoff’s law for active suspensions: the role of the solvent chemical potential
    J. Rodenburg, M. Dijkstra and R. van Roij, Soft Matter 13, 8957-8963 (2017). DOI: 10.1039/c7sm01432e. Supporting information: PDF.
  17. From 2D to 3D: Critical Casimir interactions and phase behavior of colloidal hard spheres in a near-critical solvent 
    N. Tasios and M. Dijkstra, The Journal of Chemical Physics 146, 134903 (2017). DOI: 10.1063/1.4979518 .
  18. A simulation study on the phase behavior of hard rhombic platelets 
    N. Tasios and M. Dijkstra,  The Journal of Chemical Physics 146, 144901 (2017). DOI: 10.1063/1.4979517.
  19. Microphase Separation in Oil-Water Mixtures Containing Hydrophilic and Hydrophobic Ions
    N. Tasios, S. Samin, R. van Roij, and M. Dijkstra, Physical Review Letters 119, 218001 (2017). DOI: 10.1103/PhysRevLett.119.218001. Supporting Information: PDF.
  20. Rational design and dynamics of self-propelled colloidal bead chains: from rotators to flagella
    H.R. Vutukuri, B. Bet, R. van Roij, M. Dijkstra and W.T.S. Huck, Scientific Reports 7, 16758 (2017). DOI: 10.1038/s41598-017-16731-5. Supporting information: PDF, AVI 1, AVI 2, AVI 3, AVI 4, AVI 5, AVI 6, AVI 7, AVI 8, AVI 9.
  21. Depletion-Induced Encapsulation by Dumbbell-Shaped Patchy Colloids Stabilize Microspheres against Aggregation
    J.R. Wolters, J.E. Verweij, G. Avvisati, M. Dijkstra, and W.K. Kegel, Langmuir 33, 3270–3280 (2017). DOI: 10.1021/acs.langmuir.7b00014. Supporting Information: PDF.

2016

  1. Configurational entropy and effective temperature in systems of active Brownian particles Z. Preisler and M. Dijkstra, Soft Matter 12, 6043-6048 (2016). DOI 10.1039/C6SM00889E.
  2. Phase diagram of binary colloidal rod-sphere mixtures from a 3D real-space analysis of sedimentation–diffusion equilibria
    H.E. Bakker, S. Dussi, B.L. Droste, T.H. Besseling, C.L. Kennedy, E.I. Wiegant, B. Liu, A. Imhof, M. Dijkstra, and  A. van Blaaderen, Soft Matter 12, 9238  (2016). DOI: 10.1039/c6sm02162j. Supporting Information: PDF.
  3. Phase diagrams of charged colloidal rods: Can a uniaxial charge distribution break chiral symmetry?
    T. Drwenski, S. Dussi, M. Hermes, M. Dijkstra, and R. van Roij, The Journal of Chemical Physics 144, 094901 (2016). DOI: 10.1063/1.4942772
  4. Entropy-driven formation of chiral nematic phases by computer simulations
    S. Dussi, M. Dijkstra, Nature Communications 7, 11175 (2016). DOI: 10.1038/ncomms11175 . Supporting Information: PDFAVI 1AVI 2AVI 3AVI 4AVI 5AVI 6.
  5. Stabilizing the hexagonal close packed structure of hard spheres with polymers: Phase diagram, structure, and dynamics
    J.R. Edison, T. Dasgupta, and M. Dijkstra, The Journal of Chemical Physics 145, 054902 (2016) DOI: 10.1063/1.4959972. Supporting Information: GIF 1GIF 2GIF 3GIF 4.
  6. In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals
    J.J. Geuchies, C. van Overbeek, W.H. Evers, B. Goris, A. de Backer, A.P. Gantapara, F.T. Rabouw, J. Hilhorst, J.L. Peters, O. Konovalov, A.V. Petukhov, M. Dijkstra, L.D.A. Siebbeles, S. van Aert, S. Bals, and D. Vanmaekelbergh, Nature Materials 15, 1248 (2016).  DOI: 10.1038/NMAT4746. Supporting Information: PDF.
  7. Depth dependence of vacancy formation energy at (100), (110), and (111) Al surfaces: A first-principles study
    S.S. Gupta, M.A. van Huis, M. Dijkstra, and M.H.F. Sluiter, Physical Review B  93, 085432 (2016). DOI: 10.1103/PhysRevB.93.085432.
  8. Electric-Field-Induced Lock-and-Key Interactions between Colloidal Spheres and Bowls
    M. Kamp, N.A. Elbers, T. Troppenz, A. Imhof, M. Dijkstra, R. van Roij, and A. van Blaaderen, Chemistry of Materials 28, 1040−1048 (2016). DOI: 10.1021/acs.chemmater.5b04152. Supporting Information: PDFAVI,  ZIP 1ZIP 2.
  9. Selective Depletion Interactions in Mixtures of Rough and Smooth Silica Spheres
    M. Kamp, M. Hermes, C.M. van Kats, D.J. Kraft, W.K. Kegel, M. Dijkstra, and A. van Blaaderen, Langmuir 32 , 1233–1240 (2016). DOI: 10.1021/acs.langmuir.5b04001. Supporting Information: PDFAVI.
  10. Acetate Ligands Determine the Crystal Structure of CdSe Nanoplatelets – a Density Functional Theory study
    R.S. Koster, C.M. Fang, A. van Blaaderen, M. Dijkstra, and M.A. van Huis, Physical Chemistry Chemical Physics 18, 22021-22024 (2016). DOI: 10.1039/C6CP04935D. Supporting Information: PDF.
  11. Removing grain boundaries from three-dimensional colloidal crystals using active dopants
    B. van der Meer, M. Dijkstra, and L. Filion, Soft Matter 12, 5630-5635 (2016). DOI: 10.1039/c6sm00700g.
  12. Fabricating large two-dimensional single colloidal crystals by doping with active particles
    B. van der Meer, L. Filion, and M. Dijkstra, Soft Matter 12, 3406 (2016). DOI: 10.1039/c6sm00031b
  13. Vapour-liquid coexistence of an active Lennard-Jones fluid
    V. Prymidis, S. Paliwal, M. Dijkstra, and L. Filion, The Journal of Chemical Physics 145, 124904 (2016). DOI: 10.1063/1.4963191.
  14. Self-Assembly of Cubes into 2D Hexagonal and Honeycomb Lattices by Hexapolar Capillary Interactions
    G. Soligno, M. Dijkstra, and R. van Roij, Physical Review Letters 116, 258001 (2016). DOI: 10.1103/PhysRevLett.116.258001. Supporting Information: PDF.
  15. Critical Casimir interactions and colloidal self-assembly in near-critical solvents
    N. Tasios, J.R. Edison, R. van Roij, R. Evans, and M. Dijkstra, The Journal of Chemical Physics  145, 084902 (2016). DOI: 10.1063/1.4961437.
  16. Dynamic self-organization of side-propelling colloidal rods: experiments and simulations
    H.R. Vutukuri, Z. Preisler, T.H. Besseling, A. van Blaaderen, M. Dijkstra, and W.T.S. Huck, Soft Matter 12, 9657-9665 (2016).  DOI: 10.1039/c6sm01760f. Supporting Information: PDF,  AVI 1AVI 2AVI 3.

Up

2015

  1. Phase separation and self-assembly in a fluid of Mickey Mouse particles
    G. Avvisati and M. Dijkstra, Soft Matter 11, 8432 (2015). DOI: 10.1039/c5sm02076j.
  2. Self-assembly of patchy colloidal dumbbells
    G. Avvisati, T. Vissers, and M. Dijkstra, The Journal of Chemical Physics 142, 084905 (2015). DOI: 10.1063/1.4913369
  3. Determination of the positions and orientations of concentrated rod-like colloids from 3D microscopy data
    T.H. Besseling, M. Hermes, A. Kuijk, B. de Nijs, T.S. Deng, M. Dijkstra, A. Imhof, and A. van Blaaderen, Journal of Physics: Condensed Matter 27, 194109 (2015). DOI: 10.1088/0953-8984/27/19/194109. Supporting information: PDF.
  4. Long-Ranged Oppositely Charged Interactions for Designing New Types of Colloidal Clusters
    A.F. Demirörs, J.C.P. Stiefelhagen, T. Vissers, F. Smallenburg, M. Dijkstra, A. Imhof, and A. van Blaaderen, Physical Review X 5, 021012 (2015). DOI: 10.1103/PhysRevX.5.021012. Supporting information: PDFAVI 1AVI 2AVI 3, AVI 4AVI 5AVI 6AVI 7AVI 8AVI 9AVI 10AVI 11.
  5. Cholesterics of colloidal helices: Predicting the macroscopic pitch from the particle shape and thermodynamic state
    S. Dussi, S. Belli, R. van Roij, and M. Dijkstra, The Journal of Chemical Physics 142, 074905 (2015). DOI: 10.1063/1.4908162.
  6. Entropy-driven phase transitions in colloids: from spheres to anisotropic particles
    M. Dijkstra, Advances in Chemical Physics 156, 35-71, Edited by Stuart A. Rice and Aaron R. Dinner. Published 2015 by John Wiley & Sons, Inc, (2015) DOI: 10.1002/9781118949702.ch2 .
  7. Critical Casimir Forces and Colloidal Phase Transitions in a Near-Critical Solvent: A Simple Model Reveals a Rich Phase Diagram
    J.R. Edison, N. Tasios, S. Belli, R. Evans, R. van Roij, and M. Dijkstra, Physical Review Letters 114, 038301 (2015). DOI: 10.1103/PhysRevLett.114.038301. Supporting information; PDFmovie 1movie 2 movie3movie 4movie 5.
  8. Phase behaviour of colloids suspended in a near-critical solvent: a mean-field approach
    J.R. Edison, S. Belli, R. Evans, R. van Roij, and M. Dijkstra, Molecular Physics 113, 2546-2555 (2015). DOI: 10.1080/00268976.2015.1031842.
  9. A novel chiral phase of achiral hard triangles and an entropy-driven demixing of enantiomers
    A.P. Gantapara, W. Qi, and M. Dijkstra, Soft Matter 11, 8684 (2015). DOI: 10.1039/c5sm01762a
  10. Phase behavior of a family of truncated hard cubes
    A.P. Gantapara, J. de Graaf, R. van Roij, and M. Dijkstra, The Journal of Chemical Physics 142, 054904 (2015). DOI: 10.1063/1.4906753.
  11. Crystallization and reentrant melting of charged colloids in nonpolar solvents
    T. Kanai, N. Boon, P.J. Lu, E. Sloutskin, A.B. Schofield, F. Smallenburg, R. van Roij, M. Dijkstra, and D.A. Weitz, Physical Review E 91, 030301 (2015). DOI: 10.1103/PhysRevE.91.030301.
  12. Stabilization of Rock Salt ZnO Nanocrystals by Low-Energy Surfaces and Mg Additions: A First-Principles Study
    R.S. Koster, C.M. Fang, M. Dijkstra, A. van Blaaderen, and M.A. van Huis, The Journal of Physical Chemistry C 119, 5648–5656 (2015). DOI: 10.1021/jp511503b. Supporting information; PDF.
  13. The role of point defects in PbS, PbSe and PbTe: a first principles study
    W-F. Li, C.M. Fang, M. Dijkstra, and M.A. van Huis, Journal of Physics: Condensed Matter 27, 355801 (2015), Doi: 10.1088/0953-8984/27/35/355801 Supporting information; PDF.
  14. Charging of poly(methyl methacrylate) (PMMA) colloids in cyclohexyl bromide: locking, size dependence, and particle mixtures
    M.N. van der Linden, J.C.P. Stiefelhagen, G. Heessels-Gürboğa, J.E.S. van der Hoeven, N.A. Elbers, M. Dijkstra, and A. van Blaaderen, Langmuir 31, 65-75 (2015). DOI: 10.1021/la503665e. Supporting information: PDF
  15. Dynamical heterogeneities and defects in two-dimensional soft colloidal crystals
    B. van der Meer, W. Qi, J. Sprakel, L. Filion, and M. Dijkstra, Soft Matter11, 9385-9392,  (2015). DOI: 10.1039/C5SM01520K .
  16. Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement
    B. de Nijs, S. Dussi, F. Smallenburg, J.D. Meeldijk, D.J. Groenendijk, L. Filion, A. Imhof, A. van Blaaderen, and M. Dijkstra, Nature Materials 14, 56-60 (2015). DOI: 10.1038/nmat4072. Supporting Information: PDFMOV 1MOV 2MOV 3MOV 4Html(3D).
  17. On the stability of a quasicrystal and its crystalline approximant in a system of hard disks with a soft corona
    H. Pattabhiraman, A.P. Gantapara, and M. Dijkstra, The Journal of Chemical Physics 143, 164905 (2015). DOI: 10.1063/1.4934499.
  18. Nonclassical Nucleation in a Solid-Solid Transition of Confined Hard Spheres
    W. Qi, Y. Peng, Y. Han, R.K. Bowles, and M. Dijkstra, Physical Review Letters 115, 185701 (2015). DOI: 10.1039/C4SM02876G. Supporting Information: PDF.
  19. Destabilisation of the hexatic phase in systems of hard disks by quenched disorder due to pinning on a lattice
    W. Qi and M. Dijkstra, Soft Matter 11, 2852-2856 (2015). DOI: 10.1039/C4SM02876G.
  20. Shape-sensitive crystallization in colloidal superball fluids
    L. Rossi, V. Sonia, D.J. Ashton, D.J. Pine, A.P. Philipse, P.M. Chaikin, M. Dijkstra, S. Sacanna, and W.T.M. Irvine, Proceedings of the National Academy of Sciences 112, p. 5286-5290, (2015). Doi: 10.1073/pnas.1415467112.
    Supporting Information; PDFMOV 1 , MOV 2MOV 3MP4.
  21. Nematic ordering of polarizable colloidal rods in an external electric field: theory and experiment
    T. Troppenz, A. Kuijk, A. Imhof, A. van Blaaderen, M. Dijkstra, and R. van Roij, Physical Chemistry Chemical Physics 17, 22423 (2015), DOI: 10.1039/C5CP01478F.
  22. Self-assembly of “Mickey Mouse” shaped colloids into tube-like structures: experiments and simulations
    J.R. Wolters, G. Avvisati, F. Hagemans, T. Vissers, D.J. Kraft, M. Dijkstra, and W.K. Kegel, Soft Matter 11, 1067–1077 (2015).  DOI: 10.1039/C4SM02375G. Supporting Information: PDFAVI.

Up

2014

  1. Self-Assembly of Octapod-Shaped Colloidal Nanocrystals into a Hexagonal Ballerina Network Embedded in a Thin Polymer Film
    M.P. Arciniegas, M.R. Kim, J. de Graaf, R. Brescia, S. Marras, K. Miszta, M. Dijkstra, R. van Roij, and L. Manna, Nano Letters 14, 1056 (2014). DOI: 10.1021/nl404732mPDFAVI 1AVI 2.
  2. Density functional theory for chiral nematic liquid crystals
    S. Belli, S. Dussi, M. Dijkstra, and R. van Roij, Physical Review E 90, 020503 (2014). DOI: 10.1103/PhysRevE.90.020503.
  3. Effect of external electric fields on the phase behavior of colloidal silica rods
    A. Kuijk, T. Troppenz, L. Filion, A. Imhof, R. van Roij, M. Dijkstra, and A. van Blaaderen, Soft Matter 10, 6249-6255 (2014). DOI: 10.1039/C4SM00957F.
  4. Self-consistent electric-field induced dipole interaction of colloidal spheres, cubes, rods, and dumbbells
    B.W. Kwaadgras, R. van Roij, and M. Dijkstra, The Journal of Chemical Physics 140, 154901 (2014). DOI: 10.1063/1.4870251. Supporting Info: PDFEPS cubes-fig1EPS cubes-fig2EPS dumbbells-fig1, EPS misalignedsscdEPS rods-fig1EPS rods-fig2EPS rot-cubes-fig1EPS rot-cubes-fig2 
  5. Orientation of a dielectric rod near a planar electrode
    B.W. Kwaadgras, T.H. Besseling, T.J. Coopmans, A. Kuijk, A. Imhof, A. van Blaaderen, M. Dijkstra, and R. van Roij, Physical Chemistry Chemical Physics 16, 22575-22582 (2014). DOI: 10.1039/C4CP02799J.
  6. Tuning biaxiality of nematic phases of board-like colloids by an external magnetic field
    A.B.G.M. Leferink op Reinink, S. Belli, R. van Roij, M. Dijkstra, A.V. Petukhov, and G.J. Vroege, Soft Matter 10, 446-456 (2014). DOI: 10.1039/C3SM52242C.
  7. Highly cooperative stress relaxation in two-dimensional soft colloidal crystals
    B. van der Meer, W. Qi, R.G. Fokkink, J. van der Gucht, M. Dijkstra, and J. Sprakel, Proceedings of the National Academy of Sciences 111, 15356-15361 (2014). DOI:10.1073/pnas.1411215111. Supporting Information: PDFAVI 1AVI 2AVI 3.
  8. Crystallizing hard-sphere glasses by doping with active particles
    R. Ni, M.A. Cohen Stuart, M. Dijkstra, and P.G. Bolhuis, Soft Matter 10, 6609-6613 (2014). DOI: 10.1039/C4SM01015A.
  9. Site-specific growth of polymer on silica rods
    B. Peng, G. Soligno, M. Kamp, B. de Nijs, J. de Graaf, M. Dijkstra, R. van Roij, A. van Blaaderen, and A. Imhof, Soft Matter 10, 9644-9650 (2014). DOI: 10.1039/C4SM01989J. Supporting Information: PDF.
  10. Two-stage melting induced by dislocations and grain boundaries in monolayers of hard spheres
    W. Qi, A.P. Gantapara, and M. Dijkstra, Soft Matter 10, 5449-5457 (2014). DOI: 10.1039/C4SM00125G. Supporting Information: PDF.
  11. The equilibrium shape of fluid-fluid interfaces: Derivation and a new numerical method for Young’s and Young-Laplace equations
    G. Soligno, M. Dijkstra, and R. van Roij, The Journal of Chemical Physics  141, 244702 (2014). DOI: 10.1063/1.4904391.
  12. Self-Assembly of Colloidal Hexagonal Bipyramid- and Bifrustum-Shaped ZnS Nanocrystals into Two-Dimensional Superstructures
    W. van der Stam, A.P. Gantapara, Q.A. Akkerman, G. Soligno, J.D. Meeldijk, R. van Roij, M. Dijkstra, and C. de Mello Donegá, Nano Letters 14, 1032-1037 (2014). DOI: 10.1021/nl4046069. Supporting Information: PDFAVI1AVI 2
  13. Glassy dynamics of convex polyhedra
    N. Tasios, A. Gantapara, and M. Dijkstra, The Journal of Chemical Physics 141, 224502,  (2014). DOI: 10.1063/1.4902992.
  14. Phase behaviour of polarizable colloidal hard rods in an external electric field: A simulation study
    T. Troppenz, L. Filion, R. van Roij, and M. Dijkstra, The Journal of Chemical Physics 141, 154903 (2014). DOI:  10.1063/1.4897562. Supporting Information: PDF.
  15. An experimental and simulation study on the self-assembly of colloidal cubes in external electric fields
    H.R. Vutukuri, F. Smallenburg, S. Badaire, A. Imhof, M. Dijkstra, and A. van Blaaderen, Soft Matter 10, 9110-9119 (2014). DOI: 10.1039/C4SM01778A.
  16. Structural signatures of dynamic heterogeneities in monolayers of colloidal ellipsoids
    Z. Zheng, R. Ni, F. Wang, M. Dijkstra, Y. Wang, and Y. Han, Nature Communications  5, 3829 (2014). DOI: 10.1038/ncomms4829.

Up

2013

  1. Manipulating the self assembly of colloids in electric fields
    A. van Blaaderen, M. Dijkstra , R. van Roij, A. Imhof, M. Kamp, B.W. Kwaadgras, T. Vissers, and B. Liu, European Physical Journal Special Topics 222, 2895-2909 (2013). DOI: 10.1140/epjst/e2013-02065-0.
  2. Electron Tomography Resolves a Novel Crystal Structure in a Binary Nanocrystal Superlattice
    M. Boneschanscher, W. Evers, W. Qi, H. Meeldijk, M. Dijkstra, and D. Vanmaekelbergh, Nano Letters 13, 1312-1316 (2013). DOI: 10.1021/nl400100c. Supporting Information: PDFMPG 1MPG 2, MPG 3MPG 4MPG 5MPG 6.
  3. Phase diagrams of shape-anisotropic colloidal particles
    M. Dijkstra, Proceedings of the International School of Physics “Enrico Fermi” Course CLXXXIV “Physics of Complex Colloids”, edited by C. Bechinger, F. Sciortino and P. Ziherl (IOS, Amsterdam; SIF, Bologna) (2013). DOI: 10.3254/978-1-61499-278-3-229.
  4. Low-Dimensional Semiconductor Superlattices Formed by Geometric Control over Nanocrystal Attachment
    W.H. Evers, B. Goris, S. Bals, M. Casavola, J. de Graaf, R. van Roij, M. Dijkstra, and D. Vanmaekelbergh, Nanoletters 13, 2317 (2013). DOI: 10.1021/nl303322kPDF 1PDF 2.
  5. Phase Diagram and Structural Diversity of a Family of Truncated Cubes: Degenerate Close-Packed Structures and Vacancy-Rich States
    A.P. Gantapara, J. de Graaf, R. van Roij, and M. Dijkstra, Physical Review Letters 111, 015501 (2013). DOI: 10.1103/PhysRevLett.111.015501. Supporting Information: PDFMP4.
  6. Can nonadditive dispersion forces explain chain formation of nanoparticles?
    B.W. Kwaadgras, M.W.J. Verdult, M. Dijkstra, and R. van Roij, The Journal of Chemical Physics 138, 104308 (2013). DOI: 10.1063/1.4792137.
  7. Effect of size polydispersity on the crystal-fluid and crystal-glass transition in hard-core repulsive Yukawa systems
    M.N. van der Linden, A. van Blaaderen, and M. Dijkstra, The Journal of Chemical Physics 138, 114903 (2013). DOI: 10.1063/1.4794918.
  8. Expansion of charged colloids after centrifugation: formation and crystallisation of long-range repulsive glasses
    M.N. van der Linden, D. El Masri, M. Dijkstra, and A. van Blaaderen, Soft Matter 9, 11618-11633 (2013). DOI: 10.1039/C3SM51752G. Supporting Information: AVI 1AVI 2AVI 3AVI 4.
  9. Phase diagram of hard asymmetric dumbbell particles
    K. Milinkovic, M. Dennison, and M. Dijkstra, Physical Review E 87, 032128 (2013). DOI: 10.1103/PhysRevE.87.032128.
  10. Effect of bond length fluctuations on crystal nucleation of hard bead chains
    R. Ni and M. Dijkstra, Soft Matter 9, 365-369 (2013). DOI: 10.1039/C2SM26969D. Supporting Info: PDF.
  11. Pushing the glass transition towards random close packing using self-propelled hard sphere
    R. Ni, M.A. Cohen Stuart, and M. Dijkstra, Nature Communications 4, 2704 (2013). DOI: 10.1038/ncomms3704. Supporting Information: AVIi 1AVI 2.
  12. Colloidal Clusters by Using Emulsions and Dumbbell-Shaped Particles: Experiments and Simulations
    B. Peng, F. Smallenburg, A. Imhof, M. Dijkstra, and A. van Blaaderen, Angewandte Chemie International Edition 52, 6709-6712 (2013). DOI: 10.1002/anie.201301520.  Supporting Information: PDF.
  13. Phase diagram of octapod-shaped nanocrystals in a quasi-two-dimensional planar geometry
    W. Qi, J. de Graaf, F. Qiao, S. Marras, L. Manna, and M. Dijkstra, The Journal of Chemical Physics 138, 154504 (2013). DOI: 10.1063/1.4799269. Supporting Information: MP4.
  14. Predicting crystals of Janus colloids
    T. Vissers, Z. Preisler, F. Smallenburg, M. Dijkstra, and F. Sciortino, The Journal of Chemical Physics 138, 164505 (2013). DOI: 10.1063/1.4801438.

Up

2012

  1. Depletion-induced biaxial nematic states of boardlike particles
    S. Belli, M. Dijkstra, and R. van Roij, Journal of Physics: Condensed Matter 24, 284128 (2012). DOI: 10.1088/0953-8984/24/28/284128.
  2. Free minimization of the fundamental measure theory functional: Freezing of parallel hard squares and cubes
    S. Belli, M. Dijkstra, and R. van Roij, The Journal of Chemical Physics 137, 124506 (2012). DOI: 10.1063/1.4754836.
  3. Oscillatory shear-induced 3D crystalline order in colloidal hard-sphere fluids
    T.H. Besseling, M. Hermes, A. Fortini, M. Dijkstra, A. Imhof, and A. van Blaaderen, Soft Matter 8, 6931-6939 (2012). DOI: 10.1039/C2SM07156H.
  4. Predicting patchy particle crystals: variable box shape simulations and evolutionary algorithms, 
    E. Bianchi, G. Doppelbauer, L. Filion, M. Dijkstra, and G. Kahl, The Journal of Chemical Physics 136, 214102 (2012). DOI: 10.1063/1.4722477.
  5. Phase diagram of hard snowman-shaped particles
    M. Dennison, K. Milinković, and M. Dijkstra, The Journal of Chemical Physics 137, 044507 (2012). DOI: 10.1063/1.4737621.
  6. Orde uit Wanorde, Van plantensex via Einstein naar zelfassemblage van nanodeeltjes
    M.Dijkstra, J. de Graaf, D. Vanmaekelbergh, and R. van Roij, Nederlands Tijdschrift voor Natuurkunde, juli (2012)
  7. Electrostatic interactions between Janus particles
    J. de Graaf, N. Boon, M. Dijkstra, and R. van Roij, The Journal of Chemical Physics 137, 104910 (2012). DOI: 10.1063/1.4751482.
  8. Crystal-structure prediction via the Floppy-Box Monte Carlo algorithm: Method and application to hard (non)convex particles
    J. de Graaf, L. Filion, M. Marechal, R. van Roij, and M. Dijkstra, The Journal of Chemical Physics 137, 214101 (2012). DOI: 10.1063/1.4767529. Supporting Information: PDFZIP.
  9. Surface roughness directed self-assembly of patchy particles into colloidal micelles
    D.J. Kraft, R. Ni, F. Smallenburg, M. Hermes, K. Yoon, D.A. Weitz, A. van Blaaderen, J. Groenewold, M. Dijkstra, and W.K. Kegel, Proceedings of the National Academy of Sciences 109, 10787 (2012). DOI: 10.1073/pnas.1116820109. Supporting Information: PDFMOV 1MOV 2MOV 3.
  10. Communication: Bulkiness versus anisotropy: The optimal shape of polarizable Brownian nanoparticles for alignment in electric fields
    B.W. Kwaadgras, M. Dijkstra, and R. van Roij, The Journal of Chemical Physics 136, 131102 (2012). DOI: 10.1063/1.3701615.
  11. Sheet-like assemblies of spherical particles with point-symmetrical patches
    E. Mani, E. Sanz, S. Roy, M. Dijkstra, J. Groenewold, and W.K. Kegel, The Journal of Chemical Physics 136, 144706 (2012). DOI: 10.1063/1.3702203. Supporting Information: DOCX.
  12. Frustration of the isotropic-columnar phase transition of colloidal hard platelets by a transient cubatic phase
    M. Marechal, A. Patti, M. Dennison, and M. Dijkstra, Physical Review Letters 108, 206101 (2012). DOI: 10.1103/PhysRevLett.108.206101. Supporting Information: PDFnucl_phi0.56,  nucl_phi0.57AVI.
  13. Phase diagram of colloidal hard superballs: from cubes via spheres to octahedra
    R. Ni, A. Gantapara, J. de Graaf, R. van Roij, and M. Dijkstra, Soft Matter 8, 8826-8834 (2012). DOI: 10.1039/C2SM25813G. Supporting Information: HTMAVI.
  14. Orientational order of carbon nanotube guests in a nematic host suspension of colloidal viral rods
    N. Puech, M. Dennison, C. Blanc, P. van der Schoot, M. Dijkstra, R. van Roij, P. Poulin, and E. Grelet, Physical Review Letters 108, 247801 (2012). DOI: 10.1103/PhysRevLett.108.247801. Supporting Information: PDFPS
  15. Ordered Two-Dimensional Superstructures of Colloidal Octapod-Shaped Nanocrystals on Flat Substrates
    W. Qi, J. de Graaf, F. Qiao, S. Marras, L. Manna, and M. Dijkstra, Nano Letters 12, 5299-5303 (2012). DOI: 10.1021/nl302620j. Supporting Information: PDF.
  16. Self-assembly of colloidal particles into strings in a homogeneous external electric or magnetic field
    F. Smallenburg, H.R. Vutukuri, A. Imhof, A. van Blaaderen, and M. Dijkstra, Journal of Physics: Condensed Matter 24, 464113 (2012). DOI: 10.1088/0953-8984/24/46/464113.
  17. Vacancy-stabilized crystalline order in hard cubes
    F. Smallenburg, L. Filion, M. Marechal, and M. Dijkstra, Proceedings of the National Academy of Sciences 109, 17886 (2012). DOI: 10.1073/pnas.1211784109. Supporting Information: PDF.

Up

2011

  1. Polydispersity stabilizes biaxal nematic liquid crystals
    S. Belli, A. Patti, M. Dijkstra, and R. van Roij, Physical Review Letters 107, 148303 (2011). DOI: 10.1103/PhysRevLett.107.148303. Supporting Information: PDF.
  2. Effect of quenched size polydispersity on the fluid-solid transition in charged colloidal suspensions
    J. Colombo and M. Dijkstra, The Journal of Chemical Physics 134, 15404 (2011). DOI: 10.1063/1.3580284.
  3. Phase diagram and effective shape of semiflexible colloidal rods and biopolymers
    M. Dennison, M. Dijkstra, and R. van Roij, Physical Review Letters 106, 208302 (2011). DOI: 10.1103/PhysRevLett.106.208302. Supporting Information: PDF.
  4. The effects of shape and flexibility on bio-engineered fd-virus suspensions
    M. Dennison, M. Dijkstra, and R. van Roij, The Journal of Chemical Physics 135, 144106 (2011). DOI: 10.1063/1.3646951.
  5. Measuring colloidal forces from particle position deviations inside an optical trap
    D. El Masri, P. van Oostrum, F. Smallenburg, T. Vissers, A. Imhof, M. Dijkstra, and A. van Blaaderen, Soft Matter 7, 3462-3466 (2011). DOI: 10.1039/C0SM01295E. Supporting Information: HTM.
  6. Simulation of nucleation in almost hard-sphere colloids: the discrepancy between experiments and simulation persists
    L. Filion, R. Ni, D. Frenkel, and M. Dijkstra, The Journal of Chemical Physics 134, 134901 (2011). DOI: 10.1063/1.3572059.
  7. Self-assembly of a colloidal interstitial solid with tunable sublattice doping
    L. Filion, M. Hermes, R. Ni, E.C.M. Vermolen, A. Kuijk, C.G. Christova, J.C.P. Stiefelhagen, T. Vissers, A. van Blaaderen, and M. Dijkstra, Physical Review Letters 107, 168302 (2011). DOI: 10.1103/PhysRevLett.107.168302. Supporting Information: PDF.
  8. Dense regular packings of irregular nonconvex particles
    J. de Graaf, R. van Roij, and M. Dijkstra, Physical Review Letters 107, 155501 (2011). DOI: 10.1103/PhysRevLett.107.155501. Supporting Information: PDF.
  9. Nucleation of colloidal crystals on configurable seed structures
    M. Hermes, E.C. M. Vermolen, M.E. Leunissen, D.L.J. Vossen, P.D.J. van Oostrum, M. Dijkstra, and A. van Blaaderen, Soft Matter 7, 4517-5048 (2011). DOI: 10.1039/C0SM01219J 
  10. Polarizability and alignment of dielectric nanoparticles in an external electric field: bowls, dumbbells, and cuboids
    B.W. Kwaadgras, M. Verdult, M. Dijkstra, and R. van Roij, The Journal of Chemical Physics 135, 134105 (2011). DOI: 10.1063/1.3637046
  11. Phase behavior of hard colloidal platelets using free energy calculations
    M. Marechal, A. Cuetos, B. Martínez-Haya, and M. Dijkstra, The Journal of Chemical Physics 134, 094501 (2011). DOI: 10.1063/1.3552951.
  12. Stacking in sediments of colloidal hard spheres M. Marechal, M. Hermes, and M. Dijkstra, The Journal of Chemical Physics 135, 034510 (2011). DOI: 10.1063/1.3609103. Supporting Information: readme.txtAVI.
  13. Hydrodynamic Rayleigh-Taylor-like instabilities in sedimenting colloidal mixtures
    K. Milinković, J. T. Padding, and M. Dijkstra, Soft Matter 7, 11177 (2011). DOI: 10.1039/C1SM05930K.
  14. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures
    K. Miszta, J. de Graaf, G. Bertoni, D. Dorfs, R. Brescia, S. Marras, L. Ceseracciu, R. Cingolani, R. van Roij, M. Dijkstra, and L. Manna, Nature Materials 10, 872-876 (2011). DOI: 10.1038/nmat3121. Supporting Information: PDF.
  15. Crystal nucleation of colloidal hard dumbbells
    R. Ni and M. Dijkstra, The Journal of Chemical Physics 134, 034501 (2011). DOI: 10.1063/1.3528222.
  16. Crystal nucleation in binary hard-sphere mixtures: the effect of order parameter on the cluster composition
    R. Ni, F. Smallenburg, L. Filion, and M. Dijkstra, Molecular Physics 109, 1213-1227 (2011). DOI: 10.1080/00268976.2011.554333
  17. Relaxation dynamics in the columnar liquid crystal phase of hard platelets
    A. Patti, S. Belli, R. van Roij, and M. Dijkstra, Soft Matter 7, 3533-3545 (2011). DOI: 10.1039/C0SM01265C
  18. Phase diagram of colloidal spheres with a constant zeta-potential
    F. Smallenburg, N. Boon, M. Kater, M. Dijkstra and R. van Roij, The Journal of Chemical Physics 134, 074505 (2011). DOI: 10.1063/1.3555627.

Up

2010

  1. Heterogeneous dynamics in columnar liquid crystals of parallel hard rods
    S. Belli, A. Patti, R. van Roij, and M. Dijkstra, The Journal of Chemical Physics 133, 154514 (2010). DOI: 10.1063/1.3505150.
  2. Phase diagrams of binary mixtures of oppositely charged colloids
    M. Bier, R. van Roij and M. Dijkstra, The Journal of Chemical Physics 133, 124501 (2010). DOI: 10.1063/1.3479883.
  3. Screening of heterogeneous surfaces: charge renormalization of Janus particles
    N. Boon, E. Carvajal Gallardo, S. Zheng, E. Eggen, M. Dijkstra, and R. van Roij, Journal of Physics: Condensed Matter 22, 104104 (2010). DOI: 10.1088/0953-8984/22/10/104104
  4. Can the isotropic-smectic transition of colloidal hard rods occur via nucleation and growth?
    A. Cuetos, E. Sanz, and M. Dijkstra, Faraday Discussions 144, 253-269 (2010). DOI: 10.1039/B901594A
  5. Entropy-driven formation of binary semiconductor-nanocrystal superlattices
    H. Evers, B. de Nijs, L. Filion, S. Castillo, M. Dijkstra, and D. Vanmaekelbergh, Nano Letters 10, 4235 (2010). DOI: 10.1021/nl102705p. Supporting Information: PDF.
  6. Crystal nucleation of hard spheres using molecular dynamics, umbrella sampling, and forward flux sampling: A comparison of simulation techniques
    L. Filion, M. Hermes, R. Ni and, M. Dijkstra, The Journal of Chemical Physics 133, 244115  (2010). DOI: 10.1063/1.3506838.
  7. Adsorption trajectories and free-energy separatrices for colloidal particles in contact with a liquid-liquid interface
    J. de Graaf, M. Dijkstra, and R. van Roij, The Journal of Chemical Physics 132, 164902 (2010). DOI: 10.1063/1.3389481. Supporting Information: Tar.bz2
  8. Jamming of polydisperse hard spheres: The effect of kinetic arrrest
    M. Hermes and M. Dijkstra, Europhysics Letters 89, 38005 (2010). DOI: 10.1209/0295-5075/89/38005.
  9. Thermodynamic signature of the dynamic glass transition in hard spheres
    M. Hermes and M. Dijkstra, Journal of Physics: Condensed Matter 22, 104114 (2010). DOI: 10.1088/0953-8984/22/10/104114.
  10. Phase behavior and structure of a new colloidal model system of bowl-shaped particles
    M. Marechal, R. J. Kortschot, A.F. Demirörs, A. Imhof, and M. Dijkstra, Nano Letters 10, 1907-1911 (2010). DOI: 10.1021/nl100783g. Supporting Information: PDF.
  11. Phase behavior and structure of colloidal bowl-shaped particles: Simulations
    M. Marechal and M. Dijkstra, Physical Review E 82, 031405 (2010). DOI: 10.1103/PhysRevE.82.031405
  12. Non-Gaussian dynamics in smectic liquid crystals of parallel hard rods
    R. Matena, M. Dijkstra, and A. Patti, Physical Review E 81, 021704 (2010). DOI: 10.1103/PhysRevE.81.021704
  13. Glassy dynamics, Spinodal fluctuations, and the kinetic limit of nucleation in suspensions of colloidal hard rods
    R. Ni, S. Belli, R. van Roij, and M. Dijkstra, Physical Review Letters 105, 088302 (2010). DOI: 10.1103/PhysRevLett.105.088302. Supporting Information: PDFAVI 1AVI 2 AVI 3.
  14. Collective diffusion of colloidal hard rods in smectic liquid crystals: Effect of particle anisotropy
    A. Patti, D. El Masri, R. van Roij, and M. Dijkstra, The Journal of Chemical Physics 132, 224907 (2010). DOI: 10.1063/1.3432864.
  15. Phase diagram of colloidal spheres in a biaxial electric or magnetic field
    F. Smallenburg and M. Dijkstra, The Journal of Chemical Physical 132, 204508 (2010). DOI: 10.1063/1.3425734
  16. Computer simulations of the restricted primitive model at very low temperature and density
    C. Valeriani, P.J. Camp, J.W. Zwanikken, R. van Roij, and M. Dijkstra, Journal of Physics: Condensed Matter 22, 104122 (2010). DOI: 10.1088/0953-8984/22/10/104122.
  17. Ion association in low-polarity solvents comparisons between theory, simulation, and experiment
    C. Valeriani, P.J. Camp, J.W. Zwanikken, R. van Roij, and M. Dijkstra, Soft Matter 6, 2793 (2010). DOI: 10.1039/C001577F.

Up

2009

  1. Effective shape and phase behavior of short charged rods E. Eggen, M. Dijkstra, and R. van Roij, Physical Review E 79, 041401 (2009). DOI: 10.1103/PhysRevE.79.041401.
  2. Observation of a ternary nanocrystal superlattice and its structural characterization by electron tomography
    W.H. Evers, H. Friedrich, L. Filion, M. Dijkstra, and D. Vanmaekelbergh, Angewandte Chemie International Edition 48, 9655-9657 (2009). DOI: 10.1002/anie.200904821. Supporting Information: PDF.
  3. Prediction of binary hard-sphere crystal structures
    L. Filion and M. Dijkstra, Physical Review E 79, 046714 (2009). DOI: 10.1103/PhysRevE.79.046714
  4. Efficient Method for Predicting Crystal Structures at Finite Temperature: Variable Box Shape Simulations
    L. Filion, M. Marechal, B. van Oorschot, D. Pelt, F. Smallenburg, and M. Dijkstra, Physical Review Letters 103, 188302 (2009). DOI: 10.1103/PhysRevLett.103.188302
  5. Triangular tessellation scheme for the adsorption free energy at the liquid-liquid
    interface: Towards nonconvex patterned colloids

    J. de Graaf, M. Dijkstra, and R. van Roij, Physical Review E 80, 051405 (2009). DOI: 10.1103/PhysRevE.80.051405
  6. Stability of LS and LS2 crystal structures in binary mixtures of hard and charged spheres
    A.P. Hynninen, L. Filion, and M. Dijkstra, The Journal of Chemical Physics 131, 064902 (2009). DOI: 10.1063/1.3182724.
  7. Do multilayer crystals nucleate in suspensions of colloidal rods?
    A. Patti and M. Dijkstra, Physical Review Letters 102, 128301 (2009). DOI: 10.1103/PhysRevLett.102.128301. Supporting Information: ZIP 1ZIP 2ZIP 3.
  8. Stringlike clusters and cooperative interlayer permeation in smectic liquid crystals formed by colloidal rods
    A. Patti, D. El Masri, R. van Roij, and M. Dijkstra, Physical Review Letters 103, 248304 (2009). DOI: 10.1103/PhysRevLett.103.248304
  9. Fabrication of large binary colloidal crystals with a NaCl structure
    E.C.M. Vermolen, A. Kuijk, L.C. Filion, M. Hermes, J.H.J. Thijssen, M. Dijkstra, and A. van Blaaderen, Proceedings of the National Academy of Sciences 106, 16063-16067 (2009).  DOI: 10.1073/pnas.0900605106. Supporting Information: PDF.

Up

2008

  1. Self-diffusion of particles in complex fluids: temporary cages and permanent barriers
    M. Bier, R. van Roij, M. Dijkstra and P. van der Schoot, Physical Review Letters 101, 215901 (2008). DOI: 10.1103/PhysRevLett.101.215901
  2. Isotropic-to-nematic nucleation in suspensions of colloidal rods
    A. Cuetos, R. van Roij, and M. Dijkstra, Soft Matter 4, 757 (2008). DOI: 10.1039/B715764A
  3. Effect of excluded volume interactions on the interfacial properties of colloid-polymer mixtures
    A. Fortini, P.G. Bolhuis, and M. Dijkstra, The Journal of Chemical Physics 128, 024904 (2008). DOI: 10.1063/1.2818562.
  4. Crystallization and gelation in colloidal systems with short-ranged attractive interactions
    A. Fortini, E. Sanz, and M. Dijkstra, Physical Review E 78, 041402 (2008). DOI: 10.1103/PhysRevE.78.041402. Supporting Material; movie 1movie 2movie 3.
  5. Stability of orientationally disordered crystal structures of colloidal hard dumbbells
    M. Marechal and M. Dijkstra, Physical Review E 77, 061405 (2008). DOI: 10.1103/PhysRevE.77.061405
  6. Gel formation in suspensions of oppositely charged colloids: mechanism and relation to the equilibrium phase diagram
    E. Sanz, M.E. Leunissen, A. Fortini, A. van Blaaderen, and M. Dijkstra, The Journal of Physical Chemistry B 112, 10861-10872 (2008). DOI: 10.1021/jp801440v. Supporting Information, movie 1movie 2
  7. Out-of-equilibrium processes in suspensions of oppositely charged colloids: liquid-to-crystal nucleation and gel formation
    E. Sanz, C. Valeriani, T. Vissers, A. Fortini, M.E. Leunissen, A. van Blaaderen, D. Frenkel, and M. Dijkstra, Journal of Physics: Condensed Matter 20, 494247 (2008). DOI: 10.1088/0953-8984/20/49/494247
  8. Effect of particle size and charge on the network properties of microsphere-based hydrogels
    S.R. Van Tomme, C.F. van Nostrum, M. Dijkstra, S.C. De Smedt, and W.E. Hennink, European Journal of Pharmaceutics and Biopharmaceutics 70, 522-530 (2008). DOI: 10.1016/j.ejpb.2008.05.013
  9. Breakdown of the Yukawa model in de-ionized colloidal suspensions
    A. Torres, A. Cuetos, M. Dijkstra, and R. van Roij, Physical Review E 77, 031402 (2008). DOI: 10.1103/PhysRevE.77.03140.

Up

2007

  1. Experimental Observation of Structural Crossover in Binary Mixtures of Colloidal Hard Spheres
    J. Baumgartl, R.P.A. Dullens, M. Dijkstra, R. Roth, and C. Bechinger, Physical Review Letters 98, 198303 (2007). DOI: 10.1103/PhysRevLett.98.198303.
  2. Op weg naar een fotonische band gap voor licht?
    A. van Blaaderen and M. Dijkstra, Nederlands Tijdschrift voor Natuurkunde, mei 2007, pp. 172-174.
  3. Kinetic pathways for the isotropic-nematic phase transition in a system of colloidal hard rods: a simulation study
    A. Cuetos and M. Dijkstra, Physical Review Letters 98, 095701 (2007). DOI: 10.1103/PhysRevLett.98.095701.
  4. Self-assembly route for photonic crystals with a bandgap in the visible region
    A.P. Hynninen, J. H.J. Thijssen, E. C.M. Vermolen, M. Dijkstra, and A. van Blaaderen, Nature Materials 6, 202-205 (2007). DOI: 10.1038/nmat1841  Also read the News&Views article by D. J. NorrisDOI:10.1038/nmat1844
  5. Crystallization of colloidal hard spheres under gravity
    M. Marechal and M. Dijkstra, Physical Review E 75, 061404 (2007). DOI: 10.1103/PhysRevE.75.061404
  6. Entropic Wetting and the Free Isotropic-Nematic Interface of Hard Colloidal Platelets
    H. Reich, M. Dijkstra, R. van Roij, and M. Schmidt, Journal of Physical Chemistry B 111, 7825 (2007). DOI: 10.1021/jp068870b
  7. Evidence for Out-of-Equilibrium Crystal Nucleation in Suspensions of Oppositely Charged
    Colloids

    E. Sanz, C. Valeriani, D. Frenkel, and M. Dijkstra, Physical Review Letters 99, 055501 (2007). DOI: 10.1103/PhysRevLett.99.055501
  8. Sedimentation of charged colloids: The primitive model and the effective one-component approach
    A. Torres, A. Cuetos, M. Dijkstra, and R. van Roij, Physical Review E 75,
    041405 (2007). DOI: 10.1103/PhysRevE.75.041405.

Up

2006

  1. Isotropic-nematic interface and wetting in suspensions of colloidal platelets
    D. van der Beek, H. Reich, P. van der Schoot, M. Dijkstra, T. Schilling, R. Vink, M. Schmidt, R. van Roij, and H. Lekkerkerker, Physical Review Letters 97, 087801 (2006). DOI: 10.1103/PhysRevLett.97.087801
  2. Zouten maken met colloïden
    A. van Blaaderen and M. Dijkstra, Chemisch2Weekblad, 17 juni 2006, p. 20-22.
  3. Gewone en exotische zouten maken met colloïden
    A. van Blaaderen and M. Dijkstra, Nederlands Tijdschrift voor Natuurkunde, juli 2006, p. 240-242.
  4. Layering in sedimentation of suspensions of charged colloids: Simulation and theory
    A. Cuetos, A.P. Hynninen, J. Zwanikken, R. van Roij, and M. Dijkstra, Physical Review E 73, 061402 (2006). DOI: 10.1103/PhysRevE.73.061402
  5. Sedimentation of binary mixtures of like- and oppositely charged colloids: the primitive
    model or effective pair potentials?

    M. Dijkstra, J. Zwanniken, and R. van Roij, Journal of Physics: Condensed Matter 18, 825-836 (2006). DOI: 10.1088/0953-8984/18/3/005
  6. Effect of many-body interactions on the bulk and interfacial phase behavior of a model colloid-polymer mixture
    M. Dijkstra, R. van Roij, R. Roth, and A. Fortini, Physical Review E 73, 041404 (2006). DOI: 10.1103/PhysRevE.73.041404
  7. Phase behaviour of hard spheres confined between parallel hard plates: manipulation of colloidal crystal structures by confinement
    A. Fortini and M. Dijkstra, Journal of Physics: Condensed Matter 18, L371-L378 (2006). DOI: 10.1088/0953-8984/18/28/L02
  8. Phase behavior and structure of model colloid-polymer mixtures confined between two parallel planar hard walls
    A. Fortini, M. Schmidt, and M. Dijkstra, Physical Review E 73, 051502 (2006). DOI: 10.1103/PhysRevE.73.051502
  9. Gas-liquid phase separation in oppositely charged colloids: Stability and interfacial tension
    A. Fortini, A.-P. Hynninen, and M. Dijkstra, The Journal of Chemical Physics 125, 094502 (2006). DOI: 10.1063/1.2335453
  10. CuAu structure in the restricted primitive model and oppositely charged colloids
    A.-P. Hynninen, M. E. Leunissen, A. van Blaaderen, and M. Dijkstra, Physical  Review Letters 96, 018303 (2006). DOI: 10.1103/PhysRevLett.96.018303
  11. Prediction and observation of crystal structures of oppositely charged colloids
    A.-P. Hynninen, C.G. Christova, R. van Roij, A. van Blaaderen, and M. Dijkstra, Physical Review Letters 96, 138308 (2006). DOI: 10.1103/PhysRevLett.96.138308
  12. Re-entrant melting and freezing in a model system of charged colloids
    C. P. Royall, M. E. Leunissen, A.-P. Hynninen, M. Dijkstra and A. van Blaaderen, The Journal of Chemical Physics 124, 244706 (2006). DOI: 10.1063/1.2189850
  13. Phase behavior of a suspension of colloidal hard rods and nonadsorbing polymer
    S.V. Savenko and M. Dijkstra, The Journal of Chemical Physics 124, 234902 (2006). DOI: 10.1063/1.2202853

Up

2005

  1. Entropic wetting in colloidal suspensions
    M. Dijkstra and R. van Roij, Journal of Physics: Condensed Matter 17, S3507-S3514 (2005). DOI: 10.1088/0953-8984/17/45/041
  2. Wall-fluid and liquid-gas interfaces of model colloid-polymer mixtures by simulation and
    theory 

    A. Fortini, M. Dijkstra, M. Schmidt, and P.P.F. Wessels, Physical Review E 71, 051403 (2005). DOI: 10.1103/PhysRevE.71.051403
  3. Phase behaviour of charged colloidal sphere dispersions with added polymer chains
    A. Fortini, M. Dijkstra, and R. Tuinier, Journal of Physics: Condensed Matter 17, 7783-7803 (2005). DOI: 10.1088/0953-8984/17/50/002
  4. Homogeneous and inhomogeneous hard-sphere mixtures: manifestations of structural
    crossover

    C. Grodon, M. Dijkstra, R. Evans, and R. Roth, Molecular Physics 103, 3009 (2005). DOI: 10.1080/00268970500167532
  5. Phase diagram of dipolar hard and soft spheres: Manipulation of colloidal crystal structures by an external field 
    A.-P. Hynninen and M. Dijkstra, Physical Review Letters 94,138303 (2005). DOI: 10.1103/PhysRevLett.94.138303
  6. Critical point of electrolyte mixtures
    A.-P. Hynninen, M. Dijkstra, and A. Z. Panagiotopoulos, The Journal of  Chemical Physics 123, 084903 (2005). DOI: 10.1063/1.1979490
  7. Phase behavior of dipolar hard and soft spheres
    A.-P. Hynninen and M. Dijkstra, Physical Review E 72, 051402 (2005). DOI: 10.1103/PhysRevE.72.051402
  8. Melting line of charged colloids from primitive model simulations
    A.-P. Hynninen and M. Dijkstra, The Journal of Chemical Physics 123, 244902 (2005). DOI: 10.1063/1.2138693
  9. Ionic colloidal crystals of oppositely charged particles
    M.E. Leunissen, C.G. Christova, A.-P. Hynninen, C.P. Royall, A.I. Campbell, A. Imhof, M. Dijkstra, R. van Roij, and A. van Blaaderen, Nature 437, 235-240 (2005). DOI: 10.1038/nature03946
    Also read the accompanying News and Views,
    and the News and Views in Nature Materials by D. Frenkel.
  10. Asymptotic decay of the pair correlation function in molecular fluids: Application to hard rods
    S.V. Savenko and M. Dijkstra, Physical Review E 72, 021202 (2005). DOI: 10.1103/PhysRevE.72.021202

Up

2004

  1. Capillary freezing or complete wetting of hard spheres in a planar hard slit?
    M. Dijkstra, Physical Review Letters 93, 108303 (2004). DOI: 10.1103/PhysRevLett.93.108303
  2. Decay of correlation functions in hard-sphere mixtures: Structural crossover
    C. Grodon, M. Dijkstra, R. Evans, and R. Roth, The Journal of Chemical Physics 121, 7869-7882 (2004). DOI: 10.1063/1.1798057.
  3. Sedimentation profiles of charged colloids: Entropic lift and charge separation
    A.-P. Hynninen, R. van Roij, and M. Dijkstra, Europhysics Letters 65(5), 719-725 (2004). DOI: 10.1209/epl/i2003-10178-y.
  4. Effect of three-body interactions on the phase behavior of charge-stabilized colloidal suspensions
    A.-P. Hynninen, M. Dijkstra, and R. van Roij, Physical Review E 69, 061407 (2004). DOI: 10.1103/PhysRevE.69.061407.
  5. Sedimentation and multiphase equilibria in suspensions of colloidal hard rods
    S.V. Savenko and M. Dijkstra, Physical Review E 70, 051401 (2004). DOI: 10.1103/PhysRevE.70.051401
  6. Accuracy of measuring the nematic order from intensity scatter: A simulation study
    S.V. Savenko and M. Dijkstra, Physical Review E 70, 011705 (2004). DOI: 10.1103/PhysRevE.70.011705.
  7. Isotropic-nematic transition of hard rods immersed in random sphere matrices
    M. Schmidt and M. Dijkstra, The Journal of Chemical Physics 121, 12067-12073 (2004). DOI: 10.1063/1.1815294
  8. Floating liquid phase in sedimenting colloid-polymer mixtures
    M. Schmidt, M. Dijkstra, and J.-P. Hansen, Physical Review Letters 93, 088303 (2004). DOI: 10.1103/PhysRevLett.93.088303
  9. Capillary evaporation in colloid–polymer mixtures selectively confined to a planar slit
    M. Schmidt, A. Fortini, and M. Dijkstra, Journal of Physics: Condensed Matter 16,
    S4159–S4168 (2004). DOI: 10.1088/0953-8984/16/38/029
  10. Competition between sedimentation and phase coexistence of colloidal dispersions under
    gravity

    M. Schmidt, M. Dijkstra, and J.-P. Hansen, Journal of Physics: Condensed Matter 16, S4185–S4194 (2004). DOI: 10.1088/0953-8984/16/38/031.

Up

 

2003

  1. Phase diagrams of hard-core repulsive Yukawa particles
    A.-P. Hynninen and M. Dijkstra, Physical Review E 68, 021407 (2003). DOI: 10.1103/PhysRevE.68.021407
  2. Effect of triplet attractions on the phase diagram of suspensions of charged colloids
    A.-P. Hynninen, M. Dijkstra, and R. van Roij, Journal of Physics: Condensed Matter 15, S3549-S3556 (2003). DOI: 10.1088/0953-8984/15/48/014
  3. Phase diagram of hard-core repulsive Yukawa particles with a density-dependent truncation: a simple model for charged colloids
    A.-P. Hynninen and M. Dijkstra, Journal of Physics: Condensed Matter 15, S3557-S3567 (2003). DOI: 10.1088/0953-8984/15/48/015
  4. Isotropic-nematic transition of long, thin, hard spherocylinders confined in a quasi-two-dimensional planar geometry
    M.C. Lagomarsino, M. Dogterom, and M. Dijkstra, The Journal of Chemical Physics 119, 3535-3540 (2003). DOI: 10.1063/1.1588994
  5. Capillary condensation of colloid–polymer mixtures confined between parallel plates
    M. Schmidt, A. Fortini, and M. Dijkstra, Journal of Physics: Condensed Matter 15, S3411-S3420 (2003). DOI: 10.1088/0953-8984/15/48/002

Up

 

2002

  1. Entropic Wetting and many-body induced layering in a model colloid-polymer mixture
    M. Dijkstra and R. van Roij, Physical Review Letters 89, 208303 (2002). DOI: 10.1103/PhysRevLett.89.208303
  2. Phase behavior of hard spheres with a short-range Yukawa attraction
    M. Dijkstra, Physical Review E 66, 021402 (2002). DOI: 10.1103/PhysRevE.66.021402
  3. Three-body forces between charged colloidal particles
    C. Russ, H.H. von Grunberg, M. Dijkstra, and R. van Roij, Physical Review E 66, 011402 (2002). DOI: 10.1103/PhysRevE.66.011402.

2001

  1. Inhomogeneous model colloid-polymer mixtures: Adsorption at a hard wall
    J.M. Brader, M. Dijkstra, and R. Evans, Physical Review E 63, 041405 (2001). DOI: 10.1103/PhysRevE.63.041405
  2. Computer simulations of charge and steric stabilised colloidal suspensions
    M. Dijkstra, Current Opinion in Colloid & Interface Science 6, 372-382 (2001). DOI: 10.1016/S1359-0294(01)00106-6
  3. Wetting and capillary nematization of a hard-rod fluid: A simulation study
    M. Dijkstra, R. van Roij, and R. Evans, Physical Review E 63, 051703 (2001). DOI: 10.1103/PhysRevE.63.051703
  4. Interfacial properties of model colloid-polymer mixtures
    R. Evans, J.M. Brader, R. Roth, M. Dijkstra, M. Schmidt, and H. Lowen, Philosophical Transactions of the Royal Society of London Series A 359, 961-975 (2001). DOI: 10.1098/rsta.2000.0811

Up

 

2000

  1. A simulation study of the decay of the pair correlation function in simple fluids
    M. Dijkstra and R. Evans, The Journal of Chemical Physics 112, 1449-1456 (2000). DOI: 10.1063/1.480598
  2. Effective interactions, structure, and isothermal compressibility of colloidal suspensions
    M. Dijkstra, R. van Roij, and R. Evans, The Journal of Chemical Physics 113, 4799-4807 (2000). DOI: 10.1063/1.1288921
  3. On the states of orientations along a magnetically inhomogeneous nanowire
    R. Eisenbach, M. Dijkstra, and B.L. Gyorffy, Journal of Magnetism and Magnetic Materials 208, 137-143 (2000). DOI: 10.1016/S0304-8853(99)00559-4
  4. Orientational wetting and capillary nematization of hard-rod fluids
    R. van Roij, M. Dijkstra, and R. Evans, Europhysics Letters 49, 350-356 (2000). DOI: 10.1209/epl/i2000-00155-0
  5. Interfaces, wetting, and capillary nematization of a hard-rod fluid: Theory for the
    Zwanzig model

    R. van Roij, M. Dijkstra, and R. Evans, The Journal of Chemical Physics 113, 7689-7701 (2000). DOI: 10.1063/1.1288903.

Up

 

1999

  1. Phase behaviour and structure of model colloid-polymer mixtures
    M. Dijkstra, J.M. Brader, and R. Evans, Journal of Physics: Condensed Matter 11, 10079-10106 (1999). DOI: 10.1088/0953-8984/11/50/304
  2. Direct simulation of the phase behavior of binary hard-sphere mixtures: Test of the depletion potential description
    M. Dijkstra, R. van Roij, and R. Evans, Physical Review Letters 82, 117-120 (1999). DOI: 10.1103/PhysRevLett.82.117
  3. Phase diagram of highly asymmetric binary hard-sphere mixtures
    M. Dijkstra, R. van Roij, and R. Evans, Physical Review E 59, 5744-5771 (1999). DOI: 10.1103/PhysRevE.59.5744
  4. Depletion potential in hard-sphere fluids
    B. Gotzelmann, R. Roth, S. Dietrich, M. Dijkstra, and R. Evans, Europhysics Letters 47, 398-404 (1999). DOI: 10.1209/epl/i1999-00402-x
  5. Phase diagram of charge-stabilized colloidal suspensions: van der Waals instability without attractive forces
    R. van Roij, M. Dijkstra, and J.P. Hansen, Physical Review E 59, 2010-2025 (1999). DOI: 10.1103/PhysRevE.59.2010.

Up

 

1998

  1. Structure and solvation forces in confined films of alkanes
    M. Dijkstra, Thin Solid Films 330, 14-20 (1998). DOI: 10.1016/S0040-6090(98)00795-0.
  2. Phase behavior of nonadditive hard-sphere mixtures
    M. Dijkstra, Physical Review E 58, 7523-7528 (1998). DOI: 10.1103/PhysRevE.58.7523.
  3. Vapour-liquid coexistence for purely repulsive point-Yukawa fluids
    M. Dijkstra and R. van Roij, Journal of Physics: Condensed Matter 10, 1219-1228 (1998). DOI: 10.1088/0953-8984/10/6/005.
  4. Phase behavior and structure of binary hard-sphere mixtures
    M. Dijkstra, R. van Roij, and R. Evans, Physical Review Letters 81, 2268-2271 (1998). DOI: 10.1103/PhysRevLett.81.2268.
  5. Phase behavior of binary mixtures of thick and thin hard rods
    R. van Roij, B. Mulder, and M. Dijkstra, Physica A 261, 374-390 (1998). DOI: 10.1016/S0378-4371(98)00429-4.

Up

 

1997

  1. The effect of branching on the structure of confined thin films of alkanes
    M. Dijkstra, Europhysics Letters 37, 281-286 (1997). DOI: 10.1209/epl/i1997-00144-3.
  2. Confined thin films of linear and branched alkanes
    M. Dijkstra, The Journal of Chemical Physics 107, 3277-3288 (1997). DOI: 10.1063/1.474678.
  3. Statistical model for the structure and gelation of smectite clay suspensions
    M. Dijkstra, J.P. Hansen, and P.A. Madden, Physical Review E 55, 3044-3053 (1997). DOI: 10.1103/PhysRevE.55.3044.
  4. Entropy-drive demixing in binary hard-core mixtures: From hard spherocylinders towards hard
    spheres

    M. Dijkstra and R. van Roij, Physical Review E 56, 5594-5602 (1997). DOI: 10.1103/PhysRevE.56.5594.

 

Up

1996

 

1995

  1. Simulation study of the Isotropic-to-Nematic transitions of semiflexible polymers M. Dijkstra and D. Frenkel, Physical Review E 51, 5891-5898(1995). DOI: 10.1103/PhysRevE.51.5891
  2. Gelation of a clay colloid suspension
    M. Dijkstra, J.P. Hansen, and P.A. Madden, Physical Review Letters 75, 2236-2239 (1995). DOI: 10.1103/PhysRevLett.75.2236

1994

  1. Evidence for entropy-driven demixing in hard-core fluids
    M. Dijkstra and D. Frenkel, Physical Review Letters 72, 298-300 (1994). DOI: 10.1103/PhysRevLett.72.298.
  2. Simulation study of a 2-dimensional system of semiflexible polymers
    M. Dijkstra and D. Frenkel, Physical Review E 50, 349-357 (1994). DOI: 10.1103/PhysRevE.50.349
  3. Phase-separation in binary hard-core mixtures
    M. Dijkstra, D. Frenkel, and J.P. Hansen, The Journal of Chemical Physics 101, 3179-3189 (1994). DOI: 10.1063/1.468468.
  4. A simple lattice model for the mixing properties of molten K(X)(KCl)(1-X) solutions
    M. Dijkstra, J.P. Hansen, and A. Meroni, Journal of Physics: Condensed Matter 6, 2129-2136 (1994).

Up

1993

  1. Confinement free-energy of semiflexible polymers
    M. Dijkstra, D. Frenkel, and H.N.W. Lekkerkerker, Physica A 193, 374-393 (1993). DOI: 10.1016/0378-4371(93)90482-J

1992

  1. Velocity autocorrelation function in a 4-dimensional lattice gas
    M.A. van der Hoef, M. Dijkstra, and D. Frenkel, Europhysics Letters 17, 39-43 (1992). DOI: 10.1209/0295-5075/17/1/008.

Theses
  1. Entropy-driven Phase Transitions in Colloidal systems
    Ran Ni, Utrecht University, 2012
  2. Anisotropic Nanocolloids: Self-Assembly, Interfacial Adsorption, and Electrostatic Screening
    Joost de Graaf, Utrecht University, 2012.
    Supplemental Information (thesis of Joost de Graaf)
    Joost de Graaf, Utrecht University, 2012.
  3. Clustering and self-assembly of colloidal systems
    Frank Smallenburg, Utrecht University, 2012.
  4. Self-assembly in colloidal hard-sphere systems
    Laura Filion, Utrecht University, 2011.
  5. Hard spheres out of equilibrium
    Michiel Hermes, Utrecht University, 2010.
  6. Anisotropic colloids: bulk phase behavior and equilibrium sedimentation
    Matthieu Marechal, Utrecht University, 2009
  7. Bulk and confinement-induced phase transitions in colloidal suspensions
    A. Fortini, Utrecht University, 2007
  8. Structure and phase behavior of colloidal rod suspensions
    S.V. Savenko, Utrecht University, 2006
  9. Phase behavior of charged colloids and the effect of external fields
    Antti-Pekka Hynninen, Utrecht University, 2005
  10. The effect of entropy on the stability and structure of complex fluids
    Marjolein Dijkstra, Utrecht University, 1994

Master and Bachelor theses
  1. Crystal prediction of hard dumbbell particles through Monte Carlo simulations
    Master thesis van Bas van Oorschot, 2009
  2. Non-Gaussian Dynamics in Smectic Liquid Crystals of Parallel Hard Rods
    Master thesis van Rik Matena, 2009
  3. Crystallization and Glassy Behaviour in Short-Range Attractive Square-Well Fluids
    Master thesis van Tristan Hartskeerl, 2009
  4. Binary hard sphere mixtures in gravity
    Master thesis van Niels Keizer, 2009
  5. Real-space structure of colloidal hard-sphere glasses in experiments and simulations
    Master thesis van Marjolein van der Linden, 2008
  6. Monte Carlo pressure annealing of binary Lennard-Jones systems
    Bachelor thesis van Daan Pelt, 2008

Talks

Years 2005 2004 2003 2002 20012000 1999 1998 1997 1996 1995 1994 1993 1992

2005

  1. Invited keynote speaker, 6th Liquid Matter Conference, Utrecht, The Netherlands, 04-07-2005
    Entropic wetting in colloidal suspensions
  2. Seminar, Forschungszentrum Julich, Institut für Festkorperforschung, Julich, Germany, 25-05-2005
    Effective interactions in Colloidal suspensions
  3. Seminar, Debye Institute of Nanomaterials Science, Utrecht, The Netherlands, 20-04-2005
    Computer simulations of colloidal suspensions
  4. Seminar, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany, 21-2-2005
    Wetting and capillary nematization of a hard-rod fluid and even more…

2004

  1. Invited talk, Workshop on Simulation and modelling of colloidal systems, a joint meeting of the RSC Colloids and Interface Science and SMT groups, the IOP Complex Fluids group, Sheffield, United Kingdom, 16-09-2004
    Monte-Carlo simulations of many-body polymer-mediated interactions in colloid-polymer mixtures in bulk and in external fields
  2. Invited talk, Gordon Research Conference on Granular and Granular-fluid flow, Colby college, Main, United States of America, 30-06-2004
    Entropic ordering in colloidal suspensions
  3. Invited talk, CECAM workshop “Novel Approaches to efficient simulation of soft matter systems”, Lyon, France, 24-06-2004
    Effective interactions in colloidal suspensions
  4. Invited talk, Conference “Colloidal dispersions in external fields”, Bonn, Germany, 31-03-2004 Entropic wetting, many-body induced layering, capillary condensation and freezing of colloid-polymer mixtures
  5. Wetenschappelijke vergadering Statistische Fysica conference, Lunteren, The Netherlands, 23-01-2004
    Capillary freezing or complete wetting of hard spheres in a planar hard slit?

2003

  1. Seminar, Condensed Matter Theory group, Johannes-Gutenberg-University of Mainz, Germany, 09-12-2003
    Entropic wetting in colloidal suspensions
  2. Theoretical Physics Seminar, Katholieke Universiteit Nijmegen, The Netherlands, 12-11-2003 Wetting and capillary nematization of a hard-rod fluid and even more …
  3. Theoretical Polymer Physics Seminar, Eindhoven University of Technology, The Netherlands 03-11-2003
    Entropic wetting in colloidal suspensions.
  4. Seminar, Max-Planck Institute für Metallforschung, Stuttgart, Germany, 15-07-2003 Entropic wetting in colloidal suspensions.
  5. Invited talk, CECAM-SIMU workshop: Effective many-body interactions and correlations in soft matter, Lyon, France, 07-07-2003
    Entropic wetting, many-body induced layering, capillary condensation and freezing of colloid-polymer mixtures
  6. NWO bijeenkomst “vloeistoffen en grensvlakken, Lunteren, The Netherlands, 17-02-2003
    Entropic wetting and many-body induced layering in colloid-polymer mixtures
  7. Colloquium, FOM-institute for Atomic and Molecular Physics, Amsterdam, The Netherlands, 24-02-2003,
    Entropic wetting in colloidal suspensions.

2002

  1. FOM Condensed Matter meeting in Veldhoven, The Netherlands, 17-12-2002
    Entropic wetting and many-body induced layering in colloid-polymer mixtures

2001

  1. Invited talk, Gordon Research Conference Liquid Crystals, Colby
    Sawyer, New London, United States of America, 24-06-2001
    Phase behavior, orientational wetting and capillary nematization of hard-rod fluids
  2. Invited talk, Bridging the Time-scale gap, SIMU conference, Konstanz, Germany, 10-09-2001 Simple Models for Complex Fluids: Colloids, Polymers, and
    Microtubuli
  3. Invited talk, FOM/V symposium, Amsterdam, The Netherlands, 21-09-2001
    Simple Models for Complex Fluids: Order through disorder
  4. Landelijk Seminarium Statistische Mechanica, Amsterdam, The Netherlands, 19-10-2001
    Phase behaviour, structure, and wetting of colloidal suspensions

2000

  1. Seminar at the Institute for Theoretical Physics, Utrecht University, Utrecht, The Netherlands, 20-09-2000
    Simple models of Complex Fluids: Colloids, polymers, and microtubuli

1999

  1. Invited talk, CECAM workshop: Effective interactions and phase transitions in colloidal suspensions, Lyon, France, 28-30 June 1999
    On the structure and phase behaviour of binary hard-sphere mixtures
  2. Invited talk, Workshop Food Research Wageningen, The Netherlands, 15-06-1999
    Computer simulaties van colloidale suspensies
  3. Seminar, Edinburgh University, Scotland, 20-05-1999
    On the structure and phase behaviour of binary hard-sphere mixtures
  4. Invited talk, Cambridge Colloids Workshop, Cambridge, United Kingdom, 29-31 March 1999
    Do hard spheres boil?

1998

  1. Seminar, Heinrich-Heine-Universität Düsseldorf, Germany, 09-12-1998
    On the structure and phase behaviour of binary hard-sphere mixtures
  2. Theory Seminar, University of Bristol, United Kingdom, 04-11-1998
    On the structure and phase behaviour of binary hard-sphere mixtures
  3. Contributed talk, Soft Matter Network Meeting, Leeds, United Kingdom, 15-09-1998
    On the structure and phase behaviour of binary hard-sphere mixtures
  4. Contributed talk, NATO-ASI “New approaches to old and new problems in liquid state theory: Inhomogeneities and phase separation in simple, complex and quantum fluids”, Patti Marina, Sicily, 6-17 July 1998
    On the structure and phase behaviour of binary hard-sphere mixtures
  5. Theory Seminar, University of Cambridge, United Kingdom, 29-05-1998
    On the structure and phase behaviour of binary hard-sphere mixtures
  6. Seminar, Unilever Research Port Sunlight, Port Sunlight, United Kingdom, 15-04-1998
    Theory and simulations of complex fluids
  7. Invited talk, Workshop on Classical density functional theory, lecture, University of Bristol, United Kingdom, 01-04-1998
    Charge-stabilized colloids
  8. Lecture, CCP5 spring school “Methods in Molecular Simulation”, lecture, Bristol, United Kingdom, 24-31 March 1998
    Configurational-bias Monte-Carlo Method” and “Phase coexistence simulations without interfaces”.

1997

  1. Invited talk, CECAM workshop: The rheological behavior and structure of confined films, Theoretical approaches and experiments employing the surface force apparatus (SFA), Lyon, France, 14-17 October 1997
    Confined thin films of linear and branched alkanes
  2. Lecture, CCP5 spring school “Methods in Molecular Simulation”, lecture, Bristol, United Kingdom, 7-11 April 1997
    Configurational-bias Monte-Carlo Method” and “Phase coexistence simulations without interfaces
  3. Theory Seminar, University of Wuppertal, Germany, 25-03-1997
    The effect of entropy on the structure and stability of complex fluids

1996

  1. Invited talk, SCI meeting on colloidal dispersions and aqueous solutions, London, United Kingdom, 21 May 1996
    Confined thin films of linear and branched alkanes
  2. Theory Seminar, University of Bristol, United Kingdom, 20-05-1996
    Confined thin films of linear and branched alkanes
  3. Invited talk, CECAM workshop: Developments of transferable
    intermolecular potentials for phase equilibrium calculations, Lyon, France, 13-15 May 1996
    Confined thin films of linear and branched alkanes

1995

  1. Seminar, Koninklijke Shell Laboratorium Amsterdam, Amsterdam, The Netherlands, 17-05-1995
    Een simpele kijk op complexe vloeistoffen
  2. Invited talk, CECAM workshop: Numerical studies of polyelectrolytes, Lyon, France, 27-29 March 1995
    Simulation results on clay suspensions

1994

  1. Theory Seminar, H.H. Wills Physics Laboratory, University of Bristol, United Kingdom, 09-11-1994
    The effect of entropy on the structure and stability of complex fluids
  2. Seminar, Physical and Theoretical Chemistry laboratory, University of Oxford, United Kingdom, 07-11-1994
    The effect of entropy on the structure and stability of complex fluids
  3. Seminar, Philips Research Laboratory, Eindhoven, The Netherlands, 09-06-1994
    Het effect van entropy op de structuur en stabiliteit van complexe vloeistoffen

1993

1992

  1. Klein colloquium, FOM institute for Atomic and Molecular Physics, Amsterdam, The Netherlands, 1992
    Confinement free energy of semiflexible polymers

 


Posters

 

Years 2004 2003 2002 2001 2000 1999 1998

2004

  1. Conference “Colloidal dispersions in external fields”, Bonn, Germany, 31-03-2004
    A. Fortini, M. Schmidt, and M. Dijkstra
    Phase behaviour of colloid-polymer mixtures confined between two parallel hard-walls
  2. Conference “Colloidal dispersions in external fields”, Bonn, Germany, 31-03-2004
    S.V. Savenko and M. Dijkstra
    Sedimentation equilibria of hard spherocylinders: a simulation study
  3. Conference “Colloidal dispersions in external fields”, Bonn, Germany, 31-03-2004
    A.-P. Hynninen and M. Dijkstra
    Phase diagram of charged colloids in an external electric field
  4. Conference “Colloidal dispersions in external fields”, Bonn, Germany, 31-03-2004
    A.-P. Hynninen, R. van Roij, and M. Dijkstra
    Sedimentation profiles of charged colloids: entropic lift and charge separation
  5. Conference “Colloidal dispersions in external fields”, Bonn, Germany, 31-03-2004
    C. Grodon, M. Dijkstra, R. Evans, and R. Roth
    Crossover behavior of pair correlations in binary hard-sphere mixtures
  6. Wetenschappelijke vergadering Statistische Fysica conference, Lunteren, The Netherlands, 22-01-2004
    A. Fortini, M. Schmidt, and M. Dijkstra Capillary condensation of colloid-polymer mixtures confined between parallel plates
  7. Wetenschappelijke vergadering Statistische Fysica conference, Lunteren, The Netherlands, 22-01-2004
    A.-P. Hynninen, R. van Roij, and M. Dijkstra Sedimentation profiles of charged colloids: entropic lift and charge separation
  8. Wetenschappelijke vergadering Statistische Fysica conference, Lunteren, The Netherlands, 22-01-2004
    A.-P. Hynninen and M. Dijkstra
    Phase diagrams of hard-core repulsive Yukawa particles
  9. Wetenschappelijke vergadering Statistische Fysica conference, Lunteren, The Netherlands, 22-01-2004
    M. Schmidt, M. Dijkstra, and J.P. Hansen
    Floating liquid phase in sedimenting colloid-polymer mixtures
  10. Wetenschappelijke vergadering Statistische Fysica conference, Lunteren, The Netherlands, 22-01-2004
    S.V. Savenko and M. Dijkstra
    Measuring the nematic order from intensity scatter
  11. Wetenschappelijke vergadering Statistische Fysica conference, Lunteren, The Netherlands, 22-01-2004
    S.V. Savenko and M. Dijkstra
    Sedimentation equilibria of hard spherocylinders

2003

  1. CECAM-SIMU workshop: Effective many-body interactions and correlations in soft matter, Lyon, France, 07-07-2003
    A.-P. Hynninen, M. Dijkstra, and R. van Roij
    Effect of three-body interactions on the phase behavior of charge-stabilized colloidal suspensions
  2. Wetenschappelijke vergadering Statistische Fysica conference, Lunteren, The Netherlands, 23-01-2003
    A.-P. Hynninen, M. Dijkstra, and R. van Roij Effect of three-body interactions on the phase behavior of
    charge-stabilized colloidal suspensions
  3. Wetenschappelijke vergadering Statistische Fysica conference, Lunteren, The Netherlands, 23-01-2003
    M. Dijkstra and R. van Roij
    Entropic wetting and many-body induced layering in a model colloid-polymer mixture

2001

  1. FOM/V symposium, Amsterdam, The Netherlands, 21-09-2001
    M. Dijkstra On the phase behaviour and structure of binary hard-sphere mixtures
  2. Wetenschappelijke vergadering Statistische Fysica conference, Lunteren, The Netherlands, 01-02-2001
    M. Dijkstra, R. van Roij, and R. Evans Wetting and Capillary Nematization of hard-rod fluids

2000

  1. Wetenschappelijke vergadering Statistische Fysica conference, Lunteren, The Netherlands, 20-01-2000
    M. Dijkstra, R. van Roij, and R. Evans Interfaces, wetting and capillary nematization of a hard-rod fluids

1998

      1. NATO-ASI “New approaches to old and new problems in liquid state theory: Inhomogeneities and phase separation in simple, complex and quantum fluids”, Patti Marina, Sicily, 6-17 July 1998
        M. Dijkstra, R. van Roij, and R. Evans
        On the structure and phase behaviour of binary hard-sphere mixtures

 


LEGAL

The material on this web page is intended as a scientific resource for the private use of individual scholars. None of it may be used commercially, or for financial gain. Some of the material is protected by copyright. Requests for permission to make public use of any of the papers, or material therein, should be sought from the original publisher, or from M. Dijkstra, as appropriate.